
Replicas Redistribution in Distributed Database using Creative Evolutionary
Systems Approach

AL-DAHOUD ALI AND MOHAMED A. BELAL

Faculty of Science and Information Technology
Al-Zaytoonah University

Jordan

Abstract

In Distributed Data Bases (DDB), the replication of partitions into multiple hosts could be helpful for reducing the
average remote access requests; however, there is a trade-off between replicating partitions into multiple hosts and
maintaining remote requests. If we increase the number of replicas, the remote requests will be decreased, on the
other hand, redistributing partitions will cost both space and time.

In this paper, a system is proposed that is capable of evolution of a wide range of data redistributing schemes, in
Distributed Database DDB, from scratch, using the Creative Evolutionary Systems (CES) approach, by evolution
of such data replication schemes, we can search for near optimal design of these schemes. A new formulation of the
problem of data redistributing in DDB is given, a novel genotype to phenotype, and crossover operation, are
provided. Finally, the performance of the proposed model is compared with different replicas redistribution
schemes and the results are discussed and analyzed.

 Key-Words: - Creative Evolutionary System, Distributed Data Bases, Distributed Systems.

1. Introduction

Storing data in distributed database systems can be
done in one of the following way: replication,
fragmentation, and combination of both. In the
fragmentation approach, the data is partitioned into
several parts; each part is stored at different sites
[14].

Distributed database system consists of loosely
coupled sites that share no physical components.
Furthermore, the database systems that run on each
site may have a substantial degree of mutual
independence. The data in distributed database can be
stored in several ways [14, 15,17,18,19,20, and 21]:
Firstly, replica: the system maintains many copies of
the data. Each copy is stored at a different site.
Secondly, partition: the data is divided into several
parts. Each part is stored at a different site. Finally,
partition and replication: the data is partitioned into
many parts. The system maintains many copies of
each part.

Several approaches have been proposed to solve the
problem of migrate and/or replicate data in
distributed databases, such as central, migration, and

the full replication algorithm [22]. In this paper, we
will study the use of creative evolutionary systems
approach to search for optimal distribution of replicas
in the distributed database environment.

Creative Evolutionary System (CES) [5] is used to
explore the space of possible solutions, by using the
concept of evolution; these solutions could be out of
the designer imagination and may be better. CES has
been used successfully in evolving novel designs in
many applications, and shown impressive results in a
large set of areas.

The concept of using evolution for exploration, rather
than optimization, was, first, introduced by Bentley
[4]; since then, researchers have been interested in
using computer systems to aid creativity in design
[5]. Such as in nature, evolution creates populations
that exist in dynamic and interacting environment
where it is possible to explore possibilities and
creative solutions [8]. Before that time, Frazer had
used evolutionary algorithms to evolve architecture
systems [6], applications of CES includes industrial
designs, conceptual design, arts, music composition,
digital circuits, fighter pilot strategies, graphics [5],
and conceptual blending [7], evolutionary arts

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp129-134)

[11,12], One of the applications is designing flying
objects by folding sheets of paper [3].

This approach is required to automate stages of the
design process, in our work, this system is decided to
evolve and create the structure of partitions
replications in a distributed database from scratch.
Such system would demonstrate the feasibility of
using creative design to solve the problem of task
allocation or data redistribution in distributed
database systems.

2. Related work

Many algorithms have been proposed for distributed
database, the algorithms can be categorized by
whether they migrate and/or replicate data. In central
algorithm, a special site contains the entire data. It
acts as a data server for other sites. It services the
read requests from other sites by returning the
required data items to them. On write requests, it
updates the data, and returns acknowledgment
messages to the site. Duplicate writes requests can be
detected by associating sequence numbers with write
requests.

In the migration algorithm [16], the data is shipped to
the location of the data access request allowing
subsequent accesses to the data to be performed
locally. The migration algorithm allows only one
node to access a shared data at a time. This is a single
reader/single writer protocol, since only the threads
executing on one host can read or write a given data
item at any time [16]. Typically, the whole database
or block containing the data item migrates instead of
an individual item requested. This algorithm takes
advantage of the locality of reference exhibited by
programs by amortizing the cost of migration over
multiple accesses to the migrated data. However, this
approach is susceptible to thrashing, where databases
frequently migrate between nodes while servicing
only a few requests. To locate a data block, the
migration algorithm can make use of a server that
keeps track of the location of databases, or through
hints maintained at nodes. These hints direct the
search for a database toward the node currently
holding the database. Alternatively, a query can be
broadcasted to locate a database. One disadvantage of
the migration algorithm is that only the threads on
one host can access data contained in the same block
at any given time.

