
A Design of Analysis Model using Feature Weighting
on CBR Method

YOUNG JUN KIM

Division of Business Administration
Baekseok College of Cultural Studies

393, Anseo-dong, Cheonan, Chungnam 330-705
KOREA

Abstract: - This paper is a principal idea of case-based reasoning to feature weighting. The feature
weighting method called CaDFeW (CAse-based Dynamic FEature Weighting) stores classification
performance of randomly generated feature weight vectors. Also it retrieve similar feature weighting
success story from the feature weighting case base and then designs a better feature weight vector
dynamically for the a new input problem while solving the problem. The CaDFeW is wrapper model-
based feature weighting method that uses classifier error rate as evaluation procedure. To explain the
results of applications, this paper is introduced a new definition of input dependency of feature
relevance and measured the new concept in the application domains. The empirically measured results
showed that relative performance of a local feature weighting method to a global feature weighting
method.

Key-Words: - Machine learning, wrapper method, case-based classifier, feature weighting method.

1 Introduction
There are two types of learning modes: eager learning
and lazy learning. Eager learning approaches to
induction produce generalizations that explicitly
represent the classes under study, often in a language
different from that used to represent the cases. Lazy
approaches, in contrast, delay this generalization
process until classification time; it is performed
implicitly when a new case is compared to the stored
cases and the class of the nearest one(s) is assigned to
it. Lazy learning methods such as case-based
reasoning (CBR) [6] have several advantages when
compared to eager methods like decision tree and
artificial neural networks [7,8]. They are conceptually
simple, and yet able to form complex decision
boundaries in the problem space even when only
relatively little information is available. They can be
applied easily to both categorical and numeric output
problems. They have no difficulty in handling both
categorical and numeric input features. Special cases
that cannot be handled by eager approaches can be
retained and recognized.

The goal of this study is to develop an effective
and efficient local feature weighting method for a lazy
learning method, specifically, a CBR method. The

effectiveness of the new method is measured by the
improvement of the classification accuracy after
applying it to a basic CBR system. The application
results are compared with some other feature
weighting methods. Fig.1 shows the conceptual
framework of this study. In the initial stage of this
study, we review existing researches related to
feature weighting methods. This can be an overall
infrastructure for this study. Based on the findings
from the in-depth analysis of the previous studies,
we attain the possible directions to develop a new
method. Prototypical design of the methods are
tested and modified iteratively until the method
shows sufficient level of effectiveness.

After a few iterations of refinement process, we
compile the findings on the relationships between
feature weighting and CBR from the empirical
experiments based on the test results. This is also a
contribution of this study. We propose, CaDFeW
method, a case-based dynamic feature weighting
method that is an alternative local feature weighting
approach for lazy learners. CaDFeW keeps randomly
generated feature weight vectors and the train-time
experiences, i.e., test results. Then it retrieves these

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)

experiences from the case base and generates new
feature weight vectors in run-time.

2 Case-Based Reasoning
Case-based reasoning (CBR) is one of such machine
learning approaches. Previous cases are used to make
a solution for a new problem. From the cases
available, a CBR system retrieves the most similar
case(s) to the input problem and then adapts the
solution of the retrieved case to fit the context of the
Input problem. The basic idea of CBR is based on
the process of human problem solving. Human
beings use previous experiences of problem solving
when encountered a new problem to solve. This
natural problem solving approach allows the reuse of
problem solving experiences and is considered a
breakthrough from the knowledge acquisition
bottleneck. Since there are numerous possible CBR
design options, testing all the possible CBR designs
in order to develop a good feature weighting method
will be an exhaustive and time-consuming work. In
this study, we use a typical CBR system for
classification as a base classifier. When encountered
a new problem to solve, the CBR system retrieves a
set of most relevant cases from the case base and
suggests a new solution.

We focus on the typical classification problems that
have the following characteristics. First, the problems
have discrete output classes. Hence, the performance
of CBR system can be investigated by checking the
results whether they are correct or not. Second, the
problems have relatively many features and have
both numeric and categorical features in most cases.
In the adaptation stage, some simple voting
heuristics are used. When a CBR system for
classification problem retrieves more than one case,
it may encounter conflicting solutions. Then the
CBR system simply selects the most frequent
solution. There can be some possible variations of
this voting method [6]. In this study, however, we
use only equally weighted voting method while
varying the number of cases retrieved, i.e., the value
of k. Because this study mainly focuses on typical
classification problems, other issues such as case
indexing, sophisticated adaptation, and repair are not
considered.

