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Abstract 
 
In Distributed Data Bases (DDB), the replication of partitions into multiple hosts could be helpful for reducing the 
average remote access requests; however, there is a trade-off between replicating partitions into multiple hosts and 
maintaining remote requests. If we increase the number of replicas, the remote requests will be decreased, on the 
other hand, redistributing partitions will cost both space and time. 
 
In this paper, a system is proposed that is capable of evolution of a wide range of data redistributing schemes, in 
Distributed Database DDB, from scratch, using the Creative Evolutionary Systems (CES) approach, by evolution 
of such data replication schemes, we can search for near optimal design of these schemes. A new formulation of the 
problem of data redistributing in DDB is given, a novel genotype to phenotype, and crossover operation, are 
provided. Finally, the performance of the proposed model is compared with different replicas redistribution 
schemes and the results are discussed and analyzed. 
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1. Introduction 
 
Storing data in distributed database systems can be 
done in one of the following way: replication, 
fragmentation, and combination of both. In the 
fragmentation approach, the data is partitioned into 
several parts; each part is stored at different sites 
[14]. 
 
Distributed database system consists of loosely 
coupled sites that share no physical components. 
Furthermore, the database systems that run on each 
site may have a substantial degree of mutual 
independence. The data in distributed database can be 
stored in several ways [14, 15,17,18,19,20, and 21]: 
Firstly, replica:  the system maintains many copies of 
the data. Each copy is stored at a different site. 
Secondly, partition: the data is divided into several 
parts. Each part is stored at a different site. Finally, 
partition and replication: the data is partitioned into 
many parts. The system maintains many copies of 
each part. 
 
Several approaches have been proposed to solve the 
problem of migrate and/or replicate data in 
distributed databases, such as central, migration, and 

the full replication algorithm [22]. In this paper, we 
will study the use of creative evolutionary systems 
approach to search for optimal distribution of replicas 
in the distributed database environment.     
 
Creative Evolutionary System (CES) [5] is used to 
explore the space of possible solutions, by using the 
concept of evolution; these solutions could be out of 
the designer imagination and may be better. CES has 
been used successfully in evolving novel designs in 
many applications, and shown impressive results in a 
large set of areas. 
 
The concept of using evolution for exploration, rather 
than optimization, was, first, introduced by Bentley 
[4]; since then, researchers have been interested in 
using computer systems to aid creativity in design 
[5]. Such as in nature, evolution creates populations 
that exist in dynamic and interacting environment 
where it is possible to explore possibilities and 
creative solutions [8].  Before that time, Frazer had 
used evolutionary algorithms to evolve architecture 
systems [6], applications of CES includes industrial 
designs, conceptual design, arts, music composition, 
digital circuits, fighter pilot strategies, graphics [5], 
and conceptual blending [7], evolutionary arts 
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[11,12], One of the applications is designing flying 
objects by folding sheets of paper [3].   
 
This approach is required to automate stages of the 
design process, in our work, this system is decided to 
evolve and create the structure of partitions 
replications in a distributed database from scratch. 
Such system would demonstrate the feasibility of 
using creative design to solve the problem of task 
allocation or data redistribution in distributed 
database systems.    
 
2. Related work 
 
Many algorithms have been proposed for distributed 
database, the algorithms can be categorized by 
whether they migrate and/or replicate data. In central 
algorithm, a special site contains the entire data. It 
acts as a data server for other sites. It services the 
read requests from other sites by returning the 
required data items to them. On write requests, it 
updates the data, and returns acknowledgment 
messages to the site. Duplicate writes requests can be 
detected by associating sequence numbers with write 
requests. 
 
In the migration algorithm [16], the data is shipped to 
the location of the data access request allowing 
subsequent accesses to the data to be performed 
locally. The migration algorithm allows only one 
node to access a shared data at a time. This is a single 
reader/single writer protocol, since only the threads 
executing on one host can read or write a given data 
item at any time [16].  Typically, the whole database 
or block containing the data item migrates instead of 
an individual item requested. This algorithm takes 
advantage of the locality of reference exhibited by 
programs by amortizing the cost of migration over 
multiple accesses to the migrated data. However, this 
approach is susceptible to thrashing, where databases 
frequently migrate between nodes while servicing 
only a few requests.  To locate a data block, the 
migration algorithm can make use of a server that 
keeps track of the location of databases, or through 
hints maintained at nodes. These hints direct the 
search for a database toward the node currently 
holding the database. Alternatively, a query can be 
broadcasted to locate a database. One disadvantage of 
the migration algorithm is that only the threads on 
one host can access data contained in the same block 
at any given time. 

