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Abstract: In this paper, a novel minimum-mean-square-error (MMSE) channel estimation algorithm for OFDM
systems is proposed. The algorithm adopts two-dimensional Hadamard transform (TDHT) instead of the conven-
tional Fourier transform, and more noise interference can be filtered with the proposed scheme. Both analytical
and simulation results show that the performance of the proposed algorithm is better than that with Fourier Trans-
form. The performance of the proposed scheme is even close to that with perfect channel estimation scheme.
Furthermore, the computation of TDHT takes only complex additions, and thus the complexity of which is much
lower than the scheme with Fourier transform since complex multiplications are not needed. Consequeltly, the
proposed channel estimation scheme is more practical for applications in OFDM systems than the scheme with
Fourier transform.
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1 Introduction
In resent years, significant research interest has been
given to orthogonal frequency division multiplexing
(OFDM) due to its advantages in high-bit-rate mobile
systems over multi-path fading channels. The OFDM
scheme has been exploited for asymmetric digital
subscriber lines (ADSL), digital audio broadcasting
(DAB), digital video broadcasting (DVB), HDTV ter-
restrial broadcasting, and the IEEE 802.11 standard
[1][2].

In an OFDM system, channel estimation is neces-
sary since wireless channel is dynamic and frequency
selective for wide band mobile systems [3][4][5]. Es-
timation of a channel may be based on least square
(LS) algorithm or Minimum Mean Square Error
(MMSE) algorithm. In general, the MMSE schemes
are generally more accurate [6]. Numerous MMSE
estimation algorithms based on discrete Fourier trans-
form (DFT) have been proposed to reduce the ef-
fects of noise [7][8]. An MMSE estimation based on
Hadamard Transform has also been studied recently
[9].

In this paper, a two-dimensional Hadamard trans-
form (TDHT) incorporated with MMSE weighting is
proposed. With TDHT, signal energy is concentrated
on the lower end of the transform domain, while the
noise energy on transform domain remains uniformly
distributed. Therefore after an MMSE filtering, most

of the noise interference can be eliminated. Both an-
alytical and simulation results show that the perfor-
mance of the proposed algorithm is better than that
with Fourier transform. The performance of the pro-
posed scheme is even close to the performance of per-
fect channel estimation scheme. It is also worth notic-
ing that since only addition operations are needed for
the implementation of Hadamard Transform and In-
verse Hadamard Transform, the computation required
is extremely small.

The rest of this paper is organized as follows. In
Section 2, the system model and the traditional chan-
nel estimation algorithm are introduced. The MMSE
channel estimation based on Hadamard Transform is
proposed in Section 3. Next, the Performance and
computational complexity of the proposed algorithm
are analyzed in Section 4, and then simulation results
are given in Section 5. Finally, conclusions are drawn
in Section 6.

2 System Model and MMSE Chan-
nel Estimation with Fourier Trans-
form

2.1 System Model
Fig. 1 presents the system model used in this study.
Existing approaches based on Fourier Transform also
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Figure 1: Baseband model of a pilot-aided OFDM
system

use the same system. The binary source data are
grouped and mapped into complex symbols {T (k)}.
After pilot insertion, the modulated data {X(k)}
in frequency domain is converted into time domain
with normalized Inverse Discrete Fourier Transform
(IDFT):

x(n) = IDFT{X(k)}
= 1√

N

∑N−1
k=0 X(k)ej 2πkn

N , n = 0, 1, ......, N − 1
(1)

where N denotes the number of sub-carriers. Guard
interval is introduced to prevent ISI, and the duration
of the interval, Ng, is assumed to be shorter than the
delay profile of the channel. The resultant signal is
given by

xg(n) =

{
x(N + n), n = −Ng, −Ng + 1, · · · ,−1

x(n), n = 0, 1, · · · , N − 1
(2)

Assuming that the channel is subject to
frequency-selective slow fading, the received
signal becomes

yg(n) = xg(n)⊗ h(n) + ω(n) (3)

where h(n) is the impulse response of the fad-
ing channel, ω(n) is additive white Gaussian noise
(AWGN) with zero mean and variance of σ2

T , and ⊗
denotes N-points circular convolution. Then the chan-
nel response can be expressed as

h(n) =
∑M−1

k=0
αkδ(n− τk) (4)

where αk is complex gain of the k-th path, τk is the
delay of the k-th path, and M is the number of channel
paths.

