
A New Method of Building Ontology Using Inheritance

ZHONG MING1, SHUBIN CAI2, SHIXIAN LI2 and XINHONG ZENG1

1 Information Engineering Faculty, Shenzhen University, Shenzhen, 518060, China
2 Computer Science Department, SUN Yat-sen University, 510275, Guangzhou, China

Abstract: Ontology is the explicit representation of domain concept model. It can well express the complicated
relationships between objects. Since formal ontology is the foundation of domain knowledge sharing and
reusing, the formal ontology and associated concepts are stated in this paper. Previously research on ontology
construction is high-cost and time-consuming, a new method of building ontology using inheritance is presented.
The constructive algorithm of ontology inheritance is investigated to make the construction of ontology in an
engineering way and to improve the quality of ontology. The methods to deal with conflicts and inconsistencies
due to multi-inheritance and inheritance with exceptions are proposed.

Key-Words: Ontology, Ontology Building, Ontology Construction, Inheritance

1 Introduction

In the computer science community, more and
more researches on ontology are reported now.
Neches[2] defines ontology as “An ontology defines
the basic terms and relations comprising the
vocabulary of a topic area as well as the rules for
combining terms and relations to define extensions to
the vocabulary”. Gruber gives an more prevalent
definition, i.e. “An ontology is a specification of a
conceptualization.” Ontology is now gaining a
specific role in areas such as Artificial Intelligence,
Computational Linguistics, and Databases. Its
importance has been recognized in fields as diverse
as knowledge engineering, knowledge representation,
qualitative modeling, language engineering, database
design, information integration, object-oriented
analysis, information design.

The accumulated ontologies gives rise to the need
for a suitable engineering method to organize, share
and reuse these ontologies because creating
ontologies is cost and time-consuming. Few
ontologies in DAML Ontology Library share or reuse
the same definition by now. It’s not easy to share or
reuse them. Our approach is to develop an ontology
knowledge base, which focus on the mechanism to
deal with inheritance and maintenance of ontologies.
The inheritance mechanism of this ontology
knowledge base consists of three layer of inheritance,
i.e. the inheritance in attribute and method layer, the
object layer and the ontology layer. As shown in
figure 1.1.

This inheritance mechanism makes it easier for us

to organize, share and reuse ontology and to maintain
the ontology knowledge base.

Section 2 introduces the related work. Some
formal definitions such as ontology, ontology
skeleton, domain model etc will be given in Section 3.
The inheritance graph of ontology will be elaborated
on in section 4. Section 5 introduces the method of
creating ontology using inheritance mechanism.
Some examples are presented in section 6. Finally,
we get some conclusions.
2 Related Work

A genetic approach for building ontology was
presented by R.LU[1]. This methodology uses the
semantic relevance of existing domain models and
domain ontologies, and proposes the possibility of
building ontologies following the view of semantic
match. The basic operations are selection, clone,
mutation, crossover synthesis transgenic. Since the
early 90’s, we took part in the research leaded by
Professor R.LU engaged in a national key project, i.e.,
the Eagle project[12], which is a part of the Jade Bird
project. In this project, we have taken a
knowledge-based approach. This approach is aiming
at automatically generating information systems.
Ontology is a key concept for the knowledge base.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp901-906)

mailto:Mingz@szu.edu.cn
mailto:Caishubin@vip.sina.com
mailto:lnslsx@mail.sysu.edu.cn

Ying Dong and Mingshu Li presented another
method TEMPPLET[2], which combing two words
“template” and “applet” together. Firstly it follows a
“template ontology” of the domain; then fitting
“applet ontology” into the chosen template when
customizing. Thomas R.Gruber suggests a set of
criteria to guide the development of ontologies[3].
Mike Uschold and Martin King introduce their
methodology for building ontologies in [4]. They
envisage a comprehensive methodology for
developing ontologies to include 4 stages, i.e.
Identify Purpose, Building the Ontology, Evaluation
and Documentation.

