
High-Throughput and Memory Efficient LDPC Decoder Architecture

JIN SHA, MINGLUN GAO, ZHONGJIN ZHANG,LI LI

Institute of VLSI design
Key Laboratory of Advanced Photonic and Electronic Materials

Nanjing University
Nanjing, China, 210093

ZHONGFENG WANG

School of EECS
Oregon State University

Corvallis, OR 97331-5501,USA

Abstract: Low-Density Parity-Check (LDPC) code is one kind of prominent error correcting codes (ECC) being
considered in next generation industry standards. The decoder implementation complexity has been the bottleneck
of its application. This paper presents a new kind of high-throughput and memory efficient LDPC decoder
architecture. In general, more than fifty percent of memory can be saved over conventional partially parallel
decoder architectures. It is shown that this presented hardware structure will be highly competent in high
throughput and low decoding latency applications.

Key-Words: - Low-density parity-check (LDPC) codes, VLSI architecture, decoder, shift LDPC

1. Introduction
Error Correction Codes (ECC) is widely applied in
modern digital communication systems. Turbo codes
and LDPC codes [1] are the two most popular ECC
near the Shannon limit. Turbo code is overwhelmed
by LDPC code in some aspects such as lower error
floor, less computation requirement and fully parallel
decoding schemes.

However, the implementation of LDPC decoder is
not trivial. To implement it directly in its inherent
parallel manner may get the highest decoding
throughput. But for large codeword length (bigger
than 1K), to avoid routing conflict, the complex
interconnection will take up more than half of the chip
area [2]. Serial VLSI architecture or partly parallel
architecture is well studied nowadays [3] [4] [5] [6],
which uses RAM to store messages transferred
between variable nodes (VN) and check nodes (CN).
Therefore, the huge memory requirement for message
storage will be a problem. In addition, the low
throughput or high decoding latency remains the
major shortcoming of the serial implementation.

As for the decoding algorithm, the minimum-sum
algorithm [7] [8] is an approximation of the Sum-
Product algorithm. From the perspective of
implementation, the Min-Sum algorithm requires less

computation and estimation of noise power is
unnecessary for an additive white Gaussian noise
(AWGN) channel. Furthermore, the Min-Sum
algorithm can help reducing the message storage
requirement because the messages transmitted from a
check node to adjacent variable nodes per iteration
have only two possible magnitudes. However, this
advantage is not easy to take in hardware
implementation. In [5], the authors implemented an
LDPC decoder utilizing the Min-Sum algorithm. The
memory requirement reduction is achieved, but the
hardware is complex, and the decoding latency is
extremely high. The fully efficient use of Min-Sum
algorithm in decoding LDPC codes still remains
unresolved.

This paper proposes a high-throughput and memory
efficient LDPC decoder architecture. In Section 2, the
code construction suited for this kind of architecture is
briefly introduced. The decoder architecture is
presented in Section 3. Section 4 gives some results,
and Section 5 concludes the paper.

2. Code Construction and Decoding
Algorithm
LDPC codes can typically be defined by an M×N
parity check matrix H. The symbol N, represents

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp224-229)

the length of the block (i.e. the number of bits in
the codeword), while the symbol M, represents
the number of parity checks in the code. The rate
of such a code is thus (N-M)/N. In addition, the
LDPC code is defined as regular if each row has
the same number of ‘1’ and each column also has
the same number of ‘1’. The matrix of a regular
(N,M) (c,t) shift LDPC code (N=t*P, M=c*P) is
shown in Fig.1.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ctcc

t

t

HHH

HHH
HHH

H

L

LOLL

L

L

21

22221

11211

Fig.1. Parity check matrix of shift LDPC codes

As displayed in Fig.1, the parity check matrix consists
of c×t sub-blocks, each with a P row and P column
matrix. Each sub-block is called a cell. In each cell,
there are P ‘1’s, one in each row, and one in each
column.

