
Image Compression Preprocessor Design with task
partitioning using coarse grained approach

MUHAMMAD KAMRAN, SHI FENG
Department of Computer Science and Engineering

Beijing Institute of Technology,
Beijing-100081

CHINA

Abstract: - For optimization of digital circuit, designers encounter number of problems regarding
signal and time complexity which are required to be reduced or eliminated. During our research of
designing image compression preprocessor, division of main task into comparatively smaller number
of subtasks is carried out for the simplification of operation especially with respect to time. This paper
presents the methodology to visualize efficient image compression preprocessor design on the basis of
task partitioning considering coarse grain architecture. For the boosting of theoretical approach,
recursive data extraction from image, purpose of z-transform utilization, signal flow graphs and time
complexity for task completion is also incorporated in this paper. Moreover, practical solutions
acquired by simulating tools are also assimilated in this paper with appropriate substantiation.

Key-Words: - task partitioning; z-transform; SFG; CWCR; coarse grain; simulation

1 Introduction
Presently, ASIC design is the area of research
with lot of attention and consideration. The
embedded systems are modified with new
approaches and techniques to overall reduce the
complexity cost and the size of resulting circuit.
ASIC has crossed 10 million mark as per device
count is concerned. Improvement in ASIC
design is carried on using different mathematical
methods of Petri nets, SFG and Hierarchical
Concurrent Flow Graph (HCFG) [1]. The idea
of using partitioning of system to make
subsystems and utilizing Mason formula for the
simplification of signal flow graph is grabbed
from [7]. This paper describes that independent
gains for all subtasks are obtained by taking the
probability of task finishing time into
consideration. After these calculations all sub
modules are joined hierarchically to get over all
system gain. After wards graph transmittance
and expected task finish time is calculated. If
components are large to be integrated back, may
cause some error in timing and data flow signals.
Concurrent flow model is a set of independent,
encapsulated, concurrently operating model
components where each model has its own
thread of control and components [8]. The whole
scenario is operated with minimum time clash
between data and control signals to obtain most
optimized solution. This approach looks

effective to reduce the expected task finish time
E [Tp]. The number and size of task in which
problem is decomposed determines the
granularity of the decomposition.
Decomposition into large number of small tasks
is called fine grained and decomposition into
small number of large tasks is called coarse
grained. If all tasks are performing their
operations at the same time, system will attain
maximum degree of concurrency. But
maximum degree of concurrency is always less
than the total number of tasks due to the
dependency problem [2]. In the meanwhile,
with all merits of parallel computation, there are
few limitations as well. For example circuit
complexity and area optimization is seriously
effected. The remedy is to use pipelining
structure for data transmission and extraction
from source node and on wards. The constraint
with pipeline structure design is the decay of
efficiency of system with the increase in number
of stages beyond a specified value (n) [3].

An effective approach of ASIC design is
opted when total design is divided into small
tasks and data extracted recursively and modules
are operated with appropriate pipeline stages.
SFG is evolved and graph transmittance and
expected task finish time is calculated followed
by simulation results. Design Rule Check (DRC)
error should be zero after successful simulation

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp856-861)

to verify the proper placement and routing of
design ready to mount on FPGA.

2 Hardware model
Hardware model block diagram of proposed
concurrent preprocessor narrating different data
and control signals is given in Fig. 1.

