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Abstract: - This paper is a principal idea of case-based reasoning to feature weighting. The feature 
weighting method called CaDFeW (CAse-based Dynamic FEature Weighting) stores classification 
performance of randomly generated feature weight vectors. Also it retrieve similar feature weighting 
success story from the feature weighting case base and then designs a better feature weight vector 
dynamically for the a new input problem while solving the problem. The CaDFeW is wrapper model-
based feature weighting method that uses classifier error rate as evaluation procedure. To explain the 
results of applications, this paper is introduced a new definition of input dependency of feature 
relevance and measured the new concept in the application domains. The empirically measured results 
showed that relative performance of a local feature weighting method to a global feature weighting 
method. 
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1  Introduction 
There are two types of learning modes: eager learning 
and lazy learning. Eager learning approaches to 
induction produce generalizations that explicitly 
represent the classes under study, often in a language 
different from that used to represent the cases. Lazy 
approaches, in contrast, delay this generalization 
process until classification time; it is performed 
implicitly when a new case is compared to the stored 
cases and the class of the nearest one(s) is assigned to 
it. Lazy learning methods such as case-based 
reasoning (CBR) [6] have several advantages when 
compared to eager methods like decision tree and 
artificial neural networks [7,8]. They are conceptually 
simple, and yet able to form complex decision 
boundaries in the problem space even when only 
relatively little information is available. They can be 
applied easily to both categorical and numeric output 
problems. They have no difficulty in handling both 
categorical and numeric input features. Special cases 
that cannot be handled by eager approaches can be 
retained and recognized. 

The goal of this study is to develop an effective 
and efficient local feature weighting method for a lazy 
learning method, specifically, a CBR method. The 

effectiveness of the new method is measured by the 
improvement of the classification accuracy after 
applying it to a basic CBR system. The application 
results are compared with some other feature 
weighting methods. Fig.1 shows the conceptual 
framework of this study. In the initial stage of this 
study, we review existing researches related to 
feature weighting methods. This can be an overall 
infrastructure for this study. Based on the findings 
from the in-depth analysis of the previous studies, 
we attain the possible directions to develop a new 
method. Prototypical design of the methods are 
tested and modified iteratively until the method 
shows sufficient level of effectiveness. 

After a few iterations of refinement process, we 
compile the findings on the relationships between 
feature weighting and CBR from the empirical 
experiments based on the test results. This is also a 
contribution of this study. We propose, CaDFeW 
method, a case-based dynamic feature weighting 
method that is an alternative local feature weighting 
approach for lazy learners. CaDFeW keeps randomly 
generated feature weight vectors and the train-time 
experiences, i.e., test results. Then it retrieves these 
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experiences from the case base and generates new 
feature weight vectors in run-time. 

 
2  Case-Based Reasoning 
Case-based reasoning (CBR) is one of such machine 
learning approaches. Previous cases are used to make 
a solution for a new problem. From the cases 
available, a CBR system retrieves the most similar 
case(s) to the input problem and then adapts the 
solution of the retrieved case to fit the context of the 
Input problem. The basic idea of CBR is based on 
the process of human problem solving. Human 
beings use previous experiences of problem solving 
when encountered a new problem to solve. This 
natural problem solving approach allows the reuse of 
problem solving experiences and is considered a 
breakthrough from the knowledge acquisition 
bottleneck. Since there are numerous possible CBR 
design options, testing all the possible CBR designs 
in order to develop a good feature weighting method 
will be an exhaustive and time-consuming work. In 
this study, we use a typical CBR system for 
classification as a base classifier. When encountered 
a new problem to solve, the CBR system retrieves a 
set of most relevant cases from the case base and 
suggests a new solution. 

We focus on the typical classification problems that 
have the following characteristics. First, the problems 
have discrete output classes. Hence, the performance 
of CBR system can be investigated by checking the 
results whether they are correct or not. Second, the 
problems have relatively many features and have 
both numeric and categorical features in most cases. 
In the adaptation stage, some simple voting 
heuristics are used. When a CBR system for 
classification problem retrieves more than one case, 
it may encounter conflicting solutions. Then the 
CBR system simply selects the most frequent 
solution. There can be some possible variations of 
this voting method [6]. In this study, however, we 
use only equally weighted voting method while 
varying the number of cases retrieved, i.e., the value 
of k. Because this study mainly focuses on typical 
classification problems, other issues such as case 
indexing, sophisticated adaptation, and repair are not 
considered. 
 