Our approach is somewhat different from those
approaches mentioned above. We propose a new
method of creating ontology using inheritance. One
of our purposes to develop an ontology knowledge
base is to construct new ontology based on
inheritance mechanism. Thus, the inheritance
mechanism considered not only support inheritance
exception and multi-inheritance, but also have
methods to deal with conflicts and inconsistence
caused by inheritance exception and
multi-inheritance.
3 Formal Definition of Ontology
3.1 Main Idea About Ontology

We start our research based on following ideas[1]:
1. Relations is Independent Knowledge Units.
2. Organize the Objects in Ontology
3. Take Objects as Basic Elements of an Otology.
4. Let Ontology Form Inheritance Hierarchies
5. Allow Ontology to be Nested
Based on above ideas, the formal definitions about

ontology is carefully defined in [1]. We will cites the
most important ones here
3.2 Formal Definition of Ontology

Definition 3.1 Ontology Skeleton
An ontology skeleton (D, P, U, V, H) is a

connected, finitely nested acyclic cybergraph[1],
where the cardinality of U∪V is at least 2. The
descriptors in D are called attributes. The processors
in P are called methods. The simple vertexes in U are
called object skeletons. The complex vertexes in V
are ontology skeletons themselves and the hyperlanes
in H are relations among the simple and complex
vertices.

Definition 3.2 Ontology
If O1=(D1, P1, U1, V1, H1)is an ontology skeleton.

Replace the elements in D1 and P1 by real attributes
and methods such as those in an object. Replace the
ontology skeletons in V1 and H1 by corresponding
ontologies. The result is called an ontology

The ontology we use here is different from other
ontologies. An ontology can have its own inheritance

relationships other than import from other ontology.
Definition 3.3 Acyclic Cybergraph with

relevance Degrees
A Generalized acyclic cybergraph is a sixtuple (D,

P, U, V, H, R), where D, P and U are the same as in
definition 1. H is a set of hyperplane, where each
node of each hyperplane is a simple node or a
compound node. A simple node is an element of
U∪V. A compound node may be an and-node and(S)
or an or-node or(T), where S and T are subsets of
U∪V. An element of V is itself a generalized acyclic
cybergraph.

R is a mapping. It maps each member m of H to a
decimal number ranged from 0 to 1, called relevance
degree of m with respect to this generalized acyclic
cybergraph. Further, it maps each node n of each
member m of H to a decimal number ranged from 0
to 1, called irrelevance degree of n with respect to m.

Each vertex v in an and-node has the relevance
degree 1 with respect to the node it belongs. Each
vertex v in an or-node has the quasi relevance degree
1 with respect to the node it belongs. That means,
none of the vertexes contained in an or-node is
necessary to that node (and to the hyperplane it
belongs). But the set of vertexes in an or-node as a
whole is necessary to that node. If h has the relevance
degree d with respect to some entity E, then v has the
quasi irrelevance degree d with respect to E.

Definition 3.4 Relevance Degree
Denote the relevance degree of x with respect to y

as RD(x,y), the quasi relevance degree of x with
respect to y as QRD(x,y) and the lower bound as LB.
Then we have:

(1) min(RD(x,y)，RD(y,z)) is a LB（RD(x,z)）
(2) The above point is still valid if we replace

RD(x,y)with LB(RD(x,y)) and/or RD(y,z) with
LB(RD(y,z)).

(3) For any x contained in y
RD(x,y)=max{l|l is a LB(RD(x,y))}
(4) Min(QRD(x,y),QRD(y,z)) is a LB(QRD(x,z)).
(5) The point 4 is still valid if we replace QRD(x,y)

with LB(QRD(x,y)) and/or QRD(y,z) with
LB(QRD(y,z)).

(6) The point 4 is still valid if we replace QRD(x,y)
with RD(x,y) or LB(RD(x,y)), or replace QRD(y,z)
with RD(y,z) or LB(RD(y,z)). But not both.

