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Abstract: Low-Density Parity-Check (LDPC) code is one kind of prominent error correcting codes (ECC) being 
considered in next generation industry standards. The decoder implementation complexity has been the bottleneck 
of its application. This paper presents a new kind of high-throughput and memory efficient LDPC decoder 
architecture. In general, more than fifty percent of memory can be saved over conventional partially parallel 
decoder architectures. It is shown that this presented hardware structure will be highly competent in high 
throughput and low decoding latency applications.  
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1. Introduction 
Error Correction Codes (ECC) is widely applied in 
modern digital communication systems. Turbo codes 
and LDPC codes [1] are the two most popular ECC 
near the Shannon limit. Turbo code is overwhelmed 
by LDPC code in some aspects such as lower error 
floor, less computation requirement and fully parallel 
decoding schemes.  

However, the implementation of LDPC decoder is 
not trivial. To implement it directly in its inherent 
parallel manner may get the highest decoding 
throughput. But for large codeword length (bigger 
than 1K), to avoid routing conflict, the complex 
interconnection will take up more than half of the chip 
area [2]. Serial VLSI architecture or partly parallel 
architecture is well studied nowadays [3] [4] [5] [6], 
which uses RAM to store messages transferred 
between variable nodes (VN) and check nodes (CN). 
Therefore, the huge memory requirement for message 
storage will be a problem. In addition, the low 
throughput or high decoding latency remains the 
major shortcoming of the serial implementation.  

As for the decoding algorithm, the minimum-sum 
algorithm [7] [8] is an approximation of the Sum-
Product algorithm. From the perspective of 
implementation, the Min-Sum algorithm requires less 

computation and estimation of noise power is 
unnecessary for an additive white Gaussian noise 
(AWGN) channel. Furthermore, the Min-Sum 
algorithm can help reducing the message storage 
requirement because the messages transmitted from a 
check node to adjacent variable nodes per iteration 
have only two possible magnitudes. However, this 
advantage is not easy to take in hardware 
implementation. In [5], the authors implemented an 
LDPC decoder utilizing the Min-Sum algorithm. The 
memory requirement reduction is achieved, but the 
hardware is complex, and the decoding latency is 
extremely high. The fully efficient use of Min-Sum 
algorithm in decoding LDPC codes still remains 
unresolved. 

This paper proposes a high-throughput and memory 
efficient LDPC decoder architecture. In Section 2, the 
code construction suited for this kind of architecture is 
briefly introduced. The decoder architecture is 
presented in Section 3. Section 4 gives some results, 
and Section 5 concludes the paper.  
 
2. Code Construction and Decoding 
Algorithm 
LDPC codes can typically be defined by an M×N 
parity check matrix H. The symbol N, represents 
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the length of the block (i.e. the number of bits in 
the codeword), while the symbol M, represents 
the number of parity checks in the code. The rate 
of such a code is thus (N-M)/N. In addition, the 
LDPC code is defined as regular if each row has 
the same number of ‘1’ and each column also has 
the same number of ‘1’. The matrix of a regular 
(N,M) (c,t) shift LDPC code (N=t*P, M=c*P) is 
shown in Fig.1. 
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Fig.1. Parity check matrix of shift LDPC codes 
 

As displayed in Fig.1, the parity check matrix consists 
of c×t sub-blocks, each with a P row and P column 
matrix. Each sub-block is called a cell. In each cell, 
there are P ‘1’s, one in each row, and one in each 
column.  
 

 
Fig.2. An example of the (2,3) parity check matrix 

 
The ‘1’s of sub-matrices are arranged just as the 

example in Fig.2. At first, the ‘1’s in the most left cell 
are arranged randomly. Then for every cell on the 
right side, the ‘1’s are moved up by 1 space. The ‘1’ at 
the top is moved down to the bottom.  

Through extensive simulation, we find the 
performance of shift LDPC code can be comparable to 
the randomly generated codes. In addition, the Quasi-
Cyclic LDPC code is a subset of shift LDPC code. It 
can be converted to shift LDPC form and be applied to 
the architecture described below.  

The typical LDPC decoding algorithm is the sum-
product algorithm which has two phases. In the first 

phase, the variable nodes compute updated 
information which is sent to adjacent check nodes. In 
the second phase, the check nodes compute updated 
information based on the new massages from the 
variable nodes. This update information is then sent 
back to adjacent variable nodes and the process is 
repeated. 

The modified min-sum decoding algorithm is 
similar to the sum-product algorithm, with an 
approximation of check node process. 

