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Abstract: - This paper addresses the problem of adaptive stabilization of continuous-time and time-varying linear 
of the form ( ) ( ) ( ) ( )x t t x t Bu t= Θ +& , when the state is accessible and with an input vector of the same 
dimension as the vector state. The proposed control scheme guarantees that the state of the plant, with bounded 
time-varying parameters, asymptotically converges to zero. For the general case when there are 2n2 unknown 
parameters (n2 time-varying and n2 constant), a controller adjusting n2+1 parameters (when the control matrix B 
is unknown) guarantees local stability results, whereas in the case when the control matrix B is known, only one 
parameter has to be adjusted in the controller and the proposed scheme provides global stability results 
 
 Key-Words: Adaptive stabilization, adaptive control, stabilization of time-varying plants, adaptive stabilization 
of linear time-varying systems. 
 
 
1 Introduction 
 
Lately, the adaptive control of time-varying linear 
and nonlinear plants has received considerably 
attention. Several approaches have been proposed to 
face this problem making use of different techniques 
[1-6]. For example, recently, Ge and Wang [6] 
proposed a robust adaptive tracking method for time-
varying nonlinear systems in the strict feedback form 
with completely unknown time-varying virtual 
control coefficients, uncertain time-varying 
parameters and unknown time-varying bounded 
disturbances. The proposed design method does not 
require any a priori knowledge of the unknown 
coefficients except for their bounds.  
 
In the case of time-varying uncertain chaotic systems 
Li, Chen, Shi and Han proposed a robust adaptive 
tracking control [7] for a class of nonlinear plants 
when the control matrix is known and equal to the 
identity. The desired trajectory and its first time 
derivative are assumed to be known. The method 
imposes two assumptions, being the second one very 
restrictive on the plant to be controlled. This method 
was simplified in [8] relaxing the second assumption 
and assuming that a desired trajectory and its first 
time derivative are known to the designer. Later, in 
[9, a method where the constraint of the second 

assumption is moved from the plant to the reference 
model introduced, is presented. Lately, a further 
attempt to generalize these results was made in [10] 
where it is considered only one assumption 
concerning the boundedness of the time-varying 
parameters and both cases when a model reference or 
a desired trajectory and its time derivative are known, 
were resolved. 
  
In this paper a new effort to generalize these previous 
results is made, considering the adaptive stabilization 
of a class of nonlinear plants with arbitrarily fast 
time-variations, when the control matrix B is 
unknown but constant and boundedness on the time-
varying parameters is the only assumption.  
 
 
2 Adaptive Stabilization of Linear 

Time-Varying Plants with State 
Accessible 

 
Let us consider the case of a time-varying and linear 
plant with accessible state defined by the following 
differential equation 
 

( ) ( ) ( ) ( )x t t x t Bu t= Θ +&
                         (1) 
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where ( )  nx t ∈ℜ is the state of the 
system, x ( ) n ntΘ ∈ℜ represents the matrix of time-
varying and unknown parameters and the matrix 

xn nB∈ℜ is a nonsingular matrix of unknown  but 
constant parameters. ( )  nu t ∈ℜ  is the plant input. It 
is assumed that time-varying elements of the matrix 
 ( )tΘ  are bounded, as stated in the following 
assumption . 
 
Assumption 1: The matrix x ( ) n ntΘ ∈ℜ , belongs to 
a bounded and closed set Ω defined 

by { }x( ) ( ) / ( ) [ , ]n n
ij ij ij ijt t tθ θ θ θ⎡ ⎤Ω = Θ = ∈ℜ ∈⎣ ⎦ , 

with  ,  for , 1, 2,...,ij ij i j nθ θ =  unknown constant 
parameters representing the lower and upper bounds 
respectively on the time-varying parameters ( )ij tθ , 

the elements of matrix ( )tΘ .                                    ▄ 
 
The plant given in (1) can be rewritten as follows 
 

( ) ( ) ( ( ) ) ( ) ( )m mx t A x t t A x t Bu t= + Θ − +&        (2) 
 
where n n

mA ×∈ℜ is any asymptotically stable matrix. 
 
We define the unknown matrix with time-varying 
parameters x( ) ( ) n n

ijA t a t⎡ ⎤= ∈ℜ⎣ ⎦    as 

 
x( ) ( ) n n

mA t t A= Θ − ∈ℜ             (3) 
 
From Assumption 1, we can write the following 
inequality 
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where β ∈ℜ is n unknown constant parameter. 

F
⋅  denotes the Frobenius norm of a matrix. 

Now we can state the following theorem for 
adaptively control system (1). 
 

Theorem 1: Let us consider the linear time-varying 
system defined by (1). Let us assume that 
Assumption 1 is satisfied and define the control law 
as 
 

( ) ( ) ( , )u t K t xα β=
)

                        (5) 
 

where x( ) n nK t ∈ℜ  is an adjustable parameter 
and ( , ) nxα β ∈ℜ

)
, x( ) n nxµ ∈ℜ  are given by 

 
2 2

2( , )
( )

F

x
x Px

x x
α β

β

µ β ε
= −

+

)
)

)          (6) 

 
( ) Tx xx Pµ =                        (7) 

 
with min0 2 ( )Qε λ< <  and xT n nP P= ∈ℜ solution 

of T
m mA P PA Q+ = −  . Let us consider the adaptive 

law for ( )tβ
)

 given by 
 

( ) ( )
F

t xβ γ µ=
)&             (8) 

 
with 0( ) 0 tβ >

)
 and >0γ  an adaptive gain, 

together with the adaptive law for x( ) n nK t ∈ℜ  (the 
estimate of 1 x* n nK B−= ∈ℜ  ) 

  
( ) ( ) ( )T T

mK t K t B Pxu K t= −&                (9) 
 
Then, the overall adaptive system is uniformly stable 
and also the state of the linear time-varying system 
(1) will asymptotically converge to zero.                   ▄ 

 
It is important to notice that using the property 

( )1( ) ( ) ( ