
A Logic Program Solution for Conflict Authorizations

YUN BAI
School of Computing and Information Technology

University of Western Sydney
Penrith South DC, NSW 1797

AUSTRALIA

Abstract: As a security mechanism, authorization is to provide access control to the system resources according to
the polices and rules specified by the security strategies. Either by update or in the initial specification, conflicts
in authorization is an issue needs to be solved. In this paper, we propose a new approach to solve conflict by
using prioritized logic programs and discuss the uniqueness of its answer set. Addressing conflict resolution from
logic programming viewpoint and the uniqueness analysis of the answer set provide a novel, efficient approach for
authorization conflict resolution.

Key–Words: security, access control, formal authorization specification, conflict resolution, prioritized logic pro-
gram.

1 Introduction

Today’s computer systems are increasingly attacked
by malicious attempts. Protecting systems from such
attacks is becoming an essential issue in computer se-
curity. Access control or Authorization provide the
ability to control access to computer system, and to
limit what entities can do what kind of operations on
the information and the resources of the system. To
ensure the security of the system, authorization rules
need to be specified in such a way that they not only
have a powerful expressiveness to accommodate user
and system requirements, but also they need to be flex-
ible enough to capture the changing needs of the en-
vironment. Logic based specification approaches pro-
vide an appropriate level of such requirements. There-
fore, more and more researchers are focusing on the
issue of logic based authorization specification. Jajo-
dia et al [7] proposed a logic language for express-
ing authorizations. They used predicates and rules to
specify the authorizations; their work mainly empha-
sizes the representation and evaluation of authoriza-
tions. The work of Bertino et al [2] describes an au-
thorization mechanism based on a logic formalism. It
mainly investigates the access control rules and their
derivations. In their recent work [3], a formal ap-
proach based on C-Datalog language is presented for
reasoning about access control models. Li et al [8] de-
veloped a logical language called delegation logic to
represent authorization policies, credentials in large-
scale, distributed systems. The work emphasizes the
delegation depth and a variety of complex delegation

principals. Chomicki et al [4] discussed security pol-
icy management using logic program approach. Woo
and Lam proposed a formal approach using default
logic to represent and evaluate authorizations [9].

This paper is to address high level authorization
specification and conflict resolution by using priori-
tized logic programs. We first propose a logic lan-
guage by using logic programs to specify authoriza-
tion rules, and then solve its conflict by using the con-
cept and techniques of prioritized logic programs.

The paper is organized as follows. Section 2 de-
scribes authorization rules, its specification and eval-
uation. Section 3 investigates authorization conflict
issue and proposes a new approach to solve it. We
introduce prioritized logic programs for efficient con-
flict resolution. We discuss the unique answer set of
an authorization domain in section 4 and finally sec-
tion 5 concludes the paper.

2 Authorization specification and
evaluation

We define that all the authorizations rules forms an
authorization domain. The individual rule is speci-
fied by a language L. Language L includes the fol-
lowing six disjoint sorts for subject, group-subject,
access-right, group-access-right, object, group-object
together with predicate symbols holds, ∈,⊆ and logic
connectives.

In language L, the fact that a subject S has access
right R for object O is represented using a ground

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp434-439)



atom holds(S,A,O). The fact that a subject S is a
member of G is represented by S ∈ G. Similarly,
we represent inclusion relationships between subject
groups such as G1 ⊆ G2 or between object groups
such as GO1 ⊆ GO2. In general, we define a literal
which represents a fact F to be an atomic formula of
L or its negation, while a ground fact is a fact without
variable occurrence. We view ¬¬F as F . A rule is an
expression of the form:

F0 ← F1, · · · , Fm, notFm+1, · · · , notFn, (1)

where each Fi (0 ≤ i ≤ n) is a literal. F0 is called the
head of the rule, while F1, · · · , Fm,not Fm+1, · · ·, not
Fn are called the body of the rule. Obviously, the body
of a rule could be empty. In this case, it represents
an authorization fact. A rule is ground if no variable
occurs in it.

An extended logic program is a collection of
such rules. In a rule, the set {F1, · · · , Fm}
is the literals without weak negation; the set
{notFm+1, · · · , notFn} is the literals with weak
negation.

