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Abstract: - In this paper, a novel Independent Component Analysis (ICA) algorithm is proposed with application 
to interference suppression in diversity receivers. For mobile and wireless communications, the new technique is 
an efficient baseband digital interference rejection method that results in simplified analog front-end. 
Simulations are performed for BPSK receivers assuming time-varying conditions. The results confirm the 
effectiveness of the presented technique. Also, the new technique is applicable in the presence of thermal noise.  
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1   Introduction 
For wireless receivers, to increase receiver flexibility 
and integration, most radio functionalities are 
required to be performed in the digital domain [1].  
     Interference suppression is an important task for 
communication systems. With the advancement of 
ADC technology, baseband digital interference 
rejection [2-6] is becoming increasingly feasible. 
This is an important step towards the realization of 
the future Software Defined Radio (SDR).  
    In this paper, mobile and wireless communications 
are considered in which the fading channels are often 
time-varying. A new ICA algorithm is proposed to 
perform interference suppression under these 
dynamic conditions. Simulation results for BPSK 
receivers indicate that the proposed technique is 
successful in achieving acceptable performance. 
 
 
2  Receiver Structure and Signal Model 
Fig. 1 shows the diversity BPSK receiver structure. 
Two antennas are used which, after identical 
downconversion stage, generate two baseband 
observations. Assume a co-channel interferer is 
present in the received signals.  
     The channel’s fading coefficients are defined as: 

        fsk = αsk
skje ψ     (1) 

       fik = αik
ikje ψ     (2) 

 
where k=1, 2 is the antenna index;  fsk, fik are fading 
coefficients for the desired and interfering signals, 

respectively; αsk, αik and ψsk, ψik are the channel’s 
amplitude and phase responses, respectively. 
     Let s(t) and i(t) denote the desired and interfering 
signals, respectively. Thus, the received signal of the 
kth antenna rk(t)  can be expressed as:  
 
rk(t) = 2Re[s(t)fsk

tj ICe )( ωω +  + i(t)fik
tj ICe )( ωω + ]   (3a) 

 
where Re{.} denotes the real part of a signal, ωC  is the 
nominal frequency of the first mixer, and ωI denote 
the frequency of the second local oscillator. The 
multiplication by 2 is introduced for convenience.   
     Equation (3a) can be rewritten as: 
  
rk(t) = s(t)fsk

tj ICe )( ωω + + s*(t) f*
sk

tj ICe )( ωω +−  
+ i(t)fik

tj ICe )( ωω + + i*(t)f*
ik

tj ICe )( ωω +−                 (3b) 
 

where * denotes complex conjugate. 
The first mixer signal is expressed as: 

 
     xLO(t)=2cos(ωCt+θ)= )( θω +− tj Ce  + )( θω +tj Ce     
                           (4) 
where θ is the phase offset. Thus, no phase 
synchronization is assumed.  

After the first mixer, the signals are 
downconverted to IF stage. Then Bandpass Filters 
(BPF’s) with the center frequency of ωI is employed 
to select the channel and suppress the high 
frequency components. The output of the BPF’s is: 

 
    rIF,k(t) = s(t)fsk

)( θω −tj Ie    + s*(t)f*
sk

)( θω −− tj Ie  + 
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i(t)fik
)( θω −tj Ie + i*(t)f*

ik
)( θω −− tj Ie                        (5) 

 
Finally, the IF signals are further 

downconverted to baseband and processed by 
lowpass filters. At this point, A/D conversion is 
performed. The signal observation corresponding to 
the kth antenna Xk(n) is given by:  

 
   Xk(n) = Re{s(n)fsk

θje− +i(n)fik
θje− }           (6) 

 
where n represents the discrete time index. 

For BPSK signals, since s(t) and i(t) are 
real-valued, so (6) can be written as: 

 
      Xk(n) = aks(n) + bki(n)                         (7) 

 
Where ak = Re{ fsk

θje− } and bk = Re{ fik
θje− }. 

Usually the signals are each processed in frames 
of length N. Thus, while s(n), i(n) and Xk(n) in (7) 
are one-sample signals, sN, iN and XN,k are used to 
denote blocks of signals, each containing N 
successive samples. Hence, 

 
      XN,k = aksN + bkiN                                     (8)
     

  Therefore, the signal observation matrix is 
expressed as: 
 

      X = ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

N

N

N

N

i
s

ba
ba

X
X

22

11

2,

1,  
=AS          (9) 

 
In this system model, X is the 2 by N observation 

matrix, A is the unknown 2 by 2 mixing matrix, and S 
is the 2 by N source signal matrix. ICA will be 
adopted to recover S given X, based on the 
assumption that the desired and interfering signals are 
statistically independent. This is achieved by 
identifying a 2 by 2 demixing matrix W, so that the 
components in the product WX will be as 
independent as possible.   