3 Feature Weighting Methods

3.1 Categorization of feature weighting
Feature weighting efforts attempt to find the optimal
feature weight vector that makes the classifier show
best classification accuracy. Feature weighting
methods search through the feature weight vectors,
and find the best one among the unlimited number of
candidate weight vectors according to an evaluation
criterion. However, this procedure is exhaustive
because it tries to find only the best one. It may be
too costly and practically prohibitive, even for a
small size of feature set. Other methods based on
heuristic or random search attempt to reduce
computational complexity at the cost of performance.
These methods need a stopping criterion to prevent
an exhaustive search of weight vectors. Table 1
shows the modified framework and categorization of
some representative methods.

Table 1. Categorization of feature weighting methods

in a 3-dimensional framework
Generation procedure Weight

scope
Evaluation

function Heuristic Complete Random
Distance Relief + -
Information DTI + -
Dependency + - -
Consistency - + +

Global

Classifier
error

+ + GA

Local
Classifier
error

RC -
This study
(CaDFeW)

+ There are several methods but they are not presented here.
- There are no known methods.

Evaluation procedures can be categorized differently
by whether they use feedback from the performance
task. Methods that do not use feedback are called
filters, whereas methods that use the classifier itself
as the evaluation procedure are wrappers [5]. The
weight scope means the generality of the weights in
the case space. The weight scope that most feature
weighting methods produce is global: their weights
apply across the entire case space. In contrast, local
feature weighting methods allow feature weights to
vary in different parts of the case space. In local
feature weighting methods, weights can vary by
class [4], feature value [9], and/or individual case or
subset of cases [1].

3.2 Case-based dynamic feature weighting
We start by describing the CaDFeW (CAse-based
Dynamic FEature Weighting) method in this subsection
and then discuss the motivations behind it in the next

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)

subsection. The method for weighting features of a
CBR system by another CBR, i.e., CaDFeW is simple
and can be stated as follows: By remembering the
train-time performance of randomly generated
feature weight vectors, a CBR system designs its
input-specific feature weight vector dynamically in
the run-time.

CaDFeW stores pre-processed results and then
dynamically generates a desirable feature weight
vector when it is running. The behavior of CaDFeW
is similar to that of RC. Both methods generate
weights input-sensitively and they are wrapper
methods. CaDFeW is a wrapper method. Therefore
it shares the general properties of the wrapper
methods discussed in John et al. [5]. However,
CaDFeW is relatively faster than other global
wrapper methods and a local method such as RC. In
comparison with some feature weighting methods,
CaDFeW is flexible. Firstly, we can use multiple
weighting experiences to design a new feature weight
vector for a new input case to enhance the
classification accuracy of CBR. However, if there is
no significant improvement and computational
resource is a concern, we can choose a negotiation
point. Secondly, the current version of CaDFeW
provides continuous weights rather than binary
weights. However, since binary weight is the
special case of continuous weight, we can easily
adjust CaDFeW to provide binary weights. The power
of CaDFeW's feature weighting is currently being
under investigation. However, some empirical test
results presented later show us the potential of the
method. The simplicity and the naturalness of the
algorithm are the most attractive advantages.

3.3 Combing a global feature selection method
and CaDFeW
To make a feature weighting method efficient, we need
to reduce the number of features before assigning
weight values. Combining feature weighting and
feature selection can be one of these alternatives. We
designed an open and combined method called
LowGoS (LOcal Weighting after GlObal Selection).
We can eliminate globally useless or irrelevant
features in a certain criteria by executing a global
feature selection method before applying a local
feature weighting method. The global feature selection
(GFS) method removes possibly very irrelevant
features from the initial input feature set. The
underlying motivation of applying this combined

method is to improve both classification accuracy and
reduce search space significantly. However, there are
some unanswered questions. First, there is possibly
unlimited number of alternative GFSs. Therefore we
have to select the most appropriate method for both
CBR and CaDFeW. Second, most GFS use
conservative, i.e., wrong-selection averse, strategy.
Therefore we have to determine the desirable level of
conservativeness.

In this study, instead of using only existing GFS
methods, we designed a simple wrapper-based
heuristic method called UniFeS (UNIvariated analysis-
driven FEature Selection). UniFeS first examines the
predictive power of each feature using a wrapper
approach. Only one feature, with all of the other
attributes being ignored, is used as an input attribute
of CBR to classify a given problem. The same
procedure is executed for all features logically and
possibly in parallel. Classification accuracy of a
feature is assumed to be an index of predictive
power of the feature.

After examining the predictive power of all
features, relative value of features among all the
features are compared. However, we use
classification accuracy as the measure of potential
predictive power instead of deterministic measures
such as mean. A set of relatively less powerful
predictors is discarded in the final stage of LowGoS,
i.e., CaDFeW. Then, CaDFeW starts with the
remaining features.