The full replication algorithm [20] allows multiple
nodes to have both read and write access to shared
data blocks. Because many nodes can write shared
data concurrently, the access to shared data must be
controlled to maintain its consistency. One possible
way to keep the replicated data consistent is to
globally sequence the write operations. A simple
strategy based on sequencing uses a single global
gap-free sequencer which is a process executing on a
host participating in DSM. When a process attempts
a write to shared memory, the intended modification
is sent to the sequencer. This sequencer assigns the
next sequence number to the modification with this
sequence number to all sites. Each site processes
broadcast write operations in sequence number order.
When a modification arrives at a site, the sequence
number is verified as the next expected one. If a gap
in the sequence numbers is detected, either a
modification was missed or a modification was
received out of order, in which case a retransmission
of the modification message is requested. In effect,
this strategy implements a negative acknowledgment
protocol [16].

3. The Creative Evolutionary System (CES)

In order to enable creativity and design space
exploration, constraints must be removed or relaxed
[9]; this relaxation can be done interactively [13],
anther factor is to let parameters and representation
as generic as possible [8], so removal of constraints
should be not only in fitness function but also in the
problem representation. When the parameters of the
representations define a set of components, the ability
of the CES to explore the design space increases
dramatically [10].

In order to apply CES to a certain application, the
phenotype (allowed search space) must be specified,
and then the genotype (coding method) should be
defined [1]. In Creative Evolutionary Systems, a
structured representation of genotype is defined, this
data structure is mapped to a phenotype (or a design),
and the design space of phenotype should be generic
in order to enable the system to propose unexpected
results.

The main difference between standard GA and CES
is that CES evolves design, or phenotype, from

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp129-134)

scratch instead of optimizing existing designs; in
other words, GA optimizes a set of predefined
parameters of a specific design, and CES searches for
the optimal design configuration of the problem at
hand. In CES, the phenotypes are never manipulated
directly; just the coded genotypes are manipulated.
The genotypes consist of genes that are arranged in a
structure that reflects a generic design solution. Both
mutation and crossover operation must be newly
defined in order to avoid meaningless solutions.

The CES algorithm is more advanced than the
standard GA, one feature of CES is the use of
external population to keep best solutions extracted
from the internal population; in which the evolution
procedure continues to produce candidates for
optimal solutions [1], other feature is the use of an
explicit mapping from genotype to phenotype. The
external population can give a ‘life span’ time in
order to prevent CES from keeping poor solutions
that can corrupt the final candidate list.

The mapping form genotype to phenotype in CES is
not straightforward, as in standard GA, this process
resemble nature, since the DNA is not evaluated
directly, rather it follows a set of ‘instructions’ in
order to ‘generate’ a phenotype [1]; this process
enforces the rules of actual object formation and
representation. The phenotype of each individual is

then evaluated to get its fitness based on the
application and environment requirements.

4. The proposed Model

Let us assume that the cost of redistributing a
partition is C1, the cost of a remote request is C2, and
the cost of replicating a request is C3. We assume the
existence of a monitor that is activated to keep track
of partitions usage by all hosts, the monitoring is
done at discrete times T = 1,2,..,k. Let us assume that
mij is the number of requests of partition j and host i
till a time k. The usage of partitions by a matrix M=[
mij]i=1,..,n ; j=1,..,m at time k.

A general partition distribution, at time T = k, can be
formulated as a matrix D = [dij], if dij = 1 then
partition j will be, if not presented, redistributed to
host i, otherwise if dij = 0 then it will not be
redistributed.

Each chromosome v is represented as a matrix D.
However, As a data structure representation, the
distribution matrix of each individual v can be
modeled as a list lv of sets svj {j = 1,2,..,m}, where svj
contains the hosts that hold the partition j as
suggested by individual v.

The fitness or evaluation function f(D) can be
represented as

∑ ∑∑∑∑ ∑∑
= === = = =

−++−−=
n

i

m

j
ij

m

j
j

m

j

n

i

m

j

n

i
ijijijij mkdCmkdCCkdkdUCDf

1 11
3

1 1 1 1
21))1)((())(())1()(()((1)

Where C(x) function is the complement function that
is defined as follows:

 1 if 0
 0 if 1

)({
=
=

=
x
x

xC

& U(x) function is the unit step function, which is
defined as follows:

 1 if 0
 0x if 1

)({
<
≥

=
x

xU

The first term in the fitness function represents the
cost of replicating the partitions into multiple hosts;
on the other hand, the second term stands for the cost
of manipulating requests from hosts that do not hold
a replication of the partitions of these requests,
whereas the third term corresponds to the cost of

replicating write requests into multiple hosts that
contain replicas of the corresponding partitions.

