
Execution Characteristics of C++ and C Programs on Embedded
Processor ARM7TDMI

Ji Weixing Shi Feng Qiao Baojun

Department of Computer Science and Engineering
Beijing Institute of Technology

Beijing 100081
CHINA

Abstract: - This paper presents detailed behavioral measurements of several C++ and C programs on
embedded processor ARM7TDMI. By comparing the instruction set usage of C++ and C benchmark
programs, we can specify what is needed in an embedded object-oriented processor in order to provide a fully
object-oriented system in both hardware and software. Various architectural data related to execution behavior
and instruction set usage is collected using ADS 1.2 and profiling software. In addition, the benchmarks
explored in this paper have both C++ and C versions. All the programs are computing intensive and used with
high frequency in embedded software. Results show that the static size of C++ program is larger than C
programs. Although, C++ programs have more call instructions and more memory operations, C++ programs
possess smaller function size than C programs. Various suggestions on optimization to be applicable in both
hardware and software are appended in our research paper.

Key-Words: - Object-oriented Programming; Program Behavior; Instruction Set Usage; Embedded system;
Program size; Function call

1 Introduction
It is widely accepted that object-oriented paradigm
can improve code reusability and facilitate code
maintenance. Object-oriented programming
language, specifically the language C++, has been
oftenly used and is replacing procedural languages
such as C in many application domains. Although
software engineers and software developers embrace
C++ for benefits as referred above, earlier studies
show that C++ program’s behavior is quite different
from C programs and tends to be slower when
executed on modern processors. Consequently,
software systems with real time restrict rarely adopts
object-oriented programming due to its performance
penalty. The performance overhead is coming from
that object-oriented programs are been executed on
non-object-oriented processors, since both the
compiler and the operating system have to map of
object-oriented programming features to the non-
object-oriented processor. Therefore, an object-
oriented processor is needed to speed up the
execution of object-oriented programs. In this paper,
we investigate the execution characteristics of
several C and C++ benchmarks on processor
ARM7TDMI in order to guide the architecture
design of our embedded object-oriented processor.
Both the C and C++ programs have the same
functionality and are compiled by the same
compiler. The only difference is the programming

paradigm, in which one is procedural, and the other
is object-oriented. In this way, we can observe the
real performance penalty of C++ programs executed
on embedded processors. In the experiment, various
architectural data are collected using Arm
Development Suit version 1.2. We also measure and
present program features such as program size,
function invocation and instruction distribution of
the benchmarks.

2 Related Work
The empirical behavior investigation of programs
falls into two categories: measurements of different
aspects of program behavior and instruction set
usage on particular architectures. A major work is
done by Brad Calder and Dirk Grunwald. They
measured the empirical behavior of a group of
significant C and C++ programs on the DEC Alpha
architecture. The behavior characteristics of C++
programs are identified and optimization that should
be applied in those programs is suggested. The
results show that C++ programs exhibit behavior
that is significantly different from C programs. R.
Radhakrishnan and L. John characterized the
performance of several C and C++ benchmarks on
an UltraSPARC-� processor. Various architectural
data related to execution behavior of the benchmarks
are collected using on-chip performance monitoring

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1033-1038)

counters. They conclude that the programs in the
C++ suite incur a higher CPI, higher cache misses,
and higher branch mispredictions than the programs
in the C suite and C++ application programs have a
strong correlation between CPI and branch
mispredictions.

 Our study is based on the ARM processor and
the benchmarks employed are different from those
employed in [1] [2]. The benchmark programs
contain a suite of tests that measure the relative
performance of object-oriented programming
(OOP) in C++ versus just writing in plain C-style
code. The programs of C++ and C version with
exactly the same functionality allow us to
characterize the C++ programs more rigorous.
Moreover, the benchmarks have considerable
computing functions, whose performance are
tested for commonly applicable language features
and are oftenly adopted in embedded system.