All the rules required to specify the access control
of a system or an organization form an authorization
domain. It is formally defined as:

Definition 1 An authorization domain is a finite set
D = {Ri}, (i=1,2, ...k) where Ri is a rule of the form
F0 ← or F0 ← F1, · · · , Fm, notFm+1, · · · , notFn

where m>0, n>m.

The following is an example of an authorization
domain.

Example 1 D = {R1, R2, R3}, where
R1: holds(S,R,O)←
R2: holds(S1,W,O)← ¬holds(S2,W,O)
R3: holds(S3, R,O) ← holds(S3, R,O1), O ∈ O1,
not ¬holds(S3, R,O)

This domain represents the current authorization
information about the system: subject S has read
right on object O; if subject S2 does not have write
right on object O, then S1 can write on O; if S3 can
read O1, O is a member of O1 and there is no informa-
tion stating that S3 cannot read O, then S3 has read
right on O.

Evaluation is to assess the access requests to the
system. Once an authorization domain is properly
specified and applied to a system, its task is to make
the decision as which access request is to be granted
and which is to be denied according to the specifica-
tion of the authorization domain. That is, given an
authorization domain and an access request, how to
decide either to grant or deny such an access request?

Authorization evaluation is to answer this ques-
tion. It first calculates all the authorization facts from
the authorization domain. Then when an access query
is proposed, it can make proper decision by checking
the calculated set of authorization facts.

Some facts are explicitly represented, such as
holds(S,R,O) in example 1. This is the only autho-
rization fact we can get from this domain.

The set of rules of the authorization domain form
an extended logic program Π. Here we use the answer
set semantics proposed by Gelfond and Lifschitz to
evaluate the extended logic program.

To simplify the procedure, we treat a rule r in Π
with variables as the set of all ground instances of r
formed from the set of ground literals of the language
of Π. Let Π be an extended logic program not contain-
ing not and Gl the set of all ground literals in the lan-
guage of Π. The answer set of Π, denoted as Ans(Π),
is the smallest subset S of Gl such that (i) for any rule
F0 ← F1, · · · , Fm from Π, if F1, · · · , Fm ∈ S, then
F0 ∈ S; and (ii) if S contains a pair of complemen-
tary literals, then S = Gl. Now let Π be an arbitrary
extended logic program. For any subset S of Gl, let
ΠS be the logic program obtained from Π by deleting
(i) each rule that has a formula not F in its body with
F ∈ S (since not F is not true, this rule will no longer
take effect), and (ii) all formulas of the form not F in
the bodies of the remaining rules (for similar reason,
such formulas will no longer take effect). We define
that S is an answer set of Π, denoted by Ans(Π), iff
S is an answer set of ΠS , i.e. S = Ans(ΠS). An ex-
tended logic program may have one, more than one,
or no answer set at all.

In the real world, we expect that the authorization
domain has a unique answer set. If an authorization
domain has no answer set, it indicates that the domain
is inconsistent. If more than one answer sets are pre-
sented, there may exist conflict in the domain. We
need to sort it out and find the answer set we prefer.
In the following section, we will investigate conflict
resolution to get the preferred answer set.

3 Conflict resolution

3.1 Prioritized logic program

Now, let’s consider the following authorization do-
main.

Example 2 D = {R1, R2, R3, R4}, where
R1: holds(S1, R,O1)←
R2: ¬holds(S1, R,O)←
R3: O ∈ O1 ←
R4: holds(S1, R,O) ← holds(S1, R,O1), O ∈ O1,

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp434-439)



not ¬holds(S1, R,O)

This domain states that currently S1 can read O1;
S1 cannot read O; O is a member of O1; if S1 can
read O1 and O is a member of O1 and it is not spec-
ified that S1 can not read O, then S1 has the right to
read O.

Obviously, rules R2 and R4 conflict with each
other as their heads are complementary literals, and
applying R2 will defeat R4 and vice versa. However,
we can assign preference ordering among the conflict
rules. If we define R2 < R4, we expect that rule R4 is
preferred to apply first and then defeat rule R2 after
applying R4 so that the solution holds(S1, R,O) can
be derived. On the other hand, if we define R4 < R2,
we expect that rule R2 is preferred to apply first and
then defeat rule R4 after applying R2 so that the so-
lution ¬holds(S1, R,O) can be derived.