(7) QRD(x,y)=max{l|l is a LB(QRD(x,y))}
(8) In any other case, the relevance degree of x

with respect to y is 0.
(9) RD(x,y)=1 if y is an ancestor of x.
If RD(x,y)=d,(0≤d≤1),then the larger the relevance

degree d is, the more is the relevance. D=1 means x is
necessary for y.

Definition 3.5 Weighted Ontology Skeleton

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp901-906)

A weighted ontology skeleton is a connected,
finitely nested generalized acyclic cybergraph, where
the cardinality of U∪V is at least 2. The descriptors
are attributes. The processors are methods. The
simple nodes are objects and/or object classed. The
compound nodes are weighted ontology skeletons.
And the hyperplanes are the relations among
members of U∪V.
4 Ontology in Inheritance Graph

4.1 Nodes in Inheritance Graph
Based on the formal ontology definition, the

inheritance of ontology is addressed in directive
graph. The nodes are classified into 7 types:

Attributes Node It’s an element of D in Ontology.
Method Node It’s an element of P in Ontology.
Object Node It’s an element of V in Ontology. An

Object Node can have inner and outer structures,
Which indicate its own Attributes and Methods. The
inner attributes and methods are encapsulated. Other
nodes know nothing about them, and descendent
nodes can’t inherit them with exception. The outer
attributes and methods are sensable to others and
descendent nodes may inherit them with exception.

Ontology Node It’s an element of U in Ontology.
An Ontology Node also has inner and outer structures,
and the difference between which is as the same of
Object Nodes.

Relation Node It’s an element of H in Ontology.
An Relation Node have inner structure, which
indicates the cardinality of relations, the name of
relations, the name of entities attached with the
relations, and the constraint of the relations.

And-Node It’s an and-node in Weighted
Ontology.

Or-Node: It’s an or-node in Weighted Ontology.

4.2 Directive Edges in Inheritance Graph
There are 7 kinds of directive edges, IS_A,

IS_NOT_A, HAA (Has_An_Attribute), HAM
(Has_A_Method), HAObj (Has_An_Object), HAOnt
(Has_An_Ontology) and HAR (Has_A_Relation) in
inheritance grahp representing the correspoding
inheritance and containment relationships between
nodes in an ontology. Figure 2.1 to 2.7 is simple
examples of them respectively.

A virtual node represent the define area of a
relation. It has no ownership with others and is of the
same type of the nodes it has the IS_A edge point to.

Edge of relation represent other relations than the
above 7 types of relations between nodes. It has the
same name as the name of the relation node it points
from. Every edge of relation points to virtual object
(ontology) node. Assume there is a relation node R
and have a relation edge point to a virtual object node
VObj, The define area (DA as short) of VObj in R is
consist of all the nodes x that VObj IS_A x and x’s
descendent nodes. In figure 2.8, it represent a relation
R(A,B,C),DA(A)={A’}, DA(B)={B’}and
DA(C)={C’,D}. If DA(A) is not empty, then A is
called valid for relation R, else A is called invalid for
relation R. If all the virtual object (ontology) nodes
that R point to is valid, then relation R is called valid.
Otherwise R is invalid.

As shown in figure 2.9 and 2.10, the representation

of “And-Node” and “Or-Node” is the same as the
representation of relation R above.

Every edge has a weight, which equals to the

Relevance Degree. The weight of an IS_A edge is 1;
weight of all ownership edges from object node is 1.

The Ontology Knowledge Base as a whole
becomes a huge inheritance graph. And we can
investigate the inheritance of ontology, construction
of ontology and maintenance of ontology knowledge
base based on this inheritance graph.

4.3 Inheritance Concepts
In the inheritance graph, we have no copies of

what the ancestor ontologies have as elements in the

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp901-906)

descendent ontology. That is to say, a descendent
ontology node only owns nodes that have different
relations from it and its ancestor ontologies nodes.
We can see Figure 2.11 for example. OntoA has an
attribute A. OntoB IS_A OntoA and has an attribute
B, and implicitily has attribute A from inheritance .