3 Benchmarks and processor
Investigating the execution behavior of C++
programs requires a suite of benchmark written in C
and C++. The availability of both C and C++
version should be ideal for comparing and
characteristics [1]. And for embedded systems the
most frequently used functions, such as fast Fourier
transform, encryption and matrix computing
programs, should be included. Although the
programs in our experiment are really limited, a
wide range of applications can be presented due to
their computing intensive characters. Our
benchmarks for comparison are listed in table 1.

Table 1� The benchmarks
Benchmark Description
md5 Md5 digest algorithm.
calc The Reverse Polish Notation

Calculator.
complex Multiplies the elements of two

arrays containing complex numbers.
iterator Dot product programs.
matrix Matrixes’ multiplying programs.
max Computing the maximum over a

vector programs.
radix Radix sort programs.
fft Fast Fourier Transform programs.

 Max, Matrix, Iterator and Complex are
programs contained in benchmark OOPACK,
which contains several programs that both have C
version and C++ version [4]. For example,
Complex of C-style multiplies the elements of two
arrays containing complex numbers, and performs

the multiplication by explicitly writing out the real
and imaginary parts. In contrast, OOP-style
defines complex numbers as a class and complex
addition, and multiplication is done using
overload operations. The original intention of
OOPACK is profiling the optimization issues of
certain compiler. Fast Fourier transform is widely
used in digital signal processing systems and md5
is used in security systems. Calculator, iterator
and radix are also programs that are wildly used in
embedded applications.
 The ARM7TDMI core is a member of the ARM
family of general-purpose 32bit microprocessors
and is based on Reduced Instruction Set Computer
(RISC) principles [6]. A three-stage pipeline is
used in ARM7TDMI, and instructions are
executed in three stages: fetch, decode and
execution. The ARM7TDMI core has Von
Neumann architecture, with a single 32-bit data
bus carrying both instructions and data. Only load,
store, and swap instructions can access data from
memory [7]. This is an un-cached core and
processor delivered as a hard macrocell optimized
to provide the best combination of performance,
power and area characteristics.

4 Experiment Methodology
There has been a great deal of researches on
various aspects of the behavior of different kinds
of programs in order to improve the performance
of their programs with aggressive software
optimization. Our focus is on comparing the
relative behavior of programs written in C and
C++. In particular, we are interested in measuring
aspects of behavior that might be exploited with
better hardware, which will guide the design of
our embedded object-oriented processor. The
program and function sizes are also investigated in
our research paper.
 The Instruction Set Usage Statistics is very
important to the design of our object-oriented
processor. Both the static instruction sequence and
dynamic execution instruction sequence are
required to analyze the behavior of programs.
Because there is a lack of on-chip performance
monitoring counters for ARM processors, we have
to make use of software instrument tools to collect
the dynamic execution instruction sequence. The
systems set up in order to evaluate the benchmark
are shown in figure 1.
 This experimental process is similar to the one
proposed in [2]. Each program code was compiled
using the C and C++ compiler of ARM Software

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1033-1038)

Development Toolkit 1.2, which provide both the
code size and the minimum RAM requirement for
the data of each kernel. And the optimization
option was disabled since we wanted to observe
un-optimized instruction sequences to speed up
C++ programs using hardware but not software,
for example the compiler. Next, we used the
ARM Symbolic Debugger to produce a trace file
logging instructions and memory accesses.
Finally, the profiler parsed the trace file to obtain
the numbers of function calls, the number of
memory accesses and executed instructions. The
profiler is particularly developed for this study.

Fig. 1 System set up for statistics

5 Measured execution behavior
Program execution behavior includes cache
missing rate, function size, stack depth and code
size. Only CPI, function and code size are shown
up in our presented paper.

5.1 Static code size and dynamic code size
Table 2 gives information about the static and
dynamic size of the code for each program. And the
dynamic and static size ratio is illustrated in figure2.
Static size shows how many instructions each
program contains. Dynamic size represents how
many instructions were executed during each
program run [1].