The above example shows an inconsistent autho-
rization domain. In some other situation, the autho-
rization domain is consistent initially, but after certain
update, it becomes inconsistent.

For instance, we initially have the following au-
thorization domain:

R1: holds(S,A,O)←
R2: holds(S1, A,O)←
R3: holds(S2, A,O)← holds(S1, A,O)

It says that currently both S and S1 can access O; if S1

can access O then S2 can also access O. The answer
set for this domain is:

{holds(S,A,O), holds(S1, A,O),
holds(S2, A,O)}

Now, the new knowledge R4: ¬holds(S1, A,O) is
added to the domain. It conflicts with the existing
R2: holds(S1, A,O). We need to define a preference
order to solve this conflicts. Suppose we prefer the
update, that is we set the newly added R4 higher pref-
erence than the existing conflicting R2. After the up-
date, the new authorization domain has the following
answer set:

{holds(S,A,O),¬holds(S1, A,O)}

We call the logic program with partial ordering <
on the rules prioritized logic program P [10]. P is de-
fined to be a triplet (Π,R, <), where Π is an extended
logic program, R is a naming function mapping each
rule in Π to a name, and < is a strict partial ordering
on names. The partial ordering < in P plays an essen-
tial role in the evaluation of P . We also use P(<) to
denote the set of <-relations of P . Intuitively < rep-
resents a preference of applying rules during the eval-
uation of the program. In particular, if R(r) < R(r ′)

holds in P , rule r′ would be preferred to apply over
rule r during the evaluation of P .

3.2 Evaluation of prioritized logic program

The evaluation of a PLP will be based on its ground
form. It is to find the answer set of the authorization
domain. Given a PLP P = (Π,R, <). We say P
is well formed if there does not exist a rule r ′ that is
an instance of two different rules r1 and r2 in Π and
R(r1) < R(r2) ∈ P(<). In the rest of this paper,
we will only consider well formed PLPs in our dis-
cussions, and consequently, the evaluation for an ar-
bitrary program P = (Π,R, <) will be based on its
ground instantiation P ′ = (Π′,R′, <′). Therefore, in
our context a ground prioritized (or extended) logic
program may contain infinite number of rules. In this
case, we will assume that this ground program is the
ground instantiation of some program that only con-
tains finite number of rules.

Definition 2 Let Π be a ground extended logic pro-
gram and r a rule with the form R0 ← R1, · · · , Rm,
not Rm+1, · · ·, not Rn (r does not necessarily belong
to Π). Rule r is defeated by Π iff Π has an answer
set and for any answer set Ans(Π) of Π, there exists
some Ri ∈ Ans(Π), where m + 1 ≤ i ≤ n.

Let us consider program example 2 once again.
If we choose R2 < R4 and R2 is defeated by
D − {R2}, rule R2 should be ignored during the
evaluation of D. We will get the unique answer set
{holds(S,R,O1), O ∈ O1, holds(S1, R,O)}.

To calculate the set of access facts of an autho-
rization domain, we need to evaluate its corresponding
extended logic program. That is, to find the answer set
of prioritized logic program P . Now, we present the
procedure for finding the answer set. We start from a
reduced set or the reduct of P .

Definition 3 Let P = (Π,N , <) be a prioritized ex-
tended logic program. P< is a reduct of P with re-
spect to < if and only if there exists a sequence of sets
Πi (i = 0, 1, · · ·) such that:

1. Π0 = Π;

2. Πi = Πi−1 − {r1, r2, · · · | (a) there exists r ∈
Πi−1 such that

for every j (j = 1, 2, · · ·), N (r) < N (rj) ∈
P(<) and

r1, · · · , are defeated by Πi−1 − {r1, r2, · · ·},
and (b) there

does not exist a rule r′ ∈ Πi−1 such that
N(rj) < N(r′)

for some j (j = 1, 2, · · ·) and r′ is defeated
by Πi−1 − {r

′}};

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp434-439)



3. P< =
⋂

∞

i=0 Πi.