It is very easy to construct a new ontology by

inheritance in the inheritance graph, though it is not
easy to find out what descendent ontology owns since
IS_NOT_A exists. Before showing what the retrieve
algorithm is, here are notions used in inheritance
graph to develop the retrieve algorithm.

Definition 4.1 Inheritance Path
In Inheritance Graph G, a path consisted of IS_A

edges from node x to node y is called an inheritance
path from x to y. We used an order <v1,…,vn> to
represent an inheritance path, and this order is called
an inheritance order.

Definition 4.2 Contradict
Inheritance Graph G contradicts inheritance order

<x1 ， … ， xn > iff there ∃i, such that
IS_NOT_A(x1 ，xi) ∈G(1<i<=n).

The definition of contradict is used to enable the
exception of inheritance.

Definition 4.3 intermediary
In Inheritance Graph G, node y is an intermediary

of inheritance order <x1，…，xi，…，xn〉 iff there
∃i, such that y= xi or G contains a order < x1，…，

xi ，y1，…，ym ，xi+1〉and ∃j, y= yj，1≤j≤m and
1≤i≤n。

Definition 4.4 preclude
Inheritance Graph G preclude orderσ=〈x1，…，

xn 〉 iff ∃y, such that IS_NOT_A(y, xn)，y is an
intermediary of σ.

Definition 4.5 Inheritance Conclusion Set
The inheritance conclusion set of inheritance

graph G C(G) is all the inheritance orders <x,y> and
orders <x，…，y> that are not contradicted or

precluded by G.
Definition 4.6 Ancestors Set
The Ancestors Set of node x is

AS(x)={y|∃<x，…，y>∈ C(G)}；
Definition 4.7 Inheritance Hierarchy
Assume that inheritance order set IOS(x ，

xn)={∀<x，…，xn >∈C(G)} and intermediary set
IS(x，xn)={y|∃σ∈ IOS(x，xn),y is a intermediary
of σ}, the inheritance hierarchy of xn respect to x
IH(xn ， x)=1+Max(IH(y ， x),∀y∈ IS(x ， xn)).
Especially, if there exists no intermediary y, then
IH(xn，x)=1.

Defition 4.8 Inheritance Hierarchy Conflict:
For ∀y1,y2 ， y1,y2∈ AS(x) ， if ∃

IS_NOT_A(y1,y2)，then we call it an inheritance
hierarchy conflict.

The inheritance hierarchy conflict occurs when we
say X IS_A Y and X IS_NOT_A Y both. But what
figure 2.13 shows is not a conflict. Because Y is not
in AS(X). When detecting an inheritance hierarchy
conflict, we delete the one that has a larger IH value
from AS(x) and inform the user of this. If IH values
are equal, we delete one randomly, and warn the user.
After solving the inheritance hierarchy conflict, we
call AS(X) as Modified AS(X).(MAS(X) for short).
Similarly, we defined Modified Descendent Set(X)
as MAS(X),which means the set of descendents of x.

Using definitions above, the algorithm to generate
MAS(x) is implemented, called UpScan algorithm.
Similarly, the algorithm to generate MDS(x) is called
DownScan algorithm.

Definition 4.9 Inheritance Similarity Degree:
If y1 and y2 are nodes that x inherit from its

ancestor nodes. If y2 in MAS(y1) and y1 inherit y2
without exception then ISD(y1,y2)="contain" (or
"contained_by" in reverse. Otherwise, ISD(y1,y2)=
(2*number of the same nodes x inherit from y1 and
y2) / (number of nodes x inherit from y1+number of
nodes x inherit from y2)*100%.

If ISD(y1,y2)= "contain" or "contained_by", nodes
y1 and y2 will be merged automatically. The merging
opeation is done as:.