Input
Image
Source

Down
sample

Buffer
Control

current_layer for
pixel recognition

Address
RAM

Spatial
Redundancy

Handshaking Signal

Original
image data

Data in five
layers

Coder

Fig. 1 Preprocessor with data and control signals

The image or picture is obtained from some
input device and is applied to the preprocessor.
This preprocessor performs the operation of
spatial redundancy and divides image into
number of layers. Afterwards each image pixel
is stored in a given prescribed location with
particular address. The RAM appended in the
design is made very efficient to perform
concurrent READ/WRITE operation. The size
of RAM is to be made quite large as image
pixels data is also very huge to be dealt with. In
[4], it is suggested that image data has large
number of frames and each frame is comprised
of layers and each layer has number of pixels. As
per operation of down sample module, the image
is divided into five layers; that is why algorithm
is also termed as layered algorithm. The
dependency data flow graph (DDFG) of our
design is given in Fig. 2. This figure not only
describes the flow of data from one module task
to the other but also gives the detail of control
signals giving the detail of dependency. As it is
apparent from Fig.2 that Buffer control (BC)
module has dependency on spatial redundancy
(SR) module and SR has dependency on coder.
Dependency calculation evaluated from task
decomposition choice plays an important role in
the selection of a good mapping for a parallel
algorithm. A good mapping should seek to
maximize the use of concurrency by mapping
independent tasks onto different processes [2].
The objective of proposed design prior to
partitioning is described as follows;

The input data is to be compressed and to
be obtained concurrently on the computer
monitor screen to save the memory and to with

stand bandwidth variation in the system. The
proposed model of preprocessor will provide
two independent routs for pixels and connected
to two coders operating on DCT algorithm.
Following are the task partitioning steps for
successful coarse grained partitioning so called
because large system is to be divided into
comparatively small number of tasks;
• The image pixel data is the bmp file
contained in a matrix and arrives down sample
module in a certain sequence.
• All pixels belong to one of the defined
layers; initially 3 enhanced and 1 base layer.
• Base layer B2 is extracted from E1, and
resides in the pixel recognition table with the
help of control signal, current layer (CL).
• After getting the generalized idea of first
task module (D/S), there is a serious requirement
of such a module which generates required
address of the location to place the pixels
belonging to their corresponding layer number
and type. Fig.2 also gives the CL number which
also acts as the recognition number of layers in
the design.

Fig. 2 DDFG with signal dependencies

• Buffer control (BC) unit helps to calculate
the corresponding address in PING PONG RAM
to place the pixel in its appropriate position.
• Next is to place complete data frame (5
Layers) into the RAM and after wards extracted
for motion estimation unit. In the meanwhile
BC has handshaking with SR to get permission
of next data transmission.
• (SR) plays a vital role to bifurcate the data
into E’s (Enhanced layers) and B’s (Base
layers), which are further transmitted to coder
for image compression algorithm processing.

Decomposition of tasks is of different types
like recursive, data, exploratory and speculative
decomposition. For our design recursive
partitioning is suitable as data is picked up from

D/S

Image
Matrix

CL layer

000 B1
001 E2
010 E3
010 E1
011 B2

RAM SR

COD

BC

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp856-861)

the input matrix randomly depending upon pixel
correspondence with current layer value.

Data handling and correspondence is
described on the bases of sorting algorithm.
Fig.3 shows the recursive decomposition for
sorting a sequence of 64 pixels in one image
frame. It explains the complete process of
partitioning and pixel placement in optimized
RAM with two frames only.

It performs concurrent READ and WRITE
data operation. Output is bifurcated and
rebuilding of B2 pixels take place in CODER,
the last module in our design. SR performs the
pixel prediction process for MPEG compression
and spatial redundancy for JPEG compression as
mentioned in [5].

B1 E2 E3 E1 B1 E2 E3 E1 B1 E2 E3 E1 ---E1

0 1 2 3 4 0 1 2 3..................31...63

B1 E2 B1 E2................................B1 E2
E3 E1 E3 E1 E3 E1...........................E3 E1

B1 B1.............B1 E2 E2...............E2
E1 E1..............E1 E3 E3 E3E3

B2 B2............B2

0 1 2 3 31

0 15 0 15
0 15 0 15

0 3

DOWN SAMPLE

000(PIXELS) 001(PIXELS) 011(PIXELS) 010(PIXELS) 100(PIXELS)

CL=000 CL=001 CL=011 CL=010

000(PIXELS) 001(PIXELS) 011(PIXELS) 010(PIXELS) 100(PIXELS)

Motion Estimation

Pixel Rebuild

E's B's

0 1 31

Fr 1

Fr 2

Fig. 3 DOWN SAMPLE process pixel sorting,
DUAL frame RAM, Motion Estimation, Pixel

Rebuild and 2 outputs (E’s and B’s)