4 Empirical Evaluations
We describe a set of empirical tests to investigate the
usefulness of CaDFeW method. The method will be
used for a set of CBR systems in several different
domains. Problem structure of each application is
reformulated to have common properties of
classification tasks. Since the main goal of the feature
weighting is to improve classification accuracy of
CBR system, we measure the classification accuracy of
the CBR systems by using different versions of
CaDFeW feature weighting method and LowGoS.
The CBR system without feature weighting effort is
considered as a baseline. We use alternative feature
weighting methods such as DTFS and UniFeS for
the purpose of comparative analysis.

4.1 Credit evaluation application

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)

Credit evaluation is to decide whether we should
approve customer application for a loan based on the
collected customer information. It is one of the very
typical analytical modeling application domains.
Therefore there are many precious studies and
industrial efforts.

We implemented some designs of CaDFeW and
tested them to a benchmark data set. The data set
used for this experiment is taken from the UC Irvine
machine learning database repository [3]. It is the
same data set as Quinlan [8] and Domingos used. This
data set has 690 credit evaluation records with some
missing values. The data set has 6 numeric and 9
categorical features. The meanings of each feature
are not described. We compared the basic CBR and
the CaDFeW CBR. CaDFeW CBR B30w3, one of
several versions of CaDFeW, uses only three most
similar and successful weighting experiences and no
failed experiences. It stores three weighting experiences
for each case in the case base. In adaptation, voting
among top three similar cases with no weighting
scheme is employed. DTI was performed using the
SAS E-Miner data mining system. DTI-EM (DTI
built by E-Miner) is set to have similar parameters to
those of C4.5.

Table 2. Classification accuracies of classifiers:
credit evaluation

 Average
accuracy(%)

Standard
deviation(%) Notes

Basic CBR 84.51 1.91 k=3

CaDFeW
CBR 88.01 1.27 p=3

DTl-EM 86.84 1.46 C4.5-like
setting

Logistic
regression 84.71 1.82 SAS

E-Miner

Ten different runs were carried out (tenfold cross-
validation). In each, the case base was composed of
40% of the data set, chosen at random, and the other
30% were used as test set. As table 2 shows, the
basic CBR obtained about 84.51% classification
accuracy on the average. A CaDFeW CBR system
showed 88.01% classification accuracy that is better
than those of both the basic CBR and DTI-EM.
Quinlan and Domingos also used DTS and
Domingos used C4.5. Based on a paired t-test, we
concluded that CaDFeW CBR B30w3 showed
significantly better classification accuracy than the
basic CBR. However, difference between CaDFeW
CBR B30w3 and DTI-EM was not sufficient to tell.

4.2 Housing value estimation application
Boston housing value estimation problem is another
benchmark data set from the UCI machine learning
database [3]. This data set was originally taken from
the StatLib library that is maintained at Carnegie
Mellon University. This data set concerns housing
values in suburbs of Boston. There are 506 cases, 13
continuous attributes and no missing attribute value.

BCBR
88%

86%

84%

76%

82%

80%

78%

set=1 set=2 set=3 set=4 set=5

UniFeS3 CaDFeW

Fig.1. Basic CBR and UniFeS CBR: classification
accuracy comparison: housing value estimation

90.00%

80.00%

70.00%

60.00%

50.00%
BCBR

Classifier

95.00%

85.00%

75.00%

65.00%

55.00%

UniFeS3
CaDFeW

CaDFeW DTFS
CBR

DT
(CART)

LR
(SWPL)

LR
(BCVE)

Fig.2. Average classification accuracies of various
classifiers: housing value estimation

Fig.1 shows the classification accuracies between

UniFeS3 CBR and basic CBR (BCBR) in comparison.
Both systems are set to k=3 and UniFeS3 CBR use
only top three high performance features selected
through the UniFeS process. UniFeS3 CBR does not
show better classification accuracies than BCBR in
general. However, the point that UniFeS reduced the
number of features to 3 has an important meaning.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)

Dimension reduction like this can provide a positive
impact on, at least, enhancing the efficiency of CaDFeW
process execution. Fig.2 shows the summarized results
of various classifiers. LowGoS (UniFeS3 CaDFeW)
and CaDFeW CBR show no improvement.

5 Input Case Dependency of Feature
Relevance
We study the reason why CaDFeW and LowGoS
showed different performance in different applications.
Since there is enough number of efficient global
feature weighting methods, if local or case-specific
feature weighting methods do not perform well in
some applications then we have to select a global
feature weighting method.

Table 3. Measured input dependencies in the

application domains
Input

dependency
(k=1)

Relative
performance of
LowGoS (%)*

Ave. Std.
dev.

