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Abstract 
    In this note we shall propose a simple, effective algorithm to establish a differential theory for digital curves in 
the 3D Euclidean space. First, we shall follow the ideas in Chen, Chi and Wu to define the derivative of a 
function or a vector field along a digital curve by the weighted combination method. Then, we shall define the 
curvature, torsion and the moving frame of a digital curve. The Frenet formulas will also be discussed. Our 
approach is conceptually simple and natural. Moreover, the results are also very accurate.   
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1. Introduction 

 
A digital curve c  in the 3D Euclidean space 3R  is 

an ordered set of points },,2,1:{ 3 kiRpC i ⋅⋅⋅=∈= . 
The digital curves can be obtained by the 
dicretization of regular curves or from digital images.  
To understand the geometric and differential 
properties of the digital curves is an important objects 
in CAD or CAGD. Especially, the curvature or the 
torsion of a regular curve c  in the 3D Euclidean 
space are important differential invariants in the 
theory of space curves and its applications. These 
curvatures are determined by the differential of the 
tangent vectors and the normal and binormal vectors 
of the curve c .  

 
    In this note we shall introduce a simple, effective 
algorithm to establish a differential theory for digital 
curves in the 3D Euclidean space. We shall follow 
the ideas in  Chen, Chi and Wu [3] to define the 
derivative of a function or a vector along a digital 
curve by the weighted combination method. We shall 
use the centroid weights in our method. These 
weights are first proposed in Chen and Wu [1] to 
improve Taubin’s method for the estimation of 
curvatures on a triangular mesh in the 3D Euclidean 
space. Then, we shall apply this method and discuss 
the moving frame of a digital curve and their Frenet 
formulas. The method fits perfectly with the proposal 
given in Rosenfeld and Klette [5] about the field of 
digital geometry. 
 
  Usually, the accurate estimation of curvatures at 
vertices of a digital curve plays as the first step for 
many applications such as simplification, smoothing, 

subdivision, visualization and image processing, etc. 
Our estimation is simple and very accurate as we 
illustrate them in the computational results. 
 
2. The local theory for regular curves  
 

In this section we recall some basic notions and 
results about the local theory of smooth regular 
curve in in the 3D Euclidean space.  See do Carmo 
[4] for details. Consider a smooth regular curve 

))(),(),(()( szsysxsc = , ],0[ ls∈ with arc length 
parameter s. The tangent vector 

))('),('),('()(' szsysxsc = , denoted by )(st
ρ

, is a 
unit vector since s is the arc length parameter. The 
number )()(' sst κ=

ρ
 is called the curvature of c  

at s . At points where 0)( ≠sκ , a unit vector )(snρ  
in the direction )(' st

ρ
 is well-defined by the 

equation )()()(' snsst ρρ
κ= . Since the tangent 

vector )(st
ρ

 is a unit vector for all ],0[ ls∈ , )(snρ  
is normal to )(st

ρ
. Because by differentiating 

1)()( =⋅ stst
ρρ

, we have 0)()( =⋅ snst ρρ
, )(snρ  is 

normal to )(st
ρ

 and is called the normal vector of 
c  at s.  

 
   The plane determined by the unit tangent and 
normal vectors, )(snρ  and )(st

ρ
, is called the 

osculating plane of c at s. At points where 0)( =sκ , 
the normal vector and hence the osculating plane are 
not defined. In what follows, we shall restrict 
ourselves to curves parametrized by arc length with 

0)( ≠sκ  for all ],0[ ls∈ . 
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   The unit vector )()()( snstsb ρρρ
×=  is normal to the 

osculating plane and will be called the binormal 
vector of c  at s s. Since the binormal vector )(sb

ρ
, 

the number )(' sb
ρ

 measures the rate of change of 

the neighboring osculating planes of c cat s . That is, 
)(' sb

ρ
 measures how rapidly the curves pulled away 

from the osculating plane of c at s in a neighborhood 
of s. From the equation 

),(')(
)(')()()(')('

snst
snstsnstsb

ρρ
ρρρρρ

×=
×+×=  

we know that )(' sb
ρ

 is normal to )(st
ρ

. It follows that 
)(' sb

ρ
 is parallel to )(snρ , and we can write  

              )()()(' snssb ρρ
τ=    

for some number )(sτ . This number )(sτ  is called 
the torsion of the curve c  at s . Since the normal 
vector )(snρ can be written as )()()( stsbsn

ρρρ
×= , we 

have 

).()()()(
)(')()()(')('

stssbs
stsbstsbsn

ρρ
ρρρρρ

κτ −−=
×+×=  

Therefore we have the Frenet formulas: 
(1) )()()(' snsst ρρ

κ= ,                             

(2) )()()()()(' stssbssn
ρρρ

κτ −−= ,   
(3) )()()(' snssb ρρ

τ= ,                               
The Frenet formulas forms a system of ordinary 
differential equations for the vectors )(st

ρ
, )(snϖ and 

)(sb
ρ

. Thus the existence and uniqueness theorems 
for a system of ordinary differential equations 
quarantee that given smooth functions 0)( >sκ  and 

)(sτ , ],0[ ls∈ , there exists a regular parametrized 
curve )(sc  with arc length s so that )(sκ  is the 
curvature of c  at s and )(sτ  the torsion of c  at s . 
Moreover, the regular parametrized curve )(sc  with 
arc length s is unique up to rigid motion. 
 