Assuming perfect synchronization, after normal-
ized Discrete Fourier Transform,

Y (k) = DFT{y(n)}
= 1√

N

∑N−1
n=0 y(n)e−j 2πkn

N , k = 0, 1, ......, N − 1
(5)

the received signal in frequency-domain may be ex-
pressed as

Y (k) = X(k) ·H(k) + W (k) (6)

where H(k) = DFT{h(n)} is a channel trans-
fer function in frequency-domain, and W (k) =
DFT{ω(n)} are AWGN noise samples in frequency-
domain, with zero mean and variance of σ2

F =
σ2

T [10].

2.2 MMSE Channel Estimation with Fourier
Transform

To obtain the transmitted signal X(k) at the receiver,
it is important to have a good estimate of channel ma-
trix H(k). Assume transmitted pilot symbols to be
PT (k), and received pilot symbols to be PR(k). Then,
with an LS estimation scheme at pilot sub-carriers the
channel matrix may be estimated as

HLS = H(k) + W (k)/PT (k) = PR(k)/PT (k) (7)

Therefore, estimation at other sub-carriers may be
achieved by interpolation. It cna be proved that best
performance is obtained when the pilots are uniformly
distributed among sub-carriers [11]. However, the
channel noise reduces the precision of channel estima-
tion, and subsequently deteriorates the performance of
the system [3][5]. To deal with noise interference, the
channel impulse response may be obtained from the
channel transfer function with DFT, and filtered in the
Fourier Transform domain. That is,

HMF = FRQMF FHLS (8)

where F is the DFT matrix, FR is the IDFT matrix,
and QMF is diagonal weighting matrix with MMSE
channel estimation[7][8].

It is noted that, the computation for a Fourier
Transform is relatively large since complex multipli-
cations are required.

3 MMSE Channel Estimation
with two-dimensional Hadamard
Transform

Consider a system with N(N = 2n) sub-carriers, in
which M(M = 2m) pilots are uniformly distributed.
Assuming we deploy enough pilots, the LS estimation
of channel transfer function, HLS , can be considered
as an over-sampling of the channel. L(L = 2l) LS
pilot channel estimation vectors in adjacent OFDM
symbols can be assembled into an M × L matrix
in frequency and time domain for two-dimensional
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Figure 2: Energy distribution after two-dimensional
Hadamard Transform

Hadamard Transform. After the first dimensional
Hadamard Transform in frequency domain, energy of
the channel tends to concentrate on the low end of
the transform domain. Since HT is a linear trans-
form, the energy of white Gaussian noise after HT re-
mains uniformly distributed [9]. Since the property
of channel remains similar among adjacent symbols,
the energy of a channel will become concentrated fur-
ther after the two-dimensional Hadamard Transform,
while noise distribution remains unchanged. Fig. 2
shows an example that manifests this fact, in which
the power of the channel focuses into a vector along
q = 0, and therefore the noise can be thereby reduced
after MMSE weighting. In order to represent the two-
dimensional Hadamard Transform in a matrix form,
the channel transfer function matrix in time and fre-
quency domains need to be converted to a long vector.
To this end, L(L = 2l) LS adjacent estimation vectors
of channel are combined to an (L×M)× 1 vector

H̃LS = [HT
LS,0,H

T
LS,1, · · · · · · ,HT

LS,L−1]
T (9)

The first dimensional Hadamard Transform of the
sub-vectors in H̃LS has now become:

H̃FH = TM · H̃LS (10)

where

TM =




W1

W1

. . .
W1




(11)

is an (L × M) × (L × M) block diagonal matrix.
W1 is the M × M real symmetric core matrix of

one-dimensional Hadamard Transform, expressed as

W1 =
1√
M




w0,0 · · · w0,M−1
...

...
wM−1,0 · · · wM−1,M−1


 (12)

in which wj,k = (−1)
∑m−1

i=0
bi(j)bi(k), is the (j, k)-th

element of matrix W1, where bi(j) is the (i+1)-th bit
of integer j in binary form.
Then, H̃FH is interleaved for the second-dimensional
Hadamard Transform, as

H̃IH = K · H̃FH (13)

where K is a sparse matrix, with the element

ki,j =





1,
if i = L ∗ q + p and j = M ∗ p + q,
∀ 0 ≤ p ≤ L− 1, 0 ≤ q ≤ M − 1

0, others
(14)

Consequently, the second-dimensional Hadamard
Transform has now become

H̃SH = TL · H̃IH = TL ·K · TM · H̃LS (15)

where

TL =




W2

W2

. . .
W2




(16)

is also an (L×M)×(L×M) block diagonal matrix, in
which W2 is the L×L core matrix of one-dimensional
Hadamard Transform, expressed as

W2 =
1√
L




ŵ0,0 · · · ŵ0,L−1
...

...
ŵL−1,0 · · · ŵL−1,L−1


 (17)

in which ŵj,k = (−1)
∑l−1

i=0
bi(j)bi(k).