The successful ICA separation requires the 
non-singularity of the mixing matrix A. This is 
guaranteed by the randomness of the channel’s fading 
coefficients.  

ICA has the inherent problem of order ambiguity, 
which means prior information is needed to properly 
identify the desired signal among the extracted 
signals. Thus, reference sequences are necessary. In 
most communication standards, this condition is 
satisfied [7].  

 

3 Time-varying Channels 

There are two types of learning algorithms: block 
adaptation and sequential adaptation.  
     Block algorithms use a block of data to establish 
statistical properties. Specifically, the “expectation” 
operator is estimated by the average over L data 
points, where L is the block size. The performance is 
improved when the estimation is more accurate, i.e., 
L is larger. However, it is very important that the 
mixing matrix stays approximately constant within 
one processing block.      
     On the other hand, the online sequential 
algorithms, in which update occurs once for every 
received sample, can better track the time variation. A 
difficult task required by the online algorithms is a 
proper choice of the learning rate, which is typically 
carried out by trial and error. Besides online gradient 
ICA, the well-known online ICA techniques also 
include EASI (Equivariant Adaptive Separation via 
Independence) and natural gradient ICA.  
     Fast-ICA [8] is a classic block ICA algorithm. It is 
highly efficient for relatively stationary channels, but 
it fails to converge for rapidly time-varying 
conditions. Recently we proposed a new Optimum 
Block Adaptive ICA (OBA/ICA) algorithm that 
exhibits significantly better convergence properties 
in dynamic conditions [9]. However, a new online 
ICA algorithm is still desirable for time-varying 
channel conditions, because the block algorithms 
cannot achieve good performance for small block 
sizes.       
     In the following, the online ICA algorithm with 
Individual Adaptation (IA-ICA) is presented as a 
special case of OBA/ICA. It uses individualized 
learning rates to perform online adaptation. The 
choice of the learning rate is no longer needed.  
 
 
4 IA-ICA Algorithms for Signal 
Separation in Dynamic Conditions 
In this section, the OBA/ICA is briefly introduced 
first, and online IA-ICA is then obtained as a special 
case of OBA/ICA.  
 
j: iteration index. 
 
M: number of observations. 
 
L: length of the processing block. 
 
w(j) = [w1(j) w2(j) …… wM(j)]T: the current row of the 
separation matrix for the jth iteration. (i = 1, 2, …, M) 
 
xl,i(j): the ith signal in the lth observation data vector 
for the jth iteration. (l = 1, 2, …, L) 
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Xl(j) = [xl,1(j) xl,2(j) …… xl,M(j)]T: lth signal 
observation for the jth iteration.  
 

[ ]TLj jXjXjXG )(.....)()(][ 21= : 

Observation matrix for the jth iteration. 
     Kurtosis is used as the measure of statistical 
independence. The lth kurtosis value for the jth 
iteration is expressed according to the definition as 
 

kurtl(j) = E{[wT(j) Xl(j)]4}- 3             (10) 
 

where it is assumed that the signals and w(j) both 
have been normalized to unit variance. 

 Then, the kurtosis vector for the jth iteration is 
given by 

 
     kurt(j) = [kurt1(j) kurt2(j)…… kurtL(j)]T           (11) 
 

 Now the updating formula with individual 
learning rates can be written as 

 
)(][)()1( jMUjwjw Bj∇+=+           (12) 

where  

1

{ ( ) ( )} { ( ) ( )} { ( ) ( )}1( ) [ ... ]
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             (14)

  
     Note that in (12), the weights are updated in the 
direction of the gradients, because the performance 
function is to be maximized.  

 On the other hand, the Taylor’s series expansion 
for the lth kurtosis value in the (j+1)th iteration is 

    

...)(
)(

)()()1(
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+∆
∂
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jw
jw
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i i
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        (15)                              l = 1, 2, …, L (8) 
Where  

)()1()( jwjwjw iii −+=∆  
         i = 1, 2, …, M (9) 

     In practice, if )( jwi∆  is confined to be small 
enough, the higher order derivative terms in (15) can 
be omitted.  
     Equation (15) can be written for every l in a 
matrix-vector form. Combining the resulting 
equation and (12), the following is obtained after 

some derivation:  
    

)(][][][][][32)()1( 33 jkurtCGMUGC
L

jkurtjkurt j
T
jjjj+=+

                                       (16) 
     To identify the optimum [ ] jMU , the total squared 

kurtosis ( ) ( )Tkurt j kurt j  is to be maximized. Thus, 
the following condition should be met: 
 

0
)(

})1()1({
=
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++∂

j
jkurtjkurt

Bi

T

µ
        

i = 1,2,…, M                                                    (17) 
 

     The optimum learning rates )( jBiµ  are 
determined by substituting (16) into (17). After 
tedious derivation, the update equation (12) 
employing the optimum [ ] jMU  is obtained as  
 

)(][25.0)()1( 1 jqRjwjw j
−−=+                  (18) 

 
Where )( jq  and jR][  are defined as 

 
    T

Mj
T
j jqjqjkurtCGjq )]()...([)(][][)( 1

3 ==  
             (19) 
    )]([][][][][ 6 jRGCGR mnjj

T
jj ==   

 1 ≤ m, n ≤ M           (20) 
 

Equation (18) is the OBA/ICA algorithm.  