In the modified min-sum decoding algorithm, the 
check node processors compute the check-to-variable 
messages Rcv as the following: 

cvvcNn
vcNn

cvcv LLsignR
\)(

\)(

min)(
∈

∈

××= ∏α   (1) 

where α is a scaling factor. Lcv is the variable-to-check 
messages. N(c) denotes the set of variable nodes that 
participate in cth check node.  

The variable processor computes the variable-to-
check messages Lcv as the following: 

v
cvMm
mvcv IRL += ∑

∈ \)(

    (2) 

M(v)\c denotes the set of check nodes connected to 
the variable node v excluding the variable node c. Iv 
denotes the intrinsic message of variable node v. 

 
 

3. Decoder Architecture 
The novel decoder architecture corresponding for shift 
LDPC code is scaled parallel decoder architecture. P 
Variable node Processor Units (VPU) and M Check 
node Processor Units (CPU) are instantiated in the 
decoder.  

Here the decoding schedule is firstly presented. 
Fig.3 illustrates the decoding schedule for a simple 
(12,8) (2,3) parity check matrix. The schedule is in the 
same way for different P, c and t parameters.  

P columns are processed concurrently in one clock 
cycle. The most left P columns are processed first, 
then the right P columns, and so on. In every clock 
cycle, P VPUs get M check to variable messages and 
compute the M variable to check message, so that M 
CPUs get one input each, so every CPU can deal with 
one step of the check node process. The whole check 
node process is divided into t steps. With this 
decoding schedule, it can finish per iteration in t clock 
cycles. It is normally much faster than the traditional 
partly parallel decoder architectures [3]).  
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Fig.3. Decoding schedule  

 
3.1 Overall decoder architecture 

The overall decoder architecture is shown in Fig.4. 
The critical part of this implementation is the shuffle 
network. For random code, the routing complexity 
will be intolerable, while for shift LDPC codes 
introduced above, the shuffle network become really 
simple. The message registers in CPUs are connected 
together as circled shift registers. In every clock cycle, 
each CPU does the computation and gives the result to 
its next CPU neighbor so that every CPU can process 
the message from the same VPU all the time. This will 
be illustrated more clearly later. Then the shuffle 
network can be really simple M*b wires (b is the 
quantized message bits). The transfer of M returning 
messages from CPUs to VPUs is similar to the 
messages from VPUs to CPUs.  

 
Fig.4. Massages keep exchanging between VPU and 

CPU through the shuffle network 
    Fig.5 explains why CPU i always compute with the 
messages from VPU X during the whole decoding 
process. By the simple shuffle network, CPU i is 

connected with VPU X. At the first clock cycle of one 
iteration, having received the message from VPU X, 
CPU i performs one step of the check node process, 
and stores the value corresponding to row i in CPU 
i+1. Meanwhile, CPU i receives the result of CPU i-1, 
which is the current value corresponding to row i-1. In 
the next cycle, CPU i still receives message from VPU 
X, so the input message and the intermediate result in 
CPU i are both for row i-1, now it can continue to 
perform next step of the check process of row i-1. And, 
CPU i+1 is performing the check process of row i. 
Continue such process cell by cell until the whole 
iteration is finished.  

For variable node process, VPU X should receive 
input message in sequence from row i, i-1, i-2…. So 
the registers storing result of the last iteration are also 
shifted to ease the connection between VPU and these 
registers. 
 

 
Fig.5. shift the result of check node process  

 
In the following, the architecture of check node 
processor applying the Min-Sum algorithm will be 
introduced. As an example, a (8192, 7168) (4, 32) 
regular LDPC code similar to a code mentioned in [9] 
is chosen.  
 
3.2 Architecture of Check Processor Unit 

First of all, Fig.6 shows the memory management. 
There are three groups of registers: old registers, new 
registers, and sign registers. This is similar to the 
method used in [4] in that this method can greatly 
reduce the message memory requirement. The old 
register group contains the result of the last iteration. 
The new register group contains the values of the 
current iteration. They are both being shifted all the 
time to ensure that every CPU is receiving message 
from and delivering to the same VPU. After each 
iteration, the new reg i contains the min, 2nd-min, 
index and the xor of all the signs of row i-31(mod P), 
as explained above. These values are transferred to the 
old register group to provide messages from check 
nodes to variable nodes in the next iteration. The sign 
register group contains 32 message signs of the 
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variable to check messages, and they are not shifting 
between each other. In every clock cycle, each sign 
register shifts in a sign bit of the variable to check 
message and shifts out a sign bit of a check to variable 
message (has to do xor with the sign bit in current old 
reg to gain it). Remember that they are always for the 
same VPU, so they do not need to be shifted between 
each other. 