Table 2� Static and dynamic code size
Static Dynamic Progr

am C C+
+

C C++

md5
3,7
66

8,81
5

70,939 128,50
4

calcul
ator

3,8
46

16,1
14

23,642 92,590

compl
ex

3,6
86

8,95
2

618,82
8

763,82
7

iterato
r

3,6
13

8,84
3

335,89
5

396,91
6

matri
x

3,6
37

8,86
0

13,231
,530

14,637
,591

max
2,6
86

7,87
2

54,131 88,921

radix
2,7
98

13,6
41

28,625 93,734

fft
7,3
42

14,7
20

268,53
2

286,65
4

 From the table, we see that the static size of C++
program is larger than the C program, even though
they are coded to have the same function. More
instructions are executed when running C++
programs. This result is similar to what was
observed in the study conducted by R.
Radhakrishnan and L. John [2] and shows that C is
more effective than C++ in solving problems.
Object-oriented paradigm can improve code
reusability and facilitate code maintenance, but also
results in more instructions. The result of dynamic
size and static size ratio in C is higher than in C++.
This is also verified in [1].

0
100
200
300
400
500
600
700
800

md
5

ca
lcu
lat
or

co
mp
lex

ite
rat
or
ma
trix ma

x

rad
ix fft

R
at

io

C
C++

 Fig. 2 Program ratio of dynamic and static

5.2 Dynamic function size

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1033-1038)

0
10
20
30
40
50
60
70
80
90
100

md
5

ca
lcu
lat
or

co
mp
lex

ite
rat
or

ma
trix ma

x

rad
ix fft

In
st
r/C
al
l

C
C++

 Fig. 3 Instructions/Call for C and C++ programs

Dynamic function size is very important to the
performance of the programs, since lots of small
functions will result in greater overhead than large
functions. Figure 3 gives the statistical results of our
programs. We can see that the dynamic function size
of C++ programs is smaller than C programs.
Function size for C++ programs can be attributed to
the object-oriented design paradigm. The class
encapsulates information by bundling the data items
and methods and treating them as a single entity.
The class structure hides implementation details and
carefully restricts outside access to both the data and
operations. This principle deals with information
hiding, protection of data integrity, and results in
lots of small functions.

5.3 CPI comparison
It is seen that C++ programs execute more
instructions than C programs. To quantify the
performance, we measured cycles per instruction
(CPI) based on total execution cycles. Both dynamic
instruction number and total cycles are collected
using ARMSD as illustrated in figure 1. From figure
4 we can see that C++ programs show consistently
higher CPI than the C programs. The mean CPI for
C++ is 1.82, while 1.62 for C programs. This result
shows that the instruction composition of C++
programs and C programs are different. Instructions,
which take more cycles, are apt to appear more
frequently in C++ programs. And this is verified in
settion5.1.

0

0. 5

1

1. 5

2

2. 5

md
5

ca
lcu
lat
or

co
mp
lex

ite
rat
or

ma
trix ma

x

rad
ix fft

C
P
I C

C++

Fig. 4 CPI for C and C++ programs

6 Instruction Set Usage Statistics
In this section profiling information about
instruction set usage is presented. Top 15 frequently
used instructions will give an overview of
instruction usage in C++ and C programs. And we
will discuss function call, control transfer and
memory operation instructions in detail.

6.1 Top 15 frequently used instructions
Due to the differences in the execution behavior of
C++ and C programs, we made perception that the
most commonly and frequently used instructions
must be different in them.
 Table 3 lists the top 15 frequently used
instructions. The percentage in the brackets is the
arithmetic mean of all instruction percentages in the
8-benchmark programs. Moreover, it is obvious
from the table that the order of specific instruction is
different. Table 3 suggests that ADD (addition
instruction) is the most frequently used instructions
in C programs. ADDC (addition with carry), ADDS
(addition with flag update), ADCS (addition with
carry and flag update), and CMP (comparison) also
have higher position in C programs. The second
most frequently used instruction is MOV, which is
used to move data from register to register in RISC
processors. Logic instruction ORR is the third rank
and memory load instruction LDR follows next.