 
3  Feature Weighting Methods 
 

3.1  Categorization of feature weighting 
Feature weighting efforts attempt to find the optimal 
feature weight vector that makes the classifier show 
best classification accuracy. Feature weighting 
methods search through the feature weight vectors, 
and find the best one among the unlimited number of 
candidate weight vectors according to an evaluation 
criterion. However, this procedure is exhaustive 
because it tries to find only the best one. It may be 
too costly and practically prohibitive, even for a 
small size of feature set. Other methods based on 
heuristic or random search attempt to reduce 
computational complexity at the cost of performance. 
These methods need a stopping criterion to prevent 
an exhaustive search of weight vectors. Table 1 
shows the modified framework and categorization of 
some representative methods. 
  
Table 1. Categorization of feature weighting methods 

in a 3-dimensional framework 
Generation procedure Weight 

scope 
Evaluation 

function Heuristic Complete Random 
Distance Relief + - 
Information DTI + - 
Dependency + - - 
Consistency - + + 

Global 

Classifier 
error 

+ + GA 

Local 
Classifier 
error 

RC - 
This study 
(CaDFeW) 

+ There are several methods but they are not presented here. 
- There are no known methods. 
 

Evaluation procedures can be categorized differently 
by whether they use feedback from the performance 
task. Methods that do not use feedback are called 
filters, whereas methods that use the classifier itself 
as the evaluation procedure are wrappers [5]. The 
weight scope means the generality of the weights in 
the case space. The weight scope that most feature 
weighting methods produce is global: their weights 
apply across the entire case space. In contrast, local 
feature weighting methods allow feature weights to 
vary in different parts of the case space. In local 
feature weighting methods, weights can vary by 
class [4], feature value [9], and/or individual case or 
subset of cases [1]. 
 

3.2  Case-based dynamic feature weighting 
We start by describing the CaDFeW (CAse-based 
Dynamic FEature Weighting) method in this subsection 
and then discuss the motivations behind it in the next 
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subsection. The method for weighting features of a 
CBR system by another CBR, i.e., CaDFeW is simple 
and can be stated as follows: By remembering the 
train-time performance of randomly generated 
feature weight vectors, a CBR system designs its 
input-specific feature weight vector dynamically in 
the run-time. 

CaDFeW stores pre-processed results and then 
dynamically generates a desirable feature weight 
vector when it is running. The behavior of CaDFeW 
is similar to that of RC. Both methods generate 
weights input-sensitively and they are wrapper 
methods. CaDFeW is a wrapper method. Therefore 
it shares the general properties of the wrapper 
methods discussed in John et al. [5]. However, 
CaDFeW is relatively faster than other global 
wrapper methods and a local method such as RC. In 
comparison with some feature weighting methods, 
CaDFeW is flexible. Firstly, we can use multiple 
weighting experiences to design a new feature weight 
vector for a new input case to enhance the 
classification accuracy of CBR. However, if there is 
no significant improvement and computational 
resource is a concern, we can choose a negotiation 
point. Secondly, the current version of CaDFeW 
provides continuous weights rather than binary 
weights.  However, since binary weight is the 
special case of continuous weight, we can easily 
adjust CaDFeW to provide binary weights. The power 
of CaDFeW's feature weighting is currently being 
under investigation. However, some empirical test 
results presented later show us the potential of the 
method. The simplicity and the naturalness of the 
algorithm are the most attractive advantages. 
 
3.3  Combing a global feature selection method 
and CaDFeW 
To make a feature weighting method efficient, we need 
to reduce the number of features before assigning 
weight values. Combining feature weighting and 
feature selection can be one of these alternatives. We 
designed an open and combined method called 
LowGoS (LOcal Weighting after GlObal Selection). 
We can eliminate globally useless or irrelevant 
features in a certain criteria by executing a global 
feature selection method before applying a local 
feature weighting method. The global feature selection 
(GFS) method removes possibly very irrelevant 
features from the initial input feature set. The 
underlying motivation of applying this combined 

method is to improve both classification accuracy and 
reduce search space significantly. However, there are 
some unanswered questions. First, there is possibly 
unlimited number of alternative GFSs. Therefore we 
have to select the most appropriate method for both 
CBR and CaDFeW. Second, most GFS use 
conservative, i.e., wrong-selection averse, strategy. 
Therefore we have to determine the desirable level of 
conservativeness. 