In Definition 3, P< is a ground extended logic
program obtained from Π by eliminating some less
preferred rules from Π. In particular, if R(r) <
R(r1), R(r) < R(r2), · · ·, and Πi−1 − {r1, r2, · · ·}
defeats {r1, r2, · · ·}, then rules r1, r2, · · · will be elim-
inated from Πi−1 if no less preferred rule can be
eliminated (i.e. conditions (a) and (b)). This proce-
dure is continued until a fixed point is reached. It
is worth to note that the generation of a reduct of
a PLP is based on the ground form of its extended
logic program part. Furthermore, if R(r1) < R(r2)
holds in a PLP where r1 or r2 includes variables, then
R(r1) < R(r2) is actually viewed as the set of <-
relations R(r′1) < R(r′2), where r′1 and r′2 are ground
instances of r1 and r2 respectively.

Definition 4 Let P = (Π,∇, <) be a PLP and Gl the
set of all ground literals in the language of P . For any
subset S of Gl, S is an answer set of P , denoted as
AnsP (P), iff S = Ans(P<) for some reduct P< of
P . Given a PLP P , a ground literal L is entailed from
P , denoted as P |= L, if L belongs to every answer
set of P .

Using Definitions 3 and 4, it is easy to conclude
that in example 2, if we assign R2 > R4, P has a
unique reduct as follows:

P< = {holds(S1R,O1)←,
¬holds(S1, R,O)←, O ∈ O1 ←}

from which we obtain the following answer set of P:

AnsP (P1) = {holds(S1, R,O1),
¬holds(S1, R,O), O ∈ O1)}

If the preference ordering is R2 < R4, P has a
unique reduct as follows:

P< = {holds(S1R,O1)←, O ∈ O1 ←,
holds(S1, R,O)← holds(S1, R,O1),

O ∈ O1, not ¬holds(S1, R,O)}

from which we obtain the following answer set of P:

AnsP (P1) = {holds(S1, R,O1), O ∈
O1, holds(S1, R,O)}

Example 3 Now we consider another authorization
domain D, it’s corresponding program P is:

R1 : holds(S,W,O3)←,
R2 : holds(S,W,O)←

not holds(S,W,O1),
R3 : holds(S,W,O2)←,
R4 : holds(S,W,O1)←

not holds(S,W,O),
R1 > R2, R3 > R4.

According to Definition 3, it is easy to see that P has
two reducts:

{holds(S,W,O3)←,
holds(S,W,O2)←,
holds(S,W,O1)← not holds(S,W,O)},

and
{holds(S,W,O3)←,
holds(S,W,O)← not holds(S,W,O1),
holds(S,W,O2)←}.

From Definition 4, it follows that P has two answer
sets:
{holds(S,W,O3), holds(S,W,O1), holds(S,W,O2)}
and
{holds(S,W,O3), holds(S,W,O), holds(S,W,O2)}.

4 Unique answer set of an authoriza-
tion domain

Example 4 has two answer sets. If an access request
holds(S,W,O1) is presented, according to one an-
swer set, the access request is granted; according to
the other answer set, the same request will be denied.

Now we investigate the unique answer set of an
authorization domain. To investigate this issue, we
first extend the concept of local stratification for gen-
eral logic programs [1] to extended logic programs.

Definition 5 Let Π be an extended logic program and
Gl be the set of all ground literals of Π.

1. A local stratification for Π is a function stratum
from Gl to the countable ordinals.

2. Given a local stratification stratum, we extend
it to ground literals with negation as failure by
setting stratum(not F ) = stratum(F ) + 1,
where F is a ground literal.

3. A rule F0 ← F1, · · · , Fm, not Fm+1, · · ·, not Fn

in Π is locally stratified with respect to stratum
if

stratum(F0) ≥ stratum(Fi),
where 1 ≤ i ≤ m, and
stratum(F0) > stratum(notFj),
where m + 1 ≤ j ≤ n.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp434-439)



4. Π is called locally stratified with respect to
stratum if all of its rules are locally stratified.

For an extended logic program which represents
certain authorization domain, if such rules exist:

a← notb
b← nota

We will have two answer sets {a} and {b}.
The above definition is to ensure that in an ex-

tended logic program, there does not exist such rules
resulting in multiple answer sets.