After the MMSE weighting in the two-
dimensional Hadamard Transform domain, and
the two-dimensional Inverse Hadamard Transform,
the channel transfer function in frequency domain
becomes

H̃M = TM,R ·KT ·TL,R ·Q ·TL ·K ·TM · H̃LS (18)

where TL,R = TL is a block diagonal matrix
for the second-dimensional Inverse Hadamard Trans-
form, TM,R = TM is a block diagonal matrix for
the first-dimensional Inverse Hadamard Transform,
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Q = diag(q) is an (L × M) × (L × M) diago-
nal weighting matrix for MMSE weighting, in which
q = [q0, q1, . . . , qL×M−1]T .

Let A = TM,R ·KT ·TL,R, B = TL ·K ·TM ·H̃LS ,
then Eqn. (18) becomes

H̃M = A ·Q ·B = A · diag(B) · q (19)

With this representation, MSE of channel estimation
becomes

ρ(q) = 1
M ·LE{[H̃ − H̃M ]H · [H̃ − H̃M ]}

= 1
M ·LE{[H̃ −A · diag(B) · q]H · [H̃ −A · diag(B) · q]}

= 1
M ·L{E[H̃H · H̃]− E[qH · diagH(B) ·AH · H̃]
−E[H̃H ·A · diag(B) · q]
+E[qH · diagH(B) ·AH ·A · diag(B) · q]}

(20)
where H̃ = [HT

0 ,HT
1 , · · · · · ·HT

L−1]
T is (L×M)× 1

correct channel estimation.
The second-order derivation of ρ(q) is

∇2
qρ(q) = E[diagH(B) ·AH ·A · diag(B)] (21)

Since

AH ·A = TH
L,R·(KT )H ·TH

M,R·TM,R·KT ·TL,R = IL×M

(22)
is an (L×M)×(L×M) unit matrix, the second order
deriative

∇2
qρ(q) = E[diagH(B) · diag(B)] (23)

is positive definite. Therefore, q has a unique solution
which minimizes ρ(q).

If we compute the complex gradient of ρ(q) and
force it to be zero, the MMSE weighting vector q̃ can
be obtained as

q̃ = E[diagH(B)·AH ·A·diag(B)]−1·E[diagH(B)·AH ·H̃]
(24)

Since TL = TL,R = TH
L,R, TM = TM,R = TH

M,R,
K = (KT )H , and the channel transfer function and
noise are uncorrelated, the weighting vector becomes

q̃i = (E[|bi|2]− δ2
N )/E[|bi|2] (25)

where q̃i, bi are the i-th items of vectors q̃, B, respec-
tively, and δ2

N is the variance of noise.
In the descriptions above, L M × 1 vectors are

combined to form an (L×M)×1 vector, and a sparse
matrix is used between the first and the second di-
mensional Hadamard Transform for the convenience
of analysis. In the implementation of the proposed
algorithm, the first-dimensional Hadamard Transform
can be performed in M × 1 vector form, as

HFH,l = W1 ·HLS,l, l = 0, 1, · · · · · ·L− 1 (26)

After combining L vectors into an M × L matrix
ĤFH = [HFH,0,HFH,1, · · · · · ·HFH,L−1] and per-
form a transpose operation,

ĤIH = ĤT
FH (27)

M L × 1 vectors ĤIH =
[HIH,0, HIH,1, · · · · · · , HIH,M−1] can be used for
the second-dimensional Hadamard Transform:

HSH,m = W2 ·HIH,m, m = 0, 1, · · · · · ·M − 1
(28)

Moreover, instead of using an (L × M) × (L × M)
diagonal matrix Q = diag(q0, q1, · · · · · · qL×M−1), an
L×M matrix

Q̂ =




q0 · · · qL×(M−1)
...

. . .
...

qL−1 · · · qL×M−1


 (29)

is used for MMSE weighting, with element-by-
element multiplication between Q̂ and ĤSH =
[HSH,0,HSH,1, · · · · · ·HSH,M−1]. It is noted that
the Inverse Hadamard Transform can also be imple-
mented in a similar fashion as the Hadamard Trans-
form.