In this study, instead of using only existing GFS 
methods, we designed a simple wrapper-based 
heuristic method called UniFeS (UNIvariated analysis-
driven FEature Selection).  UniFeS first examines the 
predictive power of each feature using a wrapper 
approach. Only one feature, with all of the other 
attributes being ignored, is used as an input attribute 
of CBR to classify a given problem. The same 
procedure is executed for all features logically and 
possibly in parallel. Classification accuracy of a 
feature is assumed to be an index of predictive 
power of the feature. 

After examining the predictive power of all 
features, relative value of features among all the 
features are compared. However, we use 
classification accuracy as the measure of potential 
predictive power instead of deterministic measures 
such as mean. A set of relatively less powerful 
predictors is discarded in the final stage of LowGoS, 
i.e., CaDFeW. Then, CaDFeW starts with the 
remaining features. 
 
 
4   Empirical Evaluations 
We describe a set of empirical tests to investigate the 
usefulness of CaDFeW method. The method will be 
used for a set of CBR systems in several different 
domains. Problem structure of each application is 
reformulated to have common properties of 
classification tasks. Since the main goal of the feature 
weighting is to improve classification accuracy of 
CBR system, we measure the classification accuracy of 
the CBR systems by using different versions of 
CaDFeW feature weighting method and LowGoS. 
The CBR system without feature weighting effort is 
considered as a baseline. We use alternative feature 
weighting methods such as DTFS and UniFeS for 
the purpose of comparative analysis. 
 
4.1  Credit evaluation application 
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Credit evaluation is to decide whether we should 
approve customer application for a loan based on the 
collected customer information. It is one of the very 
typical analytical modeling application domains. 
Therefore there are many precious studies and 
industrial efforts. 

We implemented some designs of CaDFeW and 
tested them to a benchmark data set. The data set 
used for this experiment is taken from the UC Irvine 
machine learning database repository [3]. It is the 
same data set as Quinlan [8] and Domingos used. This 
data set has 690 credit evaluation records with some 
missing values. The data set has 6 numeric and 9 
categorical features. The meanings of each feature 
are not described. We compared the basic CBR and 
the CaDFeW CBR. CaDFeW CBR B30w3, one of 
several versions of CaDFeW, uses only three most 
similar and successful weighting experiences and no 
failed experiences. It stores three weighting experiences 
for each case in the case base. In adaptation, voting 
among top three similar cases with no weighting 
scheme is employed. DTI was performed using the 
SAS E-Miner data mining system. DTI-EM (DTI 
built by E-Miner) is set to have similar parameters to 
those of C4.5. 
 

Table 2. Classification accuracies of classifiers: 
credit evaluation 

 Average 
accuracy(%) 

Standard 
deviation(%) Notes 

Basic CBR 84.51 1.91 k=3 

CaDFeW 
CBR 88.01 1.27 p=3 

DTl-EM 86.84 1.46 C4.5-like 
setting 

Logistic 
regression 84.71 1.82 SAS 

E-Miner 
 

Ten different runs were carried out (tenfold cross-
validation). In each, the case base was composed of 
40% of the data set, chosen at random, and the other 
30% were used as test set. As table 2 shows, the 
basic CBR obtained about 84.51% classification 
accuracy on the average. A CaDFeW CBR system 
showed 88.01% classification accuracy that is better 
than those of both the basic CBR and DTI-EM. 
Quinlan and Domingos also used DTS and 
Domingos used C4.5. Based on a paired t-test, we 
concluded that CaDFeW CBR B30w3 showed 
significantly better classification accuracy than the 
basic CBR. However, difference between CaDFeW 
CBR B30w3 and DTI-EM was not sufficient to tell. 

 
4.2  Housing value estimation application 
Boston housing value estimation problem is another 
benchmark data set from the UCI machine learning 
database [3]. This data set was originally taken from 
the StatLib library that is maintained at Carnegie 
Mellon University. This data set concerns housing 
values in suburbs of Boston. There are 506 cases, 13 
continuous attributes and no missing attribute value. 