   When the paprameter of a regular curve )(tc  is not 
arc length, the curvature )(tκ  and the torsion )(tτ  of 
the curve )(tc  at t can also be computed by 

(4)  

⎪
⎪
⎪
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3. Our discrete differential theory for 
digital curves 

 
   In this section we shall propose an algorithm to 
develop a discrete, differential theory for a digital 
curve. Recall that a digital curve c  in the 3D 
Euclidean space is an ordered set of points 

},,2,1:{ 3 kiRpC i ⋅⋅⋅=∈= . To define the tangent 
vector it

ρ
 and the normal vector inρ  and the binormal 

vector ib
ρ

 of the digital curve C  at the point ip  is the 
first step to develop the geometric theory for digital 
curves. To handle this, we need to formulate the 
concept of the derivative of a function or a vector 
field defined on a digital curve C . Our idea is to use 
the weighted combination method as employed in 
Chen, Wu [1,2] and Chen, Chi and Wu[3]. 
 
   Consider a point ip  in the digital curve C . We can 
define the tangent vector it

ρ
 of C  at the point ip  by 
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where 1ω  and 2ω  are nonnegative weights with 
121 =+ωω . Now the normal vector inρ  can be 

computed as follows �  First we compute the 
derivative '

it
ρ

of  the tangent field it
ρ

 of C  at the point 

ip  by 
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 Note that the vector '
it
ρ

 may not be normal to the 
tangent vector it

ρ
. Hence we can define the curvature  

iκ  and the normal vector inρ  of the digital curve C  at 

ip  by  

⎪
⎪
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Now the binormal vector ib
ρ

 of the digital curve C  at 

ip  can be defined by  iii ntb ρρρ
×= . Next, we consider 

the torsion iτ  of the digital curve C  at ip  via the 
derivative of the binormal vector field ib

ρ
. We have 
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and the torsion iτ  can be defined by iii nb ρρ
⋅= 'τ .  The 

discrete version of the Frenet formulas will then have 
the form� 
 
(5) iiii ntat ρρρ

κ+= 11
' ,     

(6) iiii banatan
ρρρρ

232221
' ++= ,                     

(7) iiiii bantab
ρρρρ

3331
' ++= τ .                        

where the coefficients ija  may not be zero when 
compared with the Frenet formula. This is due to the 
digital effect of the digital curve C . 
 
   From these discussions, we can define the 
derivative of a function f or a vector field V  on a 
digital curve C  by  
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Indeed, when we know how to differentiate functions 
and vector fields on a digital curve C , we can 
develop a differential theory on C . 
 
  From the experience given in Chen, Wu [1,2]and 
Chen, Chi and Wu[3], We shall use the centroid 
weights for the weights 1ω  and 2ω . Namely, for the 
digital curve },,2,1:{ 3 kiRpC i ⋅⋅⋅=∈= , we have at 
the point ip  
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4. Computational results 
 In this section, we will find the Frenet matrix of helix 
curves : 

),sin,cos()(
c
b

c
sa

c
satc =  

where ba,  are positive number in R and 
22 bac += . and Bezier curves by our discrete 

differential method. The Frenet matrix of our method 
is a 33×  matrix forms as: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

333231

232221

1211 0

aaa
aaa

aa
F  

where ija  is defined by equations (5), (6) and (7). 
We will compare the error between the exact Frenet 
matrix and our results by  

||||
||||

RF
FRFError −

=  

where RF  is the exact Frenet matrix in differential 
geometry and •  is the norm of matrix. We digitize 
the curves by different kinds of partitions. Then 
compute all error of Frenet matrices and observe their 
average. When we test the helix, we chose 1,000 
random values ba, for each kind of partition. In 
Bezier curves, we test 1,000 random Bezier curves 
(with different control points) for each partition. 
 

In figure 1, we digital the helix curves by uniform 
partition and chose the values ba, by random positive 
number between ]10,0(  and without any noisy. In 
this figure, the estimations are very close to the 
exactly Frenet matrix. In figure 2, we observe the 
effect of noisy. Although these results didn’t 
converge to the exactly values, but this method is still 
relatively stability.  

 
Because any curves could be approximated by the 

Bezier curves, locally. In figure 3 , we test the Bezier 
curve with control points 33]5,5[ Rbi ∈−=  and 
degree }5,4,3,2{∈n . And we show the results of 
Bezier curves when its degree is more than 10 in 
figure 4. From this figure, our method is  still 
relatively stable even for curves with higher degrees. 
Finally, we show the standard derivations and 
variations of these results.  From these results, we 
come to a conclusion that the discrete differential 
method is a relatively stable estimation method to 
find the Frenet matrix and hence the curvatures and 
torsions.  
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Table 1. variation of Bezier with different degree. 
 
 
 helix bezier 

 standard 
deviation 

variatio
n 

standard 
deviation variation

noise 0% 2.92966E-
06 

8.6E-1
2 

0.00173019
8 3E-06

noise 1% 0.0002128
96 

4.5E-0
8 

0.00153311
1 2.4E-06

noise 2% 0.0004333
69 

1.9E-0
7 

0.00092698
4 8.6E-07

noise 3% 0.0006392
14 

4.1E-0
7 

0.00138545
4 1.9E-06

noise 4% 0.0007775
3 6E-07 0.00021975

2 4.8E-08

noise 5% 0.0009982
33 1E-06 0.00092991

2 8.6E-07

noise 50% 0.0114910
19 

0.0001
3   

Table 2. the variation and standard deviation of helix 
curves and Bezier curves. 

 
 

 
Fig 1. Helix curves without noisy 

 
Fig 2. Helix curves with noisy 

 

bezier 
degre
e Noise standard 

deviation variation 

noise 0% 0.0017302 2.994E-06less 
than 
5 noise 50% 0.0020139 4.056E-06

noise 0% 0.0045716 2.09E-05More 
than 
10 noise 50% 0.0020624 4.254E-06
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Fig 3. Bezier curves with noisy 

 
Fig 4. Bezier curves of high degree (more than 10) 
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