Fig.3 suggests that all modules can work
independently but some modules wait for the
completion of task from previous module and
then perform their own operation. It means
some inevitable dependency of signal is also
found in the design. For example, SR module
can not be operated till rebuild data from coder
module goes back into it for the extraction of
new enhanced layers to be displayed on one of
the out puts. Also SR module has dependency
on BC module that new pixel data should not be
forwarded to SR till previous calculation and
estimation is finished. Indirectly, we can
suggest that BC depends upon SR, and SR
depends upon CODER. It means BC is

indirectly depends upon CODER.
Another useful method to represent a

system with constraints is to make Design
structure matrix (DSM), which is considered as
simplest representation of digital design
showing the dependencies and direction of flow
of one task to the others. Fig.4 gives DSM
enabling us to describe our model while X
shows the dependency of one task onto the
other.

Fig. 4 DSM of our preprocessor design

3 Circuit Complexity
There are many techniques available to
construct the digital circuit. The criteria are to
trade off cost and get circuit scalability with
performance. The simplest and common to all is
bus topology, which is utilized in given design.
Fig.5 gives the general layout of the system
based on bus topology.

P1 P2

Shared pixel
Data from

Preprocessor

Data Bus

Address Bus

PC

Fig. 5 Concurrent Compression through 2 processors

on single PC (Bus Topology)

Fig.5 suggests that pixel data extraction from
preprocessor and available on bidirectional data
bus. Address line is unidirectional as address is
generated in DCT processors as per our design
and data is extracted according to the address
from memory. This topology is also CWCR
(Concurrent write concurrent read) based, i.e.,
two processors are sharing their data from one
memory source in parallel [6]. The preprocessor
represents the overall function of memory and
data propagation from input image source. From
two coders, data is obtained concurrently and are
displayed on PC. Designers can have an option
to use concurrent compression concept with

Activities A B C D E
Down
sample(A)

A

Buffer control
(B)

X B

RAM (C) X C
SR (D) X X D

Coder (E) X E

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp856-861)

single processor as well if its processing speed is
reasonably high. The processors or coder
designs are not in the scope of this research
paper. The cost of the algorithm and operation is
normally taken in terms of time and area
occupied. It is proved fact that different design
configurations attain different complexity. The
time cost of communication depends on variety
of features including programming model
semantics, circuit topology, data handling and
routing and associated software protocols.

Time taken to communicate between two
nodes in a network is the sum of the time to
prepare message and time taken by message to
traverse the network to its destination. For our
design we prefer store and forward routing
whose communication cost is written as in (1);

linkssizemessagelm
timetransferwordt

timehoppert
timeStartupts

ltmttst

w

h

hwcomm

,,
;

;
;

*)(

→
=

−=
=

++=

3.1 Z-transform application
For the calculation of time cost, main idea is
extracted from HCFG as described in [1]. From
dependency diagram, all nodes are connected in
the parallel or in series combination. Fig. 6 is
flow graph (FG) of task providing detail of
expected task completion time and dependency
flow. As task expected time can be described in
terms of z-transform and rate of change of node
transmittance, the option to represent
transmittance using Mason’s rule and task
expected finish time as, E[Tp]=z. dΓ/dz is
utilized.

(Int)

DS

BC pre coder

(coder
)

DSTz

BCTpbz
preTppzDSTpz

coderTpcz

coTz

1.0

0.250.350.4

(I)

intTz

(Fint)

1.0

FTzpf int

(I)

Fig. 6 Flow graph Model of Our Design

Fig.6 suggests that after down sampling the data,
remaining 3 tasks are performing their
operations concurrently. For this proposed
design, comm

T tZ = , data transmission time from
one task to the other, while “p” is the probability
of repeating the entire flow due to timing failure
detected during layout verification. The
transmittance of our design is given in (2)
evaluated by Mason’s formula, which further
helps us to calculate expected task finish time.

int()
int

, ()

()
1 ()

DS CO F CODER BC PRE

DS CO BC CODERPRE

T T T T T T T
f

I F T T T TT

P Z pcZ pbZ ppZ
pZ PbZ PpZ PcZ

+ + +

+

+ +
Γ =

− + +
 (2)