Fig.2. An example of the (2,3) parity check matrix

The ‘1’s of sub-matrices are arranged just as the

example in Fig.2. At first, the ‘1’s in the most left cell
are arranged randomly. Then for every cell on the
right side, the ‘1’s are moved up by 1 space. The ‘1’ at
the top is moved down to the bottom.

Through extensive simulation, we find the
performance of shift LDPC code can be comparable to
the randomly generated codes. In addition, the Quasi-
Cyclic LDPC code is a subset of shift LDPC code. It
can be converted to shift LDPC form and be applied to
the architecture described below.

The typical LDPC decoding algorithm is the sum-
product algorithm which has two phases. In the first

phase, the variable nodes compute updated
information which is sent to adjacent check nodes. In
the second phase, the check nodes compute updated
information based on the new massages from the
variable nodes. This update information is then sent
back to adjacent variable nodes and the process is
repeated.

The modified min-sum decoding algorithm is
similar to the sum-product algorithm, with an
approximation of check node process.

In the modified min-sum decoding algorithm, the
check node processors compute the check-to-variable
messages Rcv as the following:

cvvcNn
vcNn

cvcv LLsignR
\)(

\)(

min)(
∈

∈

××= ∏α (1)

where α is a scaling factor. Lcv is the variable-to-check
messages. N(c) denotes the set of variable nodes that
participate in cth check node.

The variable processor computes the variable-to-
check messages Lcv as the following:

v
cvMm
mvcv IRL += ∑

∈ \)(

 (2)

M(v)\c denotes the set of check nodes connected to
the variable node v excluding the variable node c. Iv
denotes the intrinsic message of variable node v.

3. Decoder Architecture
The novel decoder architecture corresponding for shift
LDPC code is scaled parallel decoder architecture. P
Variable node Processor Units (VPU) and M Check
node Processor Units (CPU) are instantiated in the
decoder.

Here the decoding schedule is firstly presented.
Fig.3 illustrates the decoding schedule for a simple
(12,8) (2,3) parity check matrix. The schedule is in the
same way for different P, c and t parameters.

P columns are processed concurrently in one clock
cycle. The most left P columns are processed first,
then the right P columns, and so on. In every clock
cycle, P VPUs get M check to variable messages and
compute the M variable to check message, so that M
CPUs get one input each, so every CPU can deal with
one step of the check node process. The whole check
node process is divided into t steps. With this
decoding schedule, it can finish per iteration in t clock
cycles. It is normally much faster than the traditional
partly parallel decoder architectures [3]).

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp224-229)

Fig.3. Decoding schedule

3.1 Overall decoder architecture

The overall decoder architecture is shown in Fig.4.
The critical part of this implementation is the shuffle
network. For random code, the routing complexity
will be intolerable, while for shift LDPC codes
introduced above, the shuffle network become really
simple. The message registers in CPUs are connected
together as circled shift registers. In every clock cycle,
each CPU does the computation and gives the result to
its next CPU neighbor so that every CPU can process
the message from the same VPU all the time. This will
be illustrated more clearly later. Then the shuffle
network can be really simple M*b wires (b is the
quantized message bits). The transfer of M returning
messages from CPUs to VPUs is similar to the
messages from VPUs to CPUs.

Fig.4. Massages keep exchanging between VPU and

CPU through the shuffle network
 Fig.5 explains why CPU i always compute with the
messages from VPU X during the whole decoding
process. By the simple shuffle network, CPU i is

connected with VPU X. At the first clock cycle of one
iteration, having received the message from VPU X,
CPU i performs one step of the check node process,
and stores the value corresponding to row i in CPU
i+1. Meanwhile, CPU i receives the result of CPU i-1,
which is the current value corresponding to row i-1. In
the next cycle, CPU i still receives message from VPU
X, so the input message and the intermediate result in
CPU i are both for row i-1, now it can continue to
perform next step of the check process of row i-1. And,
CPU i+1 is performing the check process of row i.
Continue such process cell by cell until the whole
iteration is finished.

For variable node process, VPU X should receive
input message in sequence from row i, i-1, i-2…. So
the registers storing result of the last iteration are also
shifted to ease the connection between VPU and these
registers.