4 Performance Evaluation and Com-
plexity Analysis

4.1 MSE of Channel Estimation
When adopting a two-dimensional Hadamard Trans-
form in MMSE channel estimation, MSE of channel
estimation becomes

ρ(q̃) = 1
M ·LE[(H̃ − H̃M )H(H̃ − H̃M )]

= 1
M ·L tr{E[(H̃ − H̃M )(H̃ − H̃M )H ]}

= 1
M ·L{tr(RH̃H̃)− tr(RH̃H̃M

)
−tr(RH̃M H̃) + tr(RH̃M H̃M

)}
= 1

M ·L{tr(SRH̃LSH̃LS
SH)− tr(SRH

H̃H̃LS
)

−tr(RH̃H̃LS
SH) + tr(RH̃H̃)}

(30)

where tr(a) denotes the rank of matrix a, RAB de-
notes the correlation matrix between A and B, and
S = TM,R ·KT · TL,R ·Q · TL ·K · TM .
Since H̃LS = H̃ + Ñ , where Ñ is additive Gaussian
noise,

RH̃LSH̃LS
= E{(H̃ + Ñ)(H̃ + Ñ)H}

= E{H̃H̃H}+ E{ÑÑH}
= E{H̃H̃H}+ 1

SNRUM

= RH̃H̃ + 1
SNRUM

(31)
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Figure 3: Complexity comparison

Consequently, ρ(q̃) can be rewritten as

ρ(q̃) = ρn(q̃) + ρs(q̃) (32)

where

ρn(q̃) =
1

M · Ltr(
1

SNR
SSH) (33)

comes from the channel noise, while

ρs(q̃) = 1
M ·L{tr(SRH̃H̃SH)− tr(SRH

H̃H̃
)

−tr(RH̃H̃SH) + tr(RH̃H̃)} (34)

comes from the inter-carrier interference (ICI) caused
by time-varying fading.

4.2 Complexity Analysis
In general the computations for MMSE channel esti-
mation consist of LS estimations, some type of Trans-
form pair, and MMSE filtering. For LS estimation
and filtering, the computational complexity is the
same for channel estimation with Hadamard trans-
form and with Fourier transform. Thus, the differ-
ence comes from individual Hadamard transform or
Fourier transform itself. In this paper, the number of
complex multiplications and the number of complex
additions are used to measure computational com-
plexity. For MMSE channel estimation with two-
dimensional Hadamard Transform, 2M log2 M com-
plex additions are needed for one OFDM symbol.
Since an M -point FFT requires (M/2) log2 M com-
plex multiplications and M log2 M complex additions
with the split-radix FFT algorithm when M is a power
of 2, the MMSE channel estimation with Fourier
Transform needs M log2 M complex multiplications

 

Figure 4: MSE of the two channel estimation algo-
rithm

and 2M log2 M complex additions. As shown in Fig.
3, the number of additions with a two-dimensional
Hadamard Transform is the same as the number of
additions with an FFT. However, the complex multi-
plications that needed in an FFT can be eliminated for
Hadamard Transform. Therefore, the complexity of
the proposed algorithm is significantly reduced com-
paring to FFT-based scheme.

5 Simulation Results
A QPSK-OFDM and a 16QAM-OFDM system are
used in the simulation with carrier frequency of
1.8GHz and bandwidth of 5MHz. The vehicle speed is
10m/s, resulting in the maximum Doppler frequency
of 60Hz. The total number of sub-carriers is 512, the
number of uniformly distributed pilot sub-carriers is
64, and 16 adjacent symbols are used in channel es-
timation based on Hadamard Transform. Cubic inter-
polation is used to get the channel estimation of all
sub-carriers in frequency domain from channel esti-
mation of pilot sub-carriers. The channel model used
in this research is the Rayleigh channel recommended
by European Telecommunication Standards Institute
(ETSI) for European 3G standard. The channel pa-
rameters are shown in Table 1[12].

It can be observed from Fig. 4 that with two di-
mensional Hadamard Transform, the MSE of MMSE
channel estimation is smaller than that with Fourier
Transform. Moreover, It is illustrated in Fig. 5 that
with QPSK signal mapping in simulation, the BER
with the proposed algorithm is smaller than that with
the MMSE estimation based on Fourier Transform.
The performance of the proposed channel estimation
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Table 1: Channel parameters for simulation
Tap Relative delay(ns) Average power(dB)

1 0 0.0
2 310 -1.0
3 710 -9.0
4 1090 -10.0
5 1730 -15.0
6 2510 -20.0

 

Figure 5: BER Performance with QPSK signal map-
ping

scheme is even close to that with perfect channel esti-
mation.

6 Conclusions
The performance of channel estimation is extremely
important for OFDM systems. In this paper, a novel
MMSE channel estimation algorithm based on two-
dimensional Hadamard Transform is developed. The
performance of the proposed scheme is better than
that with Fourier-transform-based MMSE estimation
scheme, and the computation complexity is also sig-
nificantly reduced. We expect that the proposed al-
gorithm based on Hadamard transform will become
more practical channel estimation scheme for OFDM
systems.
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