     To obtain IA-ICA, we assume block size L=1, so 
the block adaptation reduces to a sequential one. In 
this case, [R]j and )( jq  defined in (19) and (20) 
becomes: 
 
    )(])()([)(][ 6 jXjXjwjXR TT

j =           (21) 

)(])()([)()( 3 jkurtjXjwjXjq T=            (22)
    
     Note that in (22), the kurtosis vector has 
degenerated to a scalar.  

From (21) 
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− =            (23)

       
     Substitute (22) and (23) into (18), the IA-ICA is 
obtained: 
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5   Simulation Results 
To study the performance of the proposed technique, 
computer simulations are performed. Two sequential 
ICA algorithms, IA-ICA and online gradient ICA 
[10, pp177], are used to find the demixing matrix. 
During the adaptation process, the data block is 
repeated if necessary. The converged demixing 
matrix is applied to the data block to recover the 
source signals.  
     Since the wireless channel is assumed to be 
time-varying within processing blocks, small block 
size L has to be adopted. Also, the choice of the block 
size should be made according to the data rate and the 
receiver’s processing speed. In our experiment, 
L=100.  
     The time-varying mixing matrix is randomly 
chosen as:  
   

⎥
⎦

⎤
⎢
⎣

⎡
∆+

∆+
=

l
l

A
207

510
              (25) 

 
where l = 1, 2, … , L, and ∆ is the parameter reflecting 
the speed of channel variation. Here, it is assumed 
that the channel’s transfer function is frequency-flat 
over the signal band. Also, the sampling interval of 
the receiver’s A/D converter is negligible compared 
with 1/∆, which represents the rate of the channel’s 
time variation. 
     The separation performance is measured by 
Signal-to-Interference Ratio (SIR) defined as: 
 

SIR = 10 log10 ( ∑
= −

L

k kyks
ks

L 1
2

2

)]()([
)(1

)             (26) 

 
where s(k) is the kth sample of the desired signal, y(k) 
is the estimate of the s(k) obtained at the output of the 
demodulation stage. SIR represents the average ratio 
of the desired signal power to the power of the 
estimation error. 
     In our simulations, the time-variation parameter ∆ 
is varied from 0.01 to 0.1. This represents about 10% 
to 100% of variation in the mixing matrix’s 
coefficients within the same block. For each ∆ value, 
100 Monte Carlo simulations are performed to get the 
average performance. When online gradient ICA is 
used, the proper learning rate has to be chosen by trial 

and error. It is found that the suitable learning rate is 
about 0.1 under our experiment setup. 
     The average SIR and the number of iterations 
required for convergence adopting IA-ICA and 
online gradient ICA are shown in Figs. 2 and 3. It is 
seen from Fig. 2 that IA-ICA achieves better 
separation performance than online gradient ICA.  In 
Fig. 3, it is shown that IA-ICA converges faster if the 
time-variation parameter ∆ is less than 0.09. 
     To study the performance of the new technique 
under noisy conditions, thermal noise is added to the 
received signal. For this set of simulations, ∆ = 0.01. 
Instead of (25), the separation performance is 
expressed as the Bit-Error-Rate (BER) versus the 
input Signal to Noise Ratio (SNR) in the range of 0 to 
10dB. Figure 4 plots the results obtained from 
IA-ICA and online gradient ICA. It is seen that both 
ICA algorithms achieve similar BER, and IA-ICA’s 
performance is slightly better.  
 
 
6   Conclusions 
In this paper, a novel sequential ICA algorithm with 
individual adaptation (IA-ICA) is proposed for signal 
separation in dynamic channel conditions. The 
algorithm automatically selects an individualized set 
of learning rates, thus achieves better performance 
than the traditional online gradient ICA. The new 
technique is applied to interference suppression in 
BPSK wireless receivers. Computer simulation 
results illustrate the advantages of IA-ICA. Also, it is 
shown that sequential ICA algorithms are capable of 
performing signal separation under noisy conditions. 
In the future, extension of IA-ICA to complex-valued 
signals will be investigated.   
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Fig. 1 Diversity BPSK receiver structure 

 

Fig. 2 Average SIR achieved by IA-ICA and online 
gradient ICA 

 

Fig. 3 Average number of iteration to convergence 
adopting IA-ICA and online gradient ICA 
 

 
 
Fig. 4 BER performance achieved by IA-ICA and 
online gradient ICA under noisy conditions 
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