BCBR
88%

86%

84%

76%

82%

80%

78%

set=1 set=2 set=3 set=4 set=5

UniFeS3 CaDFeW

Fig.1. Basic CBR and UniFeS CBR: classification 
accuracy comparison: housing value estimation 
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Fig.2. Average classification accuracies of various 
classifiers: housing value estimation 

 
Fig.1 shows the classification accuracies between 

UniFeS3 CBR and basic CBR (BCBR) in comparison. 
Both systems are set to k=3 and UniFeS3 CBR use 
only top three high performance features selected 
through the UniFeS process. UniFeS3 CBR does not 
show better classification accuracies than BCBR in 
general. However, the point that UniFeS reduced the 
number of features to 3 has an important meaning. 

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)



Dimension reduction like this can provide a positive 
impact on, at least, enhancing the efficiency of CaDFeW 
process execution. Fig.2 shows the summarized results 
of various classifiers. LowGoS (UniFeS3 CaDFeW) 
and CaDFeW CBR show no improvement. 
 
 
5  Input Case Dependency of Feature 
Relevance 
We study the reason why CaDFeW and LowGoS 
showed different performance in different applications. 
Since there is enough number of efficient global 
feature weighting methods, if local or case-specific 
feature weighting methods do not perform well in 
some applications then we have to select a global 
feature weighting method. 

 
Table 3. Measured input dependencies in the 

application domains 
Input 

dependency 
(k=1) 

Relative 
performance of 
LowGoS (%)*  

Ave. Std. 
dev. 

Input 
dep. 

(k>1) 
DTFS** UniFeS*** 

Customer 
retention 0.89 0.01 0.89 104.32 101.50 

Credit 
evaluation 0.30 0.05 0.29   

Housing 
value est. 0.27 0.04 0.25 97.87 100.48 

* Relative performance of LowGoS = Classification accuracy of LowGoS / 
Classification accuracy of the baseline global weighting method 
** Using CART decision tree as global  feature selection method 
*** Using UniFeS as global feature selection method 

 
Domingos tried to measure context dependency of 

feature relevance. However, since the true degree of 
context dependency of feature relevance is unknown 
and the concept of context dependency is hard to 
measure, he measured the concepts with an 
empirical study. He measured how far his local 
feature weighting method strays from selecting the 
same features for all instances. From a new 
operational definition, we try to measure the input 
dependency of feature relevance in application 
domains to applying CBR. The basic definition of 
Input case dependency of feature relevance (IDFR) 
here is made as: IDFR is the degree of difference 
among the appropriate weight teeters for different 
cases. Table 3 shows the result of input dependency 
measurement. We used 5 randomly generated weight 
vectors, 50 test cases and executed 10 times. Housing 

value estimation has low input dependency and 
customer retention has very high input dependency. 

In Table 3, We can see that the relative classification 
accuracy of LowGoS is correlated to the input 
dependency of each domain. Therefore, we can 
understand why there was no significant improvement 
of the relative performance in the housing value 
estimation domain. The baseline global feature 
weighting methods used here are UniFeS and DTFS. 
 
 
6  Conclusion 
There are some researches on flexible, context-
sensitive, and local feature weighting. However, few 
researches tried to use wrapper model for local 
feature weighting except for Domingos. We 
proposed a new local wrapper method for feature 
weighting named CaDFeW, a new wrapper global 
feature selection method called UniFeS and a 
strategy which integrates the local, i.e., CaDFeW, 
and global, i.e., UniFeS, feature weighting approaches 
called LowGoS. CaDFeW is very simple and relatively 
efficient among wrapper model-based feature 
weighting methods. Our methods overcame the 
limitations of RC in two key aspects as pointed out 
below. 
• CaDFeW supports more than single nearest 
neighbor - We can enhance the classification 
performance of the classifier CBR. 
• LowGoS combines local and global wrapper 
methods - UniFeS supports execution process of the 
CaDFeW by reducing dimensionality. 

Although the results of some applications did not 
showed sufficient evidences for the usefulness of the 
new method, we expect that it can be improved and 
will work effectively in most situations. That is 
because the core idea of the method is remembering 
the real experiences of the classifier CBR itself. The 
core contribution of this study can be stated as: 

(1) We extended existing categorizations of feature 
weighting methods by including the scope dimension, 
and developed a new 3-dimensional framework and 
then developed a brand new combination of feature 
weighting method. (2) We developed a new 
measurement called input dependency of feature 
relevance that will be used to determine which type of 
weights, i.e., local weights or global weights, is 
appropriate for a particular application. (3) We 
showed the usefulness of local feature weighting in 

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)



various parameter setting based on the empirical test 
results. 
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