Table 3� Top 15 frequently used instructions
Order C C++

1 ADD (9.93%) LDR (21.87%)
2 MOV (7.86%) ADD (12.56%)
3 ORR (5.64%) MOV (8.78%)
4 LDR (5.61%) EOR (4.21%)
5 ADC (5.04%) LDRB (4.17%)
6 ADDS (4.83%) STR (3.78%)
7 ADCS (4.03%) ORR (3.08%)

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1033-1038)

8 BIC (3.92%) ADC (2.72%)
9 UMULL (3.42%) ADDS (2.60%)

10 TST (3.29%) CMP (2.41%)
11 B (3.15%) BL (2.36%)
12 CMP (3.10%) B (2.21%)
13 MOVS (2.76%) ADCS (2.19%)
14 LDMIA (2.69%) BIC (2.16%)
15 BICNES (2.63%) TST (1.97%)

 In contrast, in the C++ column we can see the
most frequently used instruction is memory load
instruction LDR and its percentage of usage is
amazingly high and up to 21.87%. After LDR,
instruction ADD and MOV are used more frequently
than other instructions in the table. We can conclude
that though ADD and MOV instructions are not
mostly used in C++, they still have higher
percentage of usage than to be used in C programs.
Logic instruction EOR (xor) takes place of ORR has
the fourth rank, and ORR falls to the seventh one.
Both memory load byte LDRB and memory store
instruction STR are appeared in the top 15 lists.
Another instruction, which does not appear in C
column, is the function call instruction BL. Bit clear
(BIC) and bit test instruction (TST) now locate at
the bottom of C++ column. Another difference,
which is worth paying attention to, is the percentage
of top 4 instructions in both columns. The
percentage of ADD, MOV, ORR and LDR are
nearly consecutive in C column, while the
percentage of LDR, ADD, MOV and EOR are
nearly twice to the subsequent instruction.
 Memory operations in C++ are also found more
in number as compare to C program. This fact is
also extracted from the table that number of function
call is also prominent in number in C++ program.
However, the difference between JUMP instructions
is not considerable in the two. Logic instruction
EOR has a significant percentage in C++ programs,
while it is not in the list of C programs. And BIC
and TST have lower percentage in C++ programs.
These conclusions are explained and verified in the
later sections.

6.2 Function Calls
The number of function call is very important to
analyze precisely as the instruction level parallelism
available from a program is heavily influenced by
the frequency of function calls and average function
size. Processor has to save registers and pass
parameters to the callee functions. Figure 5 depicts
the function calls made in our benchmark. We see
that C++ programs made more function calls than C
programs except matrix (Bench Mark). The reason

is that most methods of class in program matrix are
defined inline. This gives us a clue that the function
call overhead can be partially eliminated by
compiler optimization. Much work has already been
done to reduce function call overhead in C++
programs [3] [8].

0
1
2
3
4
5
6

md
5

ca
lcu
lat
or

co
mp
lex

ite
rat
or

ma
trix ma

x

rad
ix fft

%
C
al
l

C
C++

Fig. 5 the percentage of function call in benchmark

6.3 Control Transfer Instructions
Modern architectures using deep instruction
pipelines and speculative execution rely heavily on
predictable control flow changes, and control
transfer instructions cause unpredictable changes in
program control flow [9]. The number of control
transfer instructions determines the block size of
code. The frequency of control transfer instructions
like branches, jumps and calls which cause a break
in the program and this is really a mess to the super
pipelined processor engineers.

Figure 6 gives the percentage of control transfer
in benchmark programs. From Figure 6, we can
summarize C++ programs have more control
transfer instructions than C programs. This
indicates that it’s more difficult for modern super
pipelined and super scalar processor to find the
required instruction level parallel.