Expected transmission time from node (I) to
node (F) is given by formula in (3) by taking z
value equals to 1;

dz

d
TE FI

p
,][

Γ
= (3)

Z-transform has one important application

of representing delay in the signal depending
upon negative power of z. If z-1, means one time
unit delay and so on. Moreover, it can be
differentiated for the calculation of inverse
z-transform, when X (z) contains multiple order
poles. For data communication and speed
calculation, it is found that speed of processor on
CHIP is different from the speed of processor in
computer’s mother board. For data
communication from DSP via PCI is obtained
with data width of 32 bits and processing speed
of 33 MHz. On our prepared chip, DSP will be
available with more than one SD RAM as DSP
cache is not enough to store all instructions
executed with such a high processing speeds.
HS is the handshaking signal available to
coordinate between DSP and computer
processor which will enable to accept next data
of previous one is displayed. Block diagram
description is given in Fig. 7, which depicts the
rough idea of concurrent compression through
processor with two images and two A/D
converters available at a time on the input.

A/D1 SD RAM

ProcessorA/D2

PCI

600 MHz

33 MHz
32 BIT Data
width

HS

DSP

 Fig. 7 Representation of concurrent Image applied
and displayed on PC

(1)

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp856-861)

For proposed design, 64 pixel data is sent for one
frame at the rate of 20 ns/pixel, and on the
receiving end 64 pixels are divided into 5 layers
plus additional pixels during rebuilding process
will cause 16 pixels in each layer and will deal
with 2/5 X 80 with same time rate due to
concurrent compression in this coarse grained
design approach. After having rough evaluation
of ts, tw and th is calculated respectively to
estimate total communication task time for store
and forward routing. The value of per hop time
in parallel computers is smaller than the value of
mtw. If band width BW of channel is r
words/sec, then each word takes time tw=1/r to
traverse the link.

Ping Pong RAM pseudo code is already
presented in [4]. This RAM worked perfectly
with dual frames for concurrent READ/WRITE
operation. The simulation of large size RAMS
is possible in a reasonably small time, but its
synthesis stuck and goes into infinite time loop
and ultimately fails. The solution of these
problems are while working on FPGA to use IP
CORE launched by the company whose device
is used or for ASIC external RAM is utilized in
the design as depicted in Fig. 7.

Table 1 Path probability and task time

4 Experimental results
After investigating the problem of coarse
grained partitioning, pixel extraction and access
using recursive decomposition and
transmittance of data using FG, it is concluded
that time complexity of data transmission from
one node to other in flow graph (FG) is low if
concurrent module operation is implicated in
design. In the signal flow graphs, all tasks are
performed in a sequence depending upon the
dependency, while in improved FG maximum
tasks are to be considered to be finished in
parallel and their results are incorporated after
wards to get complete expected task finish time.
Although inevitable dependencies are also
present in CFG representation, but its task
finishing time is still less than normal FG

method. The probability of BC unit finishing
time is assumed maximum, which will finish its
task in minimum time, while coder module
probability of finishing task is minimum will
take maximum time to finish its job. This
situation is well elaborated in Fig. 8 with BC, SR
and coder probabilities are taken as 0.4, 0.35 and
0.25 respectively.

Fig. 8 Number of points and their z-transform

representing time units for task completion

The graph transmittance of our
preprocessor is given in (4), which helps to
calculate time units for ETp. For these
calculations, keeping our practical experience in
view, probabilities of all tasks are assumed as
per insight in designed CFG. All path times and
probabilities are listed in Table 1. The results
are presented in Fig.8; clearly give the time
optimization on the bases of z-transform
extracted from Fig.6. By substituting the values
of probabilities and task time from table 1 into
(2) and (3), graph transmittance and expected
task finish time are obtained respectively.

)4.035.025.0(1.01
)4.035.025.0(9.0
2349

23419

, ZZZZ
ZZZZ

FI ++−
++

=Γ
 (4)

Expected task finish time of pre processor
after differentiating transmittance is, E [Tp] =
22.25 units.