Fig.5. shift the result of check node process

In the following, the architecture of check node
processor applying the Min-Sum algorithm will be
introduced. As an example, a (8192, 7168) (4, 32)
regular LDPC code similar to a code mentioned in [9]
is chosen.

3.2 Architecture of Check Processor Unit

First of all, Fig.6 shows the memory management.
There are three groups of registers: old registers, new
registers, and sign registers. This is similar to the
method used in [4] in that this method can greatly
reduce the message memory requirement. The old
register group contains the result of the last iteration.
The new register group contains the values of the
current iteration. They are both being shifted all the
time to ensure that every CPU is receiving message
from and delivering to the same VPU. After each
iteration, the new reg i contains the min, 2nd-min,
index and the xor of all the signs of row i-31(mod P),
as explained above. These values are transferred to the
old register group to provide messages from check
nodes to variable nodes in the next iteration. The sign
register group contains 32 message signs of the

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp224-229)

variable to check messages, and they are not shifting
between each other. In every clock cycle, each sign
register shifts in a sign bit of the variable to check
message and shifts out a sign bit of a check to variable
message (has to do xor with the sign bit in current old
reg to gain it). Remember that they are always for the
same VPU, so they do not need to be shifted between
each other.

Fig.6. Register management in CPUs

Fig.7~9 shows the architecture of CPU. Because its
input consists of only one message, the computation in
this CPU is of extremely low complexity compared to
other architectures.

Part 1 is the check computation part. The work it
does is to compare the magnitude of input with the
minimum and 2nd minimum value from the last
neighbor, and to update the sign and index. Then the
updated results are saved in reg_new to transfer to its
next neighbor.

Part 2 is the check to variable message output part.
The work it does is to select the proper message
magnitude according to the index value, and compute
the sign of the message by xor of the sign bit in
reg_old and the bit popped out from part3. Then the
updated results are stored in reg_old to transfer to its
next neighbor.

Part 3 is a 32bit FIFO. It receives a sign of input
message and pops out a sign to part 2 each clock cycle.

FIG.7. Part 1 of the check node processor

 FIG.8. Part 2 of the check node processor

FIG.9. Part 3 of the check node processor

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp224-229)

3.3 Architecture of VPU
The architecture of our variable processor unit is the
same with others [2] [3]. An extra small memory is
embedded in every VPU to store the channel
information. Fig.10 shows the architecture.

 FIG.10. Architecture of the variable node processor

4. Results
Here gives some analysis on the decoding speed and
the throughput of the proposed architecture. For a
code with codeword length N, maximum iteration
times I, clock frequency f, a maximum throughput of
f*N/(t*I) can be achieved, 1/t of the fully parallel
decoder in math. The decoding latency is (t*I/f). Due
to the significantly reduced data path length in CPU
and the simplified interconnection complexity, the
proposed decoder should be able to run with a much
faster clock. In addition, with the large N it can bear,
very high throughput and small decoding latency can
be achieved. Compared with a fully parallel
architecture, our decoder keeps the excellence in
throughput and decoding delay, and totally eliminates
the routing problem for large code length. Note that
the wires between shift registers are locally routed and
will not induce routing problems.

In addition, because of the efficient use of Min-Sum
decoding algorithm, the memory requirement is
greatly reduced in this architecture. For the (4, 32)
regular code mentioned above, assuming a four bits
quantization method, the traditional architecture will
need to store 8176*4*4 = 130816 bits in total for the
exchanging messages. Applying the architecture
presented in this paper, it only need to store
(12*2+32)*1024 = 57344 bits in total. It saves more
than half of the message memory needed. And for a
more precise quantization method, such as six bits
quantization, more memories can be saved. Note that

the message memory usually occupies more than 70%
of the decoder area.