4.1 Population initialization

Each chromosome of an individual v is initialized as
follows:

Each svj is initialized by a random number of hosts;
this random number N is not uniformly distributed,
rather it follows exponential distribution and it
belongs to the range [1,n], i.e. it is most probable for
the set to have less items. After determining the
number of hosts N at each set, the elements of the set
will be chosen based on roulette wheel selection, in
which hosts with high access requests are more likely
to be chosen, and the weight of each selected host

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp129-134)

will be eliminated from the roulette wheel; in order to
not choose this host again.

4.2 Crossover operation in the proposed model

The pair of parents {p1,p2} is chosen randomly from
the population, the new pair of offspring {o1,o2}are
formed as follows:
For each set sp1j of the first parent, an host is chosen
randomly and assigned to the corresponding set of
the offspring so1j, the same operation is repeated for
parent sp2j and offspring so2j. After that, the rest of the
sets sp1j and sp2j are combined to form a temporary set
st. The rest of the set so1j is formed by scanning st, and
choosing each host with a probability = 0.5, and the
same is done for the set so2j.

4.3 Mutation operation in the proposed model

The mutation operation is simply done, with a small
mutation probability Pm, at each set so1j or so2j, by
choosing an arbitrary element of it and then altering
it to an host that does not exist in the original string.

5. Simulations and results

The proposed model was simulated, and the CES part
was tested to verify the significance of our approach.
The model was compared with three other
approaches namely: The central approach, the fully
replication approach, and the greedy approach, the
greedy approach was presented in [22]. The
parameters of the simulated system were given the
following values:

n = 25 nodes
m = 30 partitions
C1 = 500 units
(The unit represents the cost of transferring a block
of information through the network)

C2 = 10 units
C3 = 20*0.1 units
(This factor represents the cost of one replication of a
write request multiplied by the ratio of write requests
in all requests).

The initial partitions distributions over nodes dij(k)
were assumed to be 1 if (j-1) mod n + 1= i, otherwise
it equals zero. The usage of partitions or requests (M

or [mij]) are initialized by random integers that are
uniformly distributed in the closed range [0,600]. The
central strategy uses node number one as a central
node.

Figure (1) shows the performance of our CES
strategy compared to other strategies, the extreme
cases of centralization strategy and fully replication
are expected to be worse than any heuristic strategy
since they are limiting boundaries of the cost of
remote access requests and the cost of replication
respectively, the greedy strategy has better
performance since it assigns the partitions of
maximum usage to the corresponding with a minimal
overhead of replication. On the other hand, the
proposed model compromises between the overhead
of replication and the cost of remote access, it took
50 generations in order to reduce the cost of the
greedy strategy to 69.3% of its value. The proposed
model suggests the redistribution of additional 14
replicas compared to the greedy strategy that helps
reducing the overall expected cost. Therefore, we can
conclude that the CES approaches balances between
the desire of replicating partitions in order to
minimize the remote access requests (as in the fully
replication approach), and the conservation of
replicating partition in order to minimize the
overhead of replication (as in the central approach).

0

50000

100000

150000

200000

250000

300000

Centralization
Strategy

Greedy Strategy CES Strategy Fully Replication
Strategy

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp129-134)

Figure (1): The cost of CES strategy compared to
other strategies

Figure (2) illustrates the effect of partition size
(C1/C2) over the performance of each algorithm, the
CES has better performance at the different values of
partition size, whereas the centralized algorithm
performs badly at high partition size, similarly fully
replicated methods is worse at high partition size.

6. Conclusions

In this paper, a new approach for data redistribution
in distributed systems has been introduced, this
approach is based on creative evolutionary systems
CES for searching for the optimal solution or
configuration that minimizes the cost of replication
versus remote requests. The proposed approach has
proved its capability to find a sub-optimal solution at
different environments, such as the partition's size
and the distribution of partitions requests.

1000

10000

100000

1000000

10000000

1 10 100 1000

Centralization
Strategy
Greedy Strategy

CES Strategy

Fully Replication
Strategy

Figure (2): The effect of partition size over each

method

References:

[1] Bentley, P. J. & Wakefield, J. P. 1997. Generic
Evolutionary Design. Chawdhry, P.K., Roy, R., &
Pant, R.K. (eds) Soft Computing in Engineering
Design and Manufacturing. Springer Verlag, Part 6,
289-298.

