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Abstract

In this note we shall propose a simple, effective algorithm to establish a differential theory for digital curves in
the 3D Euclidean space. First, we shall follow the ideas in Chen, Chi and Wu to define the derivative of a
function or a vector field along a digital curve by the weighted combination method. Then, we shall define the
curvature, torsion and the moving frame of a digital curve. The Frenet formulas will also be discussed. Our
approach is conceptually simple and natural. Moreover, the results are also very accurate.
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1. Introduction

A digital curve ¢ in the 3D Euclidean space R® is
an ordered set of points C={p, eR*:i=12,--k}.
The digital curves can be obtained by the
dicretization of regular curves or from digital images.
To understand the geometric and differential
properties of the digital curves is an important objects
in CAD or CAGD. Especially, the curvature or the
torsion of a regular curve ¢ in the 3D Euclidean
space are important differential invariants in the
theory of space curves and its applications. These
curvatures are determined by the differential of the
tangent vectors and the normal and binormal vectors
of the curve c.

In this note we shall introduce a simple, effective
algorithm to establish a differential theory for digital
curves in the 3D Euclidean space. We shall follow
the ideas in Chen, Chi and Wu [3] to define the
derivative of a function or a vector along a digital
curve by the weighted combination method. We shall
use the centroid weights in our method. These
weights are first proposed in Chen and Wu [1] to
improve Taubin’s method for the estimation of
curvatures on a triangular mesh in the 3D Euclidean
space. Then, we shall apply this method and discuss
the moving frame of a digital curve and their Frenet
formulas. The method fits perfectly with the proposal
given in Rosenfeld and Klette [5] about the field of
digital geometry.

Usually, the accurate estimation of curvatures at
vertices of a digital curve plays as the first step for
many applications such as simplification, smoothing,

subdivision, visualization and image processing, etc.
Our estimation is simple and very accurate as we
illustrate them in the computational results.

2. The local theory for regular curves

In this section we recall some basic notions and
results about the local theory of smooth regular
curve in in the 3D Euclidean space. See do Carmo
[4] for details. Consider a smooth regular curve
c(s) = (x(s), y(s),z(s)), s e[0,I]with arc length
parameter S. The tangent vector
c'(s) =(x'(s), y'(s),z'(s)), denoted by P(s), is a
unit vector since s is the arc length parameter. The
number P (s) =«(s) is called the curvature of ¢

ats. Atuoointg where x(s) # 0, a unit vector ﬁ(s)
in the direction P‘(s) is well-defined by the
equation F‘(s)zzc(s)ﬁ)(s) . Since the tangent
vector P(s) is a unit vector for all s<[0,1], r?(s)
is normal to F(s) . Because by differentiating
Bis)-fs)=1, we have £(s)-Ris)=0, Rs) is
normal to P(s) and is called the normal vector of
cat s.

The plane determined by the unit tangent and
normal vectors, ﬁ(s) and t(s) , is called the
osculating plane of c at s. At points where x(s) =0,

the normal vector and hence the osculating plane are
not defined. In what follows, we shall restrict
ourselves to curves parametrized by arc length with
x(s) #0 forall s<[0,1].



. 4 .

The unit vector b(s) = f’(s) X rﬁ’(s) is normal to the
osculating plane and will be called the binoprmal
vector of ¢ at ss. Since the binormal vector b(s),

P
the number Hb‘(s)” measures the rate of change of

the neighboring osculating planes of ccat s. That s,
P .
Hb‘ (s)” measures how rapidly the curves pulled away
from the osculating plane of c at s in a neighborhood
of s. From the equation
b'(s) =t(s)xRs)+E(s) xR (s)
_fis) xR s),
we know that 6}'(5) is normal to {)(s) . It follows that
g’(s) is parallel to A(s) , and we can write
b'(s) = 2(s)R(s)
for some number z(s). This number z(s) is called
the torsion of the curve ¢ at s. Since the normal
vector 1i(s) can be written as rﬁ)(s) = t;)(s) xf) (s), we
have
R(s) =b'(s) >[<DP(S)+E)J(S)><P‘(S)
——2(s)b(s) - x(s)E(s).
Therefore we have the Frenet formulas:
@ P =xsh),
R (s) = —(s)b\ P
) (s) =—z(s)b(s) — x(s)t(s),
IJ
@  b(s)=r(s)(s),
The Frenet formulas forms a system of ordinary
differential equations for the vectors f}(s), n(s) and
El(s). Thus the existence and uniqueness theorems

for a system of ordinary differential equations
quarantee that given smooth functions x(s) >0 and

7(s), s e[0,1], there exists a regular parametrized
curve c(s) with arc length s so that x(s) is the
curvature of ¢ at s and z(s) the torsion of ¢ at s.
Moreover, the regular parametrized curve c(s) with
arc length s is unique up to rigid motion.

When the paprameter of a regular curve c(t) is not
arc length, the curvature x(t) and the torsion z(t) of
the curve c(t) att can also be computed by

[HORTHQ|
O ="
T el
4) .
) = (c'(t) xc"(t))- C'z"(t)
le' () xc" )]
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3. Our discrete differential theory for
digital curves

In this section we shall propose an algorithm to
develop a discrete, differential theory for a digital
curve. Recall that a digital curve ¢ in the 3D
Euclidean space is an ordered set of points
C={p, eR’:i=12,-,k}. To define the tangent
vector t} and the normal vector ﬁ’, and the binormal

vector H of the digital curve C atthe point p, isthe
first step to develop the geometric theory for digital
curves. To handle this, we need to formulate the
concept of the derivative of a function or a vector
field defined on a digital curve C . Our idea is to use
the weighted combination method as employed in
Chen, Wu [1,2] and Chen, Chi and Wu[3].