Set up a new node y3
Link IS_A edges from y3 to y1 and y2
Link the same type of edge as that from x to y1

from x to y3
RD(y3,x)=Max(RD(y1,x),RD(y2,x).
RD(y1,x)=RD(y2,x)=0
4.4 Inheritance of Attribute and Method
The inheritance mechanism of ontology consists of

three parts, inheritance of ontology, inheritance of
object and inheritance of attribute and method, which
have influence on each other.

The inheritance of attribute and method is very

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp901-906)

simple; an example will explain it clearly. See figure
2.14. “English Name” and “Chinese Name” IS_A
“Name”. What we want to know in this layer is that
MAS(English Name)={Name}=MAS(Chinese
Name). And MDS(name)={English Name, Chinese
Name}. The inheritance mechanism of attribute and
method layer is to generate MAS(X) and MDS(X) for
any x is an attribute node or a method node.

4.5 Inheritance of Object
See figure 2.15. Using UpScan algorithm, we have

MAS(Chinese Boy)={Person, Chinese}. In
inheritance graph, An object has HAA edges point to
its attributes and HAM to methods. Scaning all the
HAA and HAM edges start from nodes in MAS(X),
we get an attribute set of object X called ASObj(X)
and a method set of object X called MSObj(X).

For ∀a∈ASObj(X), if ∃b, ISD(a,b)=“contain”
and b∈ ASObj(X), then delete b from ASObj(X).
After doing this, the attribute set is called Modified
Attribute Set of Object x. (MASObj(x) for short) For
∀m∈MSObj, if ∃n, ISD(m,n)=“contain” and n∈
MSObj, then delete n from MSObj. After doing this,
the method set is called Modified Method Set of
Object x. (MMSObj(x) for short) The algorithm to
generate MASObj(x) and MMSObj(x) is called
“object ownership relation scan”

Apply object ownership relation scan to figure
2.15, we get MASObj(Chinese Boy)={Chinese
Name}. Attribute “Name” is in ASObj(Chinese Boy),
but not in MASObj(Chinese Boy).

4.6 Inheritance of Ontology
The method used to find what an ontology has

from inheritance mechanism is called “Ontology
ownership relation scan algorithm”. It is as bellow:

After using UpScan algorithm to generate
MAS(x),similar to the object ownership relation scan
algorithm, we can get MASOnto(x) and
MMSOnto(x),MObjS(x)(Modified Object Set of
ontology) and MOntoS(x)(Modified Ontology Set of
ontology) and RS(x)(Relation Set of ontology). The
relation node form no inheritance hierarchy and there
is no need to modify the relation set of ontology.

For every object node in MObjS(x), try object
inheritance mechanism to generate what it has.

For every ontology node in MOntoS(x), try

ontology inheritance mechanism recursively to
generate what it has.

For every relation node in RS(x), try DownScan
algorithm to find its Define Area. Checking changes
of relevance degree.

The checking of changes of relevance degree is:
If x is a ontology node, for ∀y1,y2 ，

y1,y2∈MAS(x),if ∃z owned by x ,and RD(z,y1) ≠
RD(z,y2)，if y1 is a intermediary of y2, then let
RD(z,x)=RD(z,y1),otherwise if y2 is a intermediary
of y1, then let RD(z,x)=RD(z,y2), otherwise it is an
Inheritance Relevance Degree Conflict.

When inheritance relevance degree conflict occurs,
we let RD(z,x)=MAX(RD(z,y1),RD(z,y2)) and
inform the user.
5 Building Ontology

Building ontology using ontology inheritance
mechanism shall follow the four steps below:

1. Search Ontologies to Be Inherited
We can search ontology by name, keyword or

description (comment) or elements name of the
desired ontology. The ontologies is orgainzed in
inheritance hierarchy to make it easier for use.

2. Choose Ontologies to Be Inherited
And we can set the merge condition by x% or filter

condition by RD d. The tool will merge nodes that
have the ISD>x%, and at last, only show those nodes
that have larger RD then d.

3. Modification on System-Generated Ontology
“Ontology ownership relation scan" algorithm is

called to generate a temporary ontology. User makes
modification on the temporary ontology to build their
own ontology.