 

 
 

Fig.6. Register management in CPUs 
 

Fig.7~9 shows the architecture of CPU. Because its 
input consists of only one message, the computation in 
this CPU is of extremely low complexity compared to 
other architectures.  

Part 1 is the check computation part. The work it 
does is to compare the magnitude of input with the 
minimum and 2nd minimum value from the last 
neighbor, and to update the sign and index. Then the 
updated results are saved in reg_new to transfer to its 
next neighbor. 

Part 2 is the check to variable message output part. 
The work it does is to select the proper message 
magnitude according to the index value, and compute 
the sign of the message by xor of the sign bit in 
reg_old and the bit popped out from part3. Then the 
updated results are stored in reg_old to transfer to its 
next neighbor. 

Part 3 is a 32bit FIFO. It receives a sign of input 
message and pops out a sign to part 2 each clock cycle. 

 
 

 
FIG.7. Part 1 of the check node processor 

 
 

 FIG.8. Part 2 of the check node processor 
 
 
 

 
FIG.9. Part 3 of the check node processor 
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3.3 Architecture of VPU 
The architecture of our variable processor unit is the 
same with others [2] [3]. An extra small memory is 
embedded in every VPU to store the channel 
information. Fig.10 shows the architecture.  
 

 FIG.10. Architecture of the variable node processor 
 
 
4. Results 
Here gives some analysis on the decoding speed and 
the throughput of the proposed architecture. For a 
code with codeword length N, maximum iteration 
times I, clock frequency f, a maximum throughput of 
f*N/(t*I) can be achieved, 1/t of the fully parallel 
decoder in math. The decoding latency is (t*I/f). Due 
to the significantly reduced data path length in CPU 
and the simplified interconnection complexity, the 
proposed decoder should be able to run with a much 
faster clock. In addition, with the large N it can bear, 
very high throughput and small decoding latency can 
be achieved. Compared with a fully parallel 
architecture, our decoder keeps the excellence in 
throughput and decoding delay, and totally eliminates 
the routing problem for large code length. Note that 
the wires between shift registers are locally routed and 
will not induce routing problems.  

In addition, because of the efficient use of Min-Sum 
decoding algorithm, the memory requirement is 
greatly reduced in this architecture. For the (4, 32) 
regular code mentioned above, assuming a four bits 
quantization method, the traditional architecture will 
need to store 8176*4*4 = 130816 bits in total for the 
exchanging messages. Applying the architecture 
presented in this paper, it only need to store 
(12*2+32)*1024 = 57344 bits in total. It saves more 
than half of the message memory needed. And for a 
more precise quantization method, such as six bits 
quantization, more memories can be saved. Note that 

the message memory usually occupies more than 70% 
of the decoder area.   

More recently, a decoder for the (8192, 7168) (4, 32) 
regular QC-LDPC code is implemented. The 
technology that has been used for implementation is a 
0.18um CMOS process with 6 metal layers. The area 
is 4mm×4mm with 70% logic utilization. The 
maximum clock frequency of the decoder is 200MHz 
and decoder achieves a throughput of 2.4Gbit/sec 
(with 20 iteration times). As a comparison with other 
high throughput LDPC decoders, in [2], a 1024-bit 
irregular LDPC decoder with 4-bit message passing is 
described which has a die size of 52.5mm2 and 
operates at 64MHz and has a throughput of 1 Gbit/sec 
(with 64 iteration times).  

Fig.11 shows the floorplan of the decoder. The 
CPU array located in the center of the chip is specially 
planed. The 1024 CPUs are aligned with 31 CPUs per 
row. Hence, most of the wires connecting between 
new_regs, between old_regs and between old_reg and 
new_reg are locally routed.  

In a word, the proposed decoder architecture are 
very competent in dealing with hardware complexity, 
throughput and decoding latency.  

 
FIG.11. Floorplan of the 8192-bit LDPC decoder 

 
 

5. Conclusions 
As many research groups have discovered in the last 
couple years, several different VLSI architectures can 
be applied to the design of LDPC decoders. This 
paper has presented a new kind of high-throughput, 
memory efficient LDPC decoder architecture. The 
code ensemble which is compatible with this kind of 
architecture, called Shift-LDPC, has insignificant 
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error-correcting performance degradation compared 
with the codes randomly generated. The key is to save 
the massage memory requirement by efficiently 
applying the min-sum decoding algorithm and to 
reduce the routing complexity by adding some local 
communications between check node processors. By 
applying this novel decoder architecture, more than 
fifty percent of memory can be saved and throughput 
in excess of 2Gbps can be achieved. This proposed 
hardware structure will be highly competent in high 
throughput, low decoding latency applications.  
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