[2] Chvál, J.: L-systems Based Generative Mapping
in the Evolutionary Design. In: Sinčák, P.,
Kvasnička, V., Pospíchal, J., Kelemen, J., Návrat, P.
(eds.): Slovensko-České rozpravy o umelej
inteligencii (Kognícia a umelý život III), Košice,
2003, pp. 309-314. ISBN 80-89066-64-X.

[3] Divina, D. Edwards, S. Kain Creative Evolution
of Flying Objects. In Proceedings of CCIA
International Conference 2003.

[4] P. J. BENTLEY, Evolutionary Design by
Computers, Morgan Kaufmann Publishers Inc., ISBN
1-55860-605-X (1999).
[5] P. J. BENTLEY AND D. W. CORNE, Creative
evolutionary systems, Morgan Kaufmann Publishers
Inc.,2001.
[6] Frazer J.H., An Evolutionary Architecture,
Architectural Association, London, 1995 (out of
print)
http://www.aaschool.ac.uk/publications/ea/intro.html
[7] Theresa Gartland-Jones ,"Visual Blends: A
Computational System Exploring, Digital Creative
spaces". Proceedings of COSIGN-2004, University
of Split (Croatia), September 2004.
[8] P. J. Bentley, T. G. W. Gordon, J. Kim and S.
Kumar, “New Trends in Evolutionary Computation”,
Proceedings of the IEEE Congress on Evolutionary
Computation, 2001
[9] Bentley, P. J. (1999a). Is Evolution Creative? In
P. J. Bentley and D. Corne (Eds) Proceedings of the
AISB’99 Symposium on Creative Evolutionary
Systems (CES). Published by The Society for the
Study of Artificial Intelligence and Simulation of
Behaviour (AISB), pp. 28-34.
[10] Bentley, P. J. (2000). Exploring Component-
Based Representations - The Secret of Creativity by
Evolution? In ACDM 2000, April 26th - 28th, 2000,
University of Plymouth.
[11] Rowbottom, A. (1999). Evolutionary Art and
Form. In Bentley, P.J. (Ed.) Evolutionary Design by
Computers. Morgan Kaufman Publishers Inc., San
Francisco, CA.
[12] Celestino Soddu, Generative Art,
www.celestinosoddu.com, 2001.
[13] Hideyuki Takagi, “Interactive Evolutionary
Computation: Fusion of Cababilities of EC
Optimization and Human Evaluation”.
[14] M.T. Ozsu and P. Valduriez, "Principles of
Distributed Database Systems", Prentice-Hall, 2nd

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp129-134)

Ed. 1999.
[15] Thomas Seidmann, "Distributed Shared
Memory Using The .NET Framework", Slovak
University of Technology,
seidmann@dcs.elf.stuba.sk

[16] CNE Tutorial Modules Central, "Distributed
Shared
Memory",http://www.cne.gmu.edu/modules/DSM
Implementation Related Issues.htm.
[17] M.T. Ozsu and P. Valduriez, "Principles of
Distributed Database Systems", Prentice-Hall, 2nd
Ed. 1999.

[18] Shigeru Imafuku_ Kazuhiko Ohno Hiroshi
Nakashima, "Reference Filtering for Distributed
Simulation of Shared Memory Multiprocessors",
Proc. 34th Annual Simulation Symp., pp. 219–
226, IEEE Computer Society, April 2001.

[19] Bernd Dreier, Markus Zahn, Theo Ungerer, "
The Rthreads Distributed Shared Memory
System", University of Augsburg, Institute of
Informatics, D-86135 Augsburg, Germany,
fdreier,zahng@Informatik.Uni-Augsburg.DE.

[20] Michael Stonebraker, Paul M. Aoki, Avi Pfeffer,
Adam Sah,Jeff Sidell, Carl Staelin and Andrew Yu, "
MARIPOSA: A Wide-Area Distributed Database
System", Department of Electrical Engineering and
Computer Sciences, University of California,
Berkeley, California 94720-1776,
mariposa@postgres.Berkeley.EDU.

[21] Michael Stonebraker, Paul M. Aoki, Witold
Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl
Staelin, Andrew Yu, " Mariposa: a wide-area
distributed database system", The VLDB Journal
(1996) 5: 48–63.

[22] Al-Dahoud Ali, "Data Redistributing in
Distributed Computing Systems", ICENCO 2004-1st
INTERNATIONAL COMPUTER ENGINEERING
CONFERENCE, December 27-30 2004 Cairo,
Egypt.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp129-134)