Consider a point p, in the digital curve C . We can
define the tangent vector F of C at the point p, by

p p. -1 a) pi+l - pi )

p_ N A L)
p p. -1 pi+l B pi

o= b pus - b

where @, and ®, are nonnegative weights with
Now the normal vector A can be

computed as follows O First we compute the
derivative t} of the tangent field f,) of C at the point

p; by
- w t) {J—l E+1 _{i)
. ” Pi — B 1” | P — B " .
Note that the vector f,) may not be normal to the
tangent vector t} . Hence we can define the curvature

k; and the normal vector ﬁ’, of the digital curve C at
P, by
a = -& -DF

({’ ({’ £)f)-
=D

Now the binormal vector bi of the digital curve C at

o +w,=1.

p, can be defined by 6,} =f:xrﬁ)i . Next, we consider
the torsion z; of the digital curve C at p, via the

_ . A
derivative of the binormal vector field b, . We have

P BJ 6:1 6:+1_6:

b =0 —
e - p.lll Ipm—pill




and the torsion z;, can be defined by 7, = E rﬁ’, The

discrete version of the Frenet formulas will then have
the formO

) t) zallt)-"-’(iﬁi’

(6) R = a21€ + azzﬁi + azs& J

(7 6.} = a31ti) + Tilﬁ)i + a33BJi .

where the coefficients a; may not be zero when

compared with the Frenet formula. This is due to the
digital effect of the digital curve C .

From these discussions, we can define the
derivative of a function f or a vector field V on a
digital curve C by

Fp) = TP, F(P) = T(P)

f'(p)=
(p) =0, ||pi_pi—1|| ||pi+1_pi||
V'(p.):a)V(pi)_V(pH)-i-a) V(piﬂ)—V(pi)
| l ||pi - pi—l” ’ ” Piii — P ”

Indeed, when we know how to differentiate functions
and vector fields on a digital curve C , we can
develop a differential theory on C .

From the experience given in Chen, Wu [1,2]and
Chen, Chi and Wu[3], We shall use the centroid
weights for the weights @, and @,. Namely, for the

digital curve C ={p, e R*:i=1.2,---,k}, we have at
the point p,

B
@ = ||pi - pH”Z
1 1 1
( o+ 7)
||pi - pi—l” ” pi+1 - pi "
1
. = ||pi+l - pi”2
2 1 1
( o+ 7)
pi - pi—l pi+1 - pi
|| I ||

4. Computational results
In this section, we will find the Frenet matrix of helix
curves :

s . sb

c(t) =(acos—,asin—,—)

c cc
where a,b are positive number in R and
c=+a*+b’® . and Bezier curves by our discrete
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differential method. The Frenet matrix of our method
isa 3x 3 matrix forms as:

a, a 0
F= a, a, ay

11 12
a'31 a32 a33

where a; is defined by equations (5), (6) and (7).
We will compare the error between the exact Frenet
matrix and our results by
IRF—F

I RF ]
where RF is the exact Frenet matrix in differential
geometry and || is the norm of matrix. We digitize
the curves by different kinds of partitions. Then
compute all error of Frenet matrices and observe their

average. When we test the helix, we chose 1,000
random values a,b for each kind of partition. In

Bezier curves, we test 1,000 random Bezier curves
(with different control points) for each partition.

Error =

In figure 1, we digital the helix curves by uniform
partition and chose the values a, b by random positive

number between (0,10] and without any noisy. In

this figure, the estimations are very close to the
exactly Frenet matrix. In figure 2, we observe the
effect of noisy. Although these results didn’t
converge to the exactly values, but this method is still
relatively stability.

Because any curves could be approximated by the
Bezier curves, locally. In figure 3, we test the Bezier

curve with control points b =[-55]cR® and
degree ne{2,3,4,5}. And we show the results of

Bezier curves when its degree is more than 10 in
figure 4. From this figure, our method is still
relatively stable even for curves with higher degrees.
Finally, we show the standard derivations and
variations of these results. From these results, we
come to a conclusion that the discrete differential
method is a relatively stable estimation method to
find the Frenet matrix and hence the curvatures and
torsions.
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Fig 2. Helix curves with noisy
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high degree Bezier curves

Fig 4. Bezier curves of high degree (more than 10)

0.16
0.14
0.12 HUReAA e saraoih s At
0.1
<)
£ 008 -
@ — noisy 0%
0.06 — noisy more than 50%
0.04
0.02
O T T
1110 1820 2530 3240 3950 4660 5370 6080 6790 7500 8210 8920 9630
number ofpoints
— noi 0
003 Bezier curves :odmv\os
— noisy 1%
1l 0,
0.025 ,f noisy 2%
\ noisy 3%
bt A R H R A AT :
0.02 — noisy 4%
fi;i s " ~ noisy 5%
S 0015 [ bbbt bttt b e — noisy 6%
by ) rotson — noisy 7%
0.01 noisy 8%
0.005
0
1 59 117 175 233 291 349 407 465 523 581 639 697 755 813 871 929 987

number of points

Fig 3. Bezier curves with noisy