If comparison is made between proposed
CFG flow graph with a graph in which all
modules operate sequentially, of course path
from input node to output node will be increased
with their corresponding edge values and high E
[Tp] value is obtained.

Fig. 9 Input data in decimal while two output data in

wait state till 500 ns (output is not visible yet)

Probability Path Time
PBC = 0.4 TDS = 5
PCoder = 0.25 TBC = 2
PPre = 0.35 TPre = 3
Pv = 0.10 TF = 4
………………….. Tint = 2

Pfint = 0.9 TCO = 4

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp856-861)

Fig. 10 Output Data appears after 520 ns

Fig.9 and Fig.10 provides us the post simulation
results of proposed design after considering 16
bit assumed pixel data. MODEL SIM
simulation tool is used for the result analysis.
Fig. 9 is representing the input data applied for
the verification of design and bold arrow
indicates the space of representing out put data,
not visible in figure till 500 ns. Fig. 10 is
representing the output of design simulation
with reasonably good and expected results. It is
evolved from diagram that data pixels appearing
on the output are about 90% same as those input
pixels. Few unknown pixels are also added
during image rebuilding process but they do not
affect the quality of image. In the meanwhile,
pixels which disappear from the input are
compensated by new generated pixels during
simulation.

5 Conclusion and Future Work
This paper gives guideline for the researchers in
the area of algorithm design and verification on
the bases of graph theory. Graph theory has the
natural ability to deal with the adjacency of the
nodes/tasks so that we evaluate the time
complexity of the tasks and hence the complete
digital system. The proposed pre processor will
be appended with video coders and will get
image input data concurrently. This circuit can
be implemented on FPGA and can also be
embedded for video compression ASIC. Its
design and operation is verified using MODEL
SIM simulating tool by the virtue of XILINX
ISE with signal frequency 50 MHz. In future it
is planned to calculate noise or error
transmission with signals and its elimination.
As in Fig.10, some anonymous pixels are
contributing to the output, which are required to
be estimated whether these pixels are part of
data or add some noise in image transmission.
Data noise detection and elimination techniques
are available but new innovative mathematical
approach of calculating condition number of
pixel data, and its careful analysis will help to
control error propagation in the system.

MATLAB tool box can also be effective to
recognize the image noise so that hardware
designers can fix the problem with respect to
their designs and verify the results.

References
[1] Vineet Sahula, C. P. Ravikumar and

Nagchoudhuri, Improvement of ASIC
Design Processes, Proceedings of 15th
International conference on VLSI design
2002

[2] Ananth Grama, Anshul Gupta et.al,

Introduction to Parallel Computation, 2nd
Edition, China Machine Press, 2003.

[3] Kai Hawang, Advanced computer

Architecture: Parallelism, Scalability,
Programmability, McGraw Hill Inc.,
International Editions 1993.

[4] Muhammad Kamran, Shi Feng, Ji Weixing,

Large Data Handling Techniques for
compression Pre coder Chip using Scalable
Algorithm, Journal of Information and
Communication Technology, Vol.1, No.1
(summer 2005) pp 47-54.

[5] Muhammad Kamran, Shi Feng, Suhail Aftab,

Data Acquisition and Handling for the
Simulation of ASIC by utilizing SW/HW
Co-Design Methodology, IEEE ICET2005
proceedings, September 2005

[6] Ralph Duncan, A Survey of parallel

computer Architectures, Computer Volume
23, Issue 2, Feb. 1990 Page(s):5 – 16.

 [7] Marwan M. Hassoun, Hierarchical Symbolic

Analysis of Large-scale Systems Using A
Mason's Signal Flow Graph Model, Circuits
and Systems, 1991., IEEE International
Symposium on 11-14 June 1991 Page(s):802
- 805 vol.2

[8] Douglas G. Fritz and Robert G. Sargent, An

Overview of Hierarchical control flow Graph
models, IEEE Simulation Conference
Proceedings, 1995. Winter 3-6 Dec. 1995
Page(s):1347 - 1355

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp856-861)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