More recently, a decoder for the (8192, 7168) (4, 32)
regular QC-LDPC code is implemented. The
technology that has been used for implementation is a
0.18um CMOS process with 6 metal layers. The area
is 4mm×4mm with 70% logic utilization. The
maximum clock frequency of the decoder is 200MHz
and decoder achieves a throughput of 2.4Gbit/sec
(with 20 iteration times). As a comparison with other
high throughput LDPC decoders, in [2], a 1024-bit
irregular LDPC decoder with 4-bit message passing is
described which has a die size of 52.5mm2 and
operates at 64MHz and has a throughput of 1 Gbit/sec
(with 64 iteration times).

Fig.11 shows the floorplan of the decoder. The
CPU array located in the center of the chip is specially
planed. The 1024 CPUs are aligned with 31 CPUs per
row. Hence, most of the wires connecting between
new_regs, between old_regs and between old_reg and
new_reg are locally routed.

In a word, the proposed decoder architecture are
very competent in dealing with hardware complexity,
throughput and decoding latency.

FIG.11. Floorplan of the 8192-bit LDPC decoder

5. Conclusions
As many research groups have discovered in the last
couple years, several different VLSI architectures can
be applied to the design of LDPC decoders. This
paper has presented a new kind of high-throughput,
memory efficient LDPC decoder architecture. The
code ensemble which is compatible with this kind of
architecture, called Shift-LDPC, has insignificant

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp224-229)

error-correcting performance degradation compared
with the codes randomly generated. The key is to save
the massage memory requirement by efficiently
applying the min-sum decoding algorithm and to
reduce the routing complexity by adding some local
communications between check node processors. By
applying this novel decoder architecture, more than
fifty percent of memory can be saved and throughput
in excess of 2Gbps can be achieved. This proposed
hardware structure will be highly competent in high
throughput, low decoding latency applications.

6. Acknowledgments
The work presented in this paper was supported by the
Foundation of High-Tech of Jiangsu Province of
China under Grant No.BG2005030; the National
Nature Science Foundation of China under Grant
No.90307011.

References:
[1] R. G. Gallager, “Low density parity check codes,”
IRE Trans. Info. Theory, vol. IT-8, pp. 21-28, 1962.
[2] A. J. Blanksby and C. J. Howland, “A 690-mW 1-

Gbps 1024-b, Rate-1/2 Low-Density Parity-Check
Code Decoder,” IEEE Journal of Solid-State
Circuits, vol. 37, pp. 404-412, 2002

[3] T. Zhang, “Efficient VLSI Architectures for Error-
Correcting Coding,” Ph.D. Thesis, Univ. of
Minnesota, 2002.

[4] M. Cocco, J. Dielissen, M. Heijligers, A. Hekstra,
and H. Huisken, “A Scalable Architecture for
LDPC Decoding,” in Proc. of the Design,
Automation and Test in Europe Conference and
Exhibition Designers’ Forum (DATE’04). vol. 3,
pp. 88-93, Feb. 2004.

[5] M. M. Mansour and N. R. Shanbhag, “Low-Power
VLSI Decoder Architectures for LDPC Codes,” in
Proc. ISLPED’02, pp. 284-289, 2002.

[6] Z. Wang and Q. Jia, “Low Complexity, High
Speed Decoder Architecture for Quasi-Cyclic
LDPC Codes,” in Proc. ISCAS’05, pp. 5786-5789,
May 2005.

[7] J. Heo, “Analysis of Scaling Soft Information on
Low Density Parity Check Codes,” Elect. Letters,
vol. 39, pp. 219–221, Jan. 2003.

[8] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C.
Fossorier, and H. Xiao-Yu, “Reduced-Complexity
Decoding of LDPC Codes,” IEEE Transactions on
Communications, vol. 53, pp. 1288-1299, Aug.
2005.

[9] L. Chen, J. Xu, I. Djurdjevic and S. Lin, “Near-
Shannon-Limit Quasi-Cyclic Low-Density Parity-
Check Codes,” IEEE Transactions on
Communications, vol. 52, pp. 1038-1042, Jul. 2004.

[10] F. Guilloud, “Generic Architecture for LDPC
codes Decoding,” Ph.D. Thesis. 2004.
Http://pastel.paristech.org/archive/00000806/01/the
se.pdf.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp224-229)