 
The full replication algorithm [20] allows multiple 
nodes to have both read and write access to shared 
data blocks. Because many nodes can write shared 
data concurrently, the access to shared data must be 
controlled to maintain its consistency.  One possible 
way to keep the replicated data consistent is to 
globally sequence the write operations. A simple 
strategy based on sequencing uses a single global 
gap-free sequencer which is a process executing on a 
host participating in DSM. When a process attempts 
a write to shared memory, the intended modification 
is sent to the sequencer. This sequencer assigns the 
next sequence number to the modification with this 
sequence number to all sites. Each site processes 
broadcast write operations in sequence number order. 
When a modification arrives at a site, the sequence 
number is verified as the next expected one. If a gap 
in the sequence numbers is detected, either a 
modification was missed or a modification was 
received out of order, in which case a retransmission 
of the modification message is requested. In effect, 
this strategy implements a negative acknowledgment 
protocol [16]. 
 
3. The Creative Evolutionary System (CES) 
 
In order to enable creativity and design space 
exploration, constraints must be removed or relaxed 
[9]; this relaxation can be done interactively [13], 
anther factor is to let parameters and representation 
as generic as possible [8], so removal of constraints 
should be not only in fitness function but also in the 
problem representation. When the parameters of the 
representations define a set of components, the ability 
of the CES to explore the design space increases 
dramatically [10]. 
 
In order to apply CES to a certain application, the 
phenotype (allowed search space) must be specified, 
and then the genotype (coding method) should be 
defined [1]. In Creative Evolutionary Systems, a 
structured representation of genotype is defined, this 
data structure is mapped to a phenotype (or a design), 
and the design space of phenotype should be generic 
in order to enable the system to propose unexpected 
results. 
 
The main difference between standard GA and CES 
is that CES evolves design, or phenotype, from 
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scratch instead of optimizing existing designs; in 
other words, GA optimizes a set of predefined 
parameters of a specific design, and CES searches for 
the optimal design configuration of the problem at 
hand. In CES, the phenotypes are never manipulated 
directly; just the coded genotypes are manipulated. 
The genotypes consist of genes that are arranged in a 
structure that reflects a generic design solution. Both 
mutation and crossover operation must be newly 
defined in order to avoid meaningless solutions. 
 
The CES algorithm is more advanced than the 
standard GA, one feature of CES is the use of 
external population to keep best solutions extracted 
from the internal population; in which the evolution 
procedure continues to produce candidates for 
optimal solutions [1], other feature is the use of an 
explicit mapping from genotype to phenotype. The 
external population can give a ‘life span’ time in 
order to prevent CES from keeping poor solutions 
that can corrupt the final candidate list.  
 
The mapping form genotype to phenotype in CES is 
not straightforward, as in standard GA, this process 
resemble nature, since the DNA is not evaluated 
directly, rather it follows a set of ‘instructions’ in 
order to ‘generate’ a phenotype [1]; this process 
enforces the rules of actual object formation and 
representation. The phenotype of each individual is 

then evaluated to get its fitness based on the 
application and environment requirements. 
 
4. The proposed Model 
 
Let us assume that the cost of redistributing a 
partition is C1, the cost of a remote request is C2, and 
the cost of replicating a request is C3. We assume the 
existence of a monitor that is activated to keep track 
of partitions usage by all hosts, the monitoring is 
done at discrete times T = 1,2,..,k.  Let us assume that 
mij is the number of requests of partition j and host i 
till a time k. The usage of partitions by a matrix M=[ 
mij]i=1,..,n ; j=1,..,m at time k. 
 
A general partition distribution, at time T = k, can be 
formulated as a matrix D = [dij], if dij = 1 then 
partition j will be, if not presented, redistributed to 
host i, otherwise if dij = 0 then it will not be 
redistributed.  
 
Each chromosome v is represented as a matrix D. 
However, As a data structure representation, the 
distribution matrix of each individual v can be 
modeled as a list lv of sets svj {j = 1,2,..,m}, where svj 
contains the hosts that hold the partition j as 
suggested by individual v. 
 