For instance, if we assign stratum(nota)=1,
according to condition 2 of the definition
stratum(a)=stratum(nota) - 1 = 0. from rule
a ← notb and the condition 3, stratum(notb) <0,
so stratum(b) < stratum(notb) <0.
From rule b ← nota and the condition 3,
stratum(b) > stratum(nota) >1. So a do-
main consists the above rules does not satisfy the
definition, it is not locally stratified.

Let Π be a ground extended logic program and r
be a rule in Π of the form:

F0 ← F1, · · · , Fm, not Fm+1, · · ·, not Fn.

We use pos(r) to denote the set of literals in the body
of r without negation as failure {F1, · · · , Fm}, and
neg(r) the set of literals in the body of r with nega-
tion as failure {Fm+1, · · · , Fn}. We specify body(r)
to be pos(r)∪neg(r). We also use head(r) to denote
the head of r: {F0}. Then we use Gl(r) to denote
head(r) ∪ body(r). By extending these notations, we
use pos(Π), neg(Π), body(Π), head(Π), and Gl(Π)
to denote the unions of corresponding components of
all rules in Π, e.g. body(Π) =

⋃
r∈Π

body(r). If Π is
a non-ground program, then notions pos(Π), neg(Π),
body(Π), head(Π), and Gl(Π) are defined based on
the ground instantiation of Π.

The following definition is to specify under which
conditions an extended logic program is locally strat-
ified.

Definition 6 Let Π be an extended logic program and
rp and rq be two rules in Π. We define a set D(rp) of
literals with respect to rp as follows:

D0 = {head(rp)};
Di = Di−1∪{head(r) | head(r′) ∈ pos(r)
where r ∈ Π and r′ are those rules such that
head(r′) ∈ Di−1};
D(rp) =

⋃
∞

i=1
Di.

We say that rq is defeasible through rp in Π if and only
if neg(rq)∩D(rp) 6= ∅. rp and rq are called mutually
defeasible in Π if rq is defeasible through rp and rp is
defeasible through rq in Π.

Intuitively, if rq is defeasible through rp in Π,
then there exists a sequence of rules r1, r2, · · · , rl, · · ·
such that head(rp) occurs in pos(r1), head(ri) oc-
curs in pos(ri+1) for all i = 1, · · ·, and for some k,
head(rk) occurs in neg(rq). Under this condition, it
is clear that by triggering rule rp in Π, it is possible
to defeat rule rq if rules r1, · · · , rk are triggered as
well. As a special case that D(rp) = ∅, rq is defeasi-
ble through rp iff head(rp) ∈ neg(rq). The following
proposition simply describes the relationship between
local stratification and mutual defeasibility.

Proposition 1 Given a ground extended logic pro-
gram Π. If Π is locally stratified, then there are no
mutually defeasible pairs of rules in Π.

Proposition 2 Let Π be a ground extended logic pro-
gram. If Π is locally stratified, then Π has a unique
answer set.

The above result is easy to prove from the corre-
sponding result for general logic programs showed in
[5] based on Gelfond and Lifschitz’s translation from
an extended logic program to a general logic program
[6]. It is observed that for a PLP P = (Π,N , <), if
Π is locally stratified, then P will also have a unique
answer set. In other words, Π’s local stratification im-
plies that P has a unique answer set.

For instance, if these rules are in an authorization
domain:

a← b...
c← a...
d← c...
e← ...notd

Let the first rule be rp and the last one be rq . Once
rule rp takes effect, we have a in the answer set. Sup-
pose all other conditions for rest of the rules taking
effect are satisfied, we will have c, d in the answer set
as well. This will prevent rq from taking effect. So
rule rq is defeasible through rp. Similarly, if rule rq is
triggered first, then the other rules cannot take effect
since the result contradicts with the condition trigger-
ing rule rq. So we say rule rp and rule rq are mutually
defeasible. The domain has two answer sets: {a, c, d}
and {e}.