Input
dep.

(k>1)
DTFS** UniFeS***

Customer
retention 0.89 0.01 0.89 104.32 101.50

Credit
evaluation 0.30 0.05 0.29

Housing
value est. 0.27 0.04 0.25 97.87 100.48

* Relative performance of LowGoS = Classification accuracy of LowGoS /
Classification accuracy of the baseline global weighting method
** Using CART decision tree as global feature selection method
*** Using UniFeS as global feature selection method

Domingos tried to measure context dependency of

feature relevance. However, since the true degree of
context dependency of feature relevance is unknown
and the concept of context dependency is hard to
measure, he measured the concepts with an
empirical study. He measured how far his local
feature weighting method strays from selecting the
same features for all instances. From a new
operational definition, we try to measure the input
dependency of feature relevance in application
domains to applying CBR. The basic definition of
Input case dependency of feature relevance (IDFR)
here is made as: IDFR is the degree of difference
among the appropriate weight teeters for different
cases. Table 3 shows the result of input dependency
measurement. We used 5 randomly generated weight
vectors, 50 test cases and executed 10 times. Housing

value estimation has low input dependency and
customer retention has very high input dependency.

In Table 3, We can see that the relative classification
accuracy of LowGoS is correlated to the input
dependency of each domain. Therefore, we can
understand why there was no significant improvement
of the relative performance in the housing value
estimation domain. The baseline global feature
weighting methods used here are UniFeS and DTFS.

6 Conclusion
There are some researches on flexible, context-
sensitive, and local feature weighting. However, few
researches tried to use wrapper model for local
feature weighting except for Domingos. We
proposed a new local wrapper method for feature
weighting named CaDFeW, a new wrapper global
feature selection method called UniFeS and a
strategy which integrates the local, i.e., CaDFeW,
and global, i.e., UniFeS, feature weighting approaches
called LowGoS. CaDFeW is very simple and relatively
efficient among wrapper model-based feature
weighting methods. Our methods overcame the
limitations of RC in two key aspects as pointed out
below.
• CaDFeW supports more than single nearest
neighbor - We can enhance the classification
performance of the classifier CBR.
• LowGoS combines local and global wrapper
methods - UniFeS supports execution process of the
CaDFeW by reducing dimensionality.

Although the results of some applications did not
showed sufficient evidences for the usefulness of the
new method, we expect that it can be improved and
will work effectively in most situations. That is
because the core idea of the method is remembering
the real experiences of the classifier CBR itself. The
core contribution of this study can be stated as:

(1) We extended existing categorizations of feature
weighting methods by including the scope dimension,
and developed a new 3-dimensional framework and
then developed a brand new combination of feature
weighting method. (2) We developed a new
measurement called input dependency of feature
relevance that will be used to determine which type of
weights, i.e., local weights or global weights, is
appropriate for a particular application. (3) We
showed the usefulness of local feature weighting in

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)

various parameter setting based on the empirical test
results.

References:
[1] Aha, D. W., "Feature Weighting for Lazy Learning

Algorithms," Liu, H. and H. Motoda(Eds.), Feature
Extraction, Construction and Selection: A Data
Mining Perspective, Norwell MA: Kluwer, 1998.

[2] Blake, C., E. Keogh, and C. J. Merz, UCI
Repository of machine learning databases, Irvine,
CA: U. of California, Department of Information
and Computer Science, 1998.

[3] Friedman, J. H., "On Bias, Varian, 0/1-Loss, and
the Curse-of-Dimensionality," Data Mining and
Knowledge Discovery, Vol.1, Kluwer, 1997.
pp.55-77.

[4] Howe, N. and C. Cardie, "Examining Locally
Varying Weights for Nearest Neighbor Algorithms,"
Case-Based Reasoning Research and Development:
2nd Int. Conference on Case-Based Reasoning, 1997.
pp.445-466.

[5] John, G. H., R. Kohavi and K. Pfleger, "Irrelevant
Features and the Subset Selection Problem,"
Proceedings of the 11th Int. Conference on
Machine Learning, 1994. pp.121-129.

[6] Kolodner, J., Case-Based Reasoning, Morgan
Kaufman Publishers, 2003.

[7] Nelson, M. M., and W T. Illingworth, A Practical
Guide to Neural Nets, Addison-Wesley, 2001.

[8] Quinlan, R., "Simplifying Decision Trees," Int.
Journal of Man-Machine Studies, Vol.27, 1987.
pp.221-234.

[9] Stanfill, C. and D. Waltz, Toward Memory-Based
Reasoning, Communications of ACM, Vol.29, 1986.
pp.1213-1228.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp56-61)