The fitness or evaluation function f(D) can be 
represented as  
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The first term in the fitness function represents the 
cost of replicating the partitions into multiple hosts; 
on the other hand, the second term stands for the cost 
of manipulating requests from hosts that do not hold 
a replication of the partitions of these requests, 
whereas the third term corresponds to the cost of 

replicating write requests into multiple hosts that 
contain replicas of the corresponding partitions. 
       
4.1 Population initialization 
 
Each chromosome of an individual v is initialized as 
follows: 
 
Each svj is initialized by a random number of hosts; 
this random number N is not uniformly distributed, 
rather it follows exponential distribution and it 
belongs to the range [1,n], i.e. it is most probable for 
the set to have less items. After determining the 
number of hosts N at each set, the elements of the set 
will be chosen based on roulette wheel selection, in 
which hosts with high access requests are more likely 
to be chosen, and the weight of each selected host 
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will be eliminated from the roulette wheel; in order to 
not choose this host again. 
 
 
4.2 Crossover operation in the proposed model 
 
The pair of parents {p1,p2} is chosen randomly from 
the population, the new pair of offspring {o1,o2}are 
formed as follows: 
For each set sp1j of the first parent, an host is chosen 
randomly and assigned to the corresponding set of 
the offspring so1j, the same operation is repeated for 
parent sp2j and offspring so2j. After that, the rest of the 
sets sp1j and sp2j are combined to form a temporary set 
st. The rest of the set so1j is formed by scanning st, and 
choosing each host with a probability = 0.5, and the 
same is done for the set so2j.  
 
4.3 Mutation operation in the proposed model 
 
The mutation operation is simply done, with a small 
mutation probability Pm, at each set so1j or so2j, by 
choosing an arbitrary element of it and then altering 
it to an host that does not exist in the original string.    
 
5. Simulations and results 
 
The proposed model was simulated, and the CES part 
was tested to verify the significance of our approach. 
The model was compared with three other 
approaches namely: The central approach, the fully 
replication approach, and the greedy approach, the 
greedy approach was presented in [22]. The 
parameters of the simulated system were given the 
following values: 
 
n    = 25 nodes 
m   = 30 partitions 
C1  = 500 units  
(The unit represents the cost of transferring a block 
of information through the network)  
 
C2  =  10 units 
C3  =  20*0.1 units  
(This factor represents the cost of one replication of a 
write request multiplied by the ratio of write requests 
in all requests). 
 
The initial partitions distributions over nodes dij(k) 
were assumed to be 1 if  (j-1) mod n + 1= i, otherwise 
it equals zero. The usage of partitions or requests (M 

or [ mij]) are initialized by random integers that are 
uniformly distributed in the closed range [0,600]. The 
central strategy uses node number one as a central 
node. 
 
Figure (1) shows the performance of our CES 
strategy compared to other strategies, the extreme 
cases of centralization strategy and fully replication 
are expected to be worse than any heuristic strategy 
since they are limiting boundaries of the cost of 
remote access requests and the cost of replication 
respectively, the greedy strategy has better 
performance since it assigns the partitions of 
maximum usage to the corresponding with a minimal 
overhead of replication. On the other hand, the 
proposed model compromises between the overhead 
of replication and the cost of remote access, it took 
50 generations in order to reduce the cost of the 
greedy strategy to 69.3% of its value. The proposed 
model suggests the redistribution of additional 14 
replicas compared to the greedy strategy that helps 
reducing the overall expected cost. Therefore, we can 
conclude that the CES approaches balances between 
the desire of replicating partitions in order to 
minimize the remote access requests (as in the fully 
replication approach), and the conservation of 
replicating partition in order to minimize the 
overhead of replication (as in the central approach).      
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Figure (1): The cost of CES strategy compared to 
other strategies 

 
Figure (2) illustrates the effect of partition size 
(C1/C2) over the performance of each algorithm, the 
CES has better performance at the different values of 
partition size, whereas the centralized algorithm 
performs badly at high partition size, similarly fully 
replicated methods is worse at high partition size.  
 
6. Conclusions 
 
In this paper, a new approach for data redistribution 
in distributed systems has been introduced, this 
approach is based on creative evolutionary systems 
CES for searching for the optimal solution or 
configuration that minimizes the cost of replication 
versus remote requests. The proposed approach has 
proved its capability to find a sub-optimal solution at 
different environments, such as the partition's size 
and the distribution of partitions requests. 
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