Example 4 An authorization domain D =
{R1, R2, R3}, where
R1: holds(S,A,O)←
R2: holds(S1, A,O)← holds(S,A,O)
R3: holds(S2, A,O)← ¬holds(S1, A,O)
This domain does not have a unique answer set since
R1 and R3 are mutually defeasible. It has two answer

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp434-439)



sets:
{holds(S,A,O), holds(S1, A,O)} and
{holds(S2, A,O)}

Example 5 Here is another domain D =
{R1, R2, R3, R4, R5}, where
R1: holds(S,A,O)←
R2: holds(S1, A,O)←
R3: holds(S2, A,O)← ¬holds(S3, A,O)
R4: holds(S4, A,O)← holds(S,A,O)
R5: holds(S5, A,O)← holds(S1, A,O),
¬holds(S3, A,O)
This domain does not contain any pair of defeasible
rules. It is locally stratified. It has a unique answer
set:
{holds(S,A,O), holds(S1, A,O), holds(S2, A,O),
holds(S4, A,O), holds(S5, A,O)}

5 Conclusion

In this paper, we proposed a new approach to solve
conflicts in authorizations. So far, certain research has
been done using logic in authorizations as mention
in introduction. These works either focus on autho-
rization representation, or delegation. Little has been
done in conflict resolution of authorization.

In our work, we employed a prioritized logic pro-
gram to resolve authorization conflicts in an autho-
rization domain specified by a logic language. By as-
signing each rule a name representing its preference
ordering, using a fixed point semantics to delete those
less preferred rules (the rules will not take effect under
current state), then using answer set theory to evaluate
the authorization domain to get the preferred autho-
rizations. We also investigated the uniqueness of the
answer set of an authorization domain and discussed
the conditions under which the domain has a unique
answer set. In our future work, we will consider
the implementation issue with authorization evalua-
tion and dynamic policy update. A related work using
logic programs for conflict resolution in reasoning has
been implemented in (removed for blind review) It is
our future work to use logic programs(stable model
semantics) to implement the approach for authoriza-
tion conflict resolution presented in this paper.

References:

[1] K.R. Apt and R.N. Bol, Logic programming and
negation: A survey. Journal of Logic Program-
ming, 19,20 (1994) 9-71.

[2] E. Bertino, F. Buccafurri, E. Ferrari and P. Rullo,
“A Logic-based Approach for Enforcing Ac-

cess Control”. Computer Security, vol.8, No.2-2,
pp109–140, 2000.

[3] E. Bertino, B. Catania, E. Ferrari and P. Perlasca,
“A Logical Framework for Reasoning about Ac-
cess Control Models”. ACM Transactions on
Information and System Security, Vol.6, No.1,
pp71–127, 2003.

[4] J. Chomicki, J. Lobo and S. Naqvi, “A Logi-
cal Programming Approach to Conflict Resolu-
tion in Policy Management”. Proceedings of In-
ternational Conference on Principles of Knowl-
edge Representation and Reasoning, pp121–
132, 2000.

[5] M. Gelfond and V. Lifschitz, The stable model
semantics for logic programming. In Proceed-
ings of the Fifth Joint International Confer-
ence and Symposium, pp 1070-1080. MIT Press,
1988.

[6] M. Gelfond and V. Lifschitz, Classical nega-
tion in logic programs and disjunctive databases.
New Generation Computing, 9 (1991) 365-386.

[7] S. Jajodia, P. Samarati, M.L. Sapino and V.S.
Subrahmanian, “Flexible Support for Multiple
Access Control Policies”. ACM Transactions on
Database Systems, Vol.29, No.2, pp214–260,
2001.

[8] N. Li, B. Grosof and J. Feigenbaum, “Delegation
Logic: A Logic-based Approach to Distributed
Authorization”. ACM Transactions on Informa-
tion and System Security, Vol.6, No.1, pp128–
171, 2003.

[9] T.Y.C. Woo and S.S. Lam, “Authorization in
Distributed systems: A Formal Approach”. Pro-
ceedings of IEEE Symposium on Research in Se-
curity and Privacy, pp33-50, 1992.

[10] Y. Zhang and Y. Bai, “The Characterization on
the Uniqueness of Answer Set for Prioritized
Logic Programs”. Proceedings of the Interna-
tional Symposium on methodologies on Intelli-
gent Systems, pp349–356, 2003.

[11] Y. Zhang, C.M. Wu and Y. Bai Implementing
Prioritized Logic Programming, AI Communica-
tions, Vol.14, No. 4, pp183–196, 2001.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp434-439)