0
2
4
6
8
10
12
14

md
5

ca
lcu
lat
or

co
mp
lex

ite
rat
or
ma
trix ma

x

rad
ix fft

%
Br
an
ch

C
C++

Fig. 6 Control transfer instructions

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1033-1038)

6.4 Memory Operations
Modern computer architectures are sensitive to the
number of memory operations, because memory has
become the bottleneck of the overall system and
cannot shovel data in and out fast enough to keep up
with the work being done. The measurement of load
and store memory instructions is given in table 4.
Although hardware mechanisms such as caches seek
can be used to mask some of these problems,
memory operations are still choke point for C++
programs.
Table 4 describes that memory operation percentage
of C++ programs ranges from 11% to 35%. That is,
load and store are application related and can range
over a wide field.

Table 4� Load and store instructions analysis.
%Load %Store

Program C C++ C C++
md5 19.6 24.6 10.0 11.2
calc 21.7 22.0 12.2 12.2
complex 9.8 11.0 5.5 7.8
iterator 6.1 7.1 4.3 4.9
matrix 9.7 14.8 4.1 7.1
max 10.71 12.3 8.0 8.4
radix 11.7 21.8 8.0 12.1
fft 12.5 18.2 7.3 10.8

7 Conclusion
In this paper, we analyze dynamic behavior of
programs in C++ and C using ARM7TDMI
processor. As compared to existing techniques, our
work is on the embedded processor and the
benchmark programs have both C and C++ versions.
We observed that the static size of C++ programs is
larger than C programs, even though the
functionality and input/output of both versions are
the same. We also observed that the function size of
C++ programs is smaller than C programs. What is
more, C++ programs have more control transfer and
memory operation instructions, higher CPI than C
programs. The top 15 most frequently used
instructions of C++ programs are different from C
programs.
 All these observations narrate that semantic gap
of C++ programs and modern embedded processors
can not been ignored in the design of embedded
object-oriented processors. The performance of
processor will be heavily affected due to more
control transfer instructions appear in instruction
pipeline. Therefore, the processor should provide a
fast method manipulating procedure, which means
function invocation and RETURN should get more

support from hardware to speed up program
execution. And this problem can be partially
eliminated by compiler as referred above. The
memory load and store problem will be more serious
when executing C++ programs. Some specific
technique should be explored to shovel data in and
out quickly enough to catch up with the processor.
 Although the profiling result in this paper
confirms some of prior work in comparing C and
C++ programs, the measurement of cache missing
and stack depth cannot be done for lacking of
software and hardware support. Moreover, further
study should be done on other embedded processors,
such as DSP processor; this is planned to be done in
future.

References:
[1] Brad Calder, Dirk Grunwald, Benjamin Zorn.

Quantifying Behavioral Difference Between C
and C++ programs, Journal of Programming
Languages, Vol.2, No.4, 1994, pp. 313-351.

[2] R.Radhakrishnan, L. John, Execution
Characteristics of Object Oriented Programs on
the UltraSPARC-II. HIPC’98 5th International
Conference, 1998, pp. 202-211.

[3] Brad Calder, Dirk Grunwald. Reducing Indirect
function call overhead in C++ programs. In
Annul Symposium on Principles of Programming
Languages, 1994. pp.397-408.

[4] Alexander Chatzigeorgiou. Perfromance and
power evaluation of C++ object-oriented
programming in embedded processors.
Information and software Technology, 2003,
45:195-201.

[5] Dennis C. Lee, Patrick J. Crowley etc. Execution
Characteristics of Desktop Applications on
Windows NT. ACM SIGARCH Computer
Architecture News, 1998, Vol.26, No.3, pp. 27-
38.

[6] ARM Limited. ARM7TDMI Technical Reference
Manual. 2001.

[7] ARM Limited. ARM Instruction Set Quick
Reference Card. 2003.

[8] Donzellini G., Nervi S., Object oriented ARM7
coprocessor. In Proceedings of the Thirty-Frist
Hawaii International Conference, 1998, pp:243-
252.

[9] Da-Chil David Tang, Ann Marie Grizzaffi
Maynard. Contrasting Branch Characteristics
and Branch Predictor Performance of C++ and C
Programs. In Performance, Computing and
Communications Conference, 1999, pp:275-283.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1033-1038)