4. Save Modified Ontology to Knowledge-Base
According to the user’s modification, make

changes to the inheritance graph. If user inserts an
attribute y into ontology x, if y already exists in the
base, then link a HAA edge from x to y, else a new
node y is created and link the edge. If user change
attribute z to y, then node y is created and link an
IS_A edge from y to z, and a HAA edge from x to y.
If user delete an attribute y, then a HAA edge from x
to y is created with RD(y,x)=0. The modification of
method, object, ontology and relation nodes is the
same as attribute nodes.
6 Case Study

We will use inhertiance graphs to illustrate the
construction procedure of ontology using inhertiance
mechanism argued above.

Fig. 6.1 is example of inheritance with exception.
NewOnto inheriting Demo while it IS_NOT_A
DemoAncestor, which is the ancestor of Demo.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp901-906)

Fig. 6.2 is an ontology named “OntoMI” inherit

“OntoPA”and “OntoPB”. As we can see,
“OntoPAH” IS_A “OntoPBH”, so “OntoMI” should
merge OntoPBH and OntoPAH into one ontology.
Since OntoMI IS_A OntoPA and has HAObj<1> to
ObjPAB, and OntoMI IS_A OntoPB and has
HAObj<0.7> to ObjPAB, and because OntoPA and
OntoPB isn’t intermediate of each other, so it is a
conflict. The default setting of the mechanism will
choose the bigger one. OntoPC is an inheritance
hierarchy conflict.
7 Conclusion

We organize multiple shared ontologies on the
basis of the similarities that they conceptualise the
common domain. Ontology clusters are then
organized in a hierarchical fashion thus permitting
ontologies to be described at different levels of
abstraction. One want to create an ontology, he/she
first search the library to find an ontology that most
similar to his/her acquire. Then he can inherit the
ontology and edit it. After his customization, he can
save it to the library for further use.

A important feature of Inheritance Graph is that
descendent nodes haven’t copied what ancestors
have. Thus, if the content of an ancestor node
changed, the descendent nodes will know about it
automatically. When the algorithm of ontology
ownership relation scan is applied, the changes will
show in the descendent nodes. The descendent nodes
can effect the define area of a relation in ancestor
nodes. When adding a new descendent node, the
define area of relations which contain the ancestor
nodes will extend. The descendent node will be
included in the define area automatically. The result
of this feature of inheritance graph is very useful. It
makes the maintenance of knowledge base very easy.

When introducing the inheritance graph, we have
mentioned that object nodes and ontology nodes have
inner and outer structure, which are used to descript
the content of the object and ontology. The inner
structure is encapsulated, other nodes including the
descendent nodes can not make any modification to
the content of inner structure. The outer structure
represents the share content of an object or ontology.
The content in outer structure is represented as nodes,
which allow difference between relations of it with
ancestor nodes and descendent nodes.

Using the inheritance appraoch presented in this
paper, the construction of ontolotgy is becoming
more easier and less time-consuming.
8 Acknowledge

This research is supported by National Social
Science Foundation of China (#05CTQ001),
Guangdong Natural Science Foundation
(#04011304), and Shenzhen Science Technology
Plan (#200422)
References:
[1] R.LU, Z.JIN. Domain Modeling-Based Software

Engineering. Kluwer Academic Publishers. 2000
[2] Jag Sodhi, Prince Sodhi. Software Reuse:

Domain Analysis and Design Processes.
McGraw-Hill Companies, Inc. 1998

[3] Jacobson I, Griss M, Josson P. Software Reuse:
Architecture Process and Organization for
Business Success. 1998

[4] Scott A. DeLoach, Thomas C.Hartrum. A
Theory-Based Representation for
Object-Oriented Domain Models. IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL.26,NO.6,JUNE 2000

[5] Trygve Reenskaug, P.Wold and O.A.Lehne, The
OOram Software Engineering Method,1996

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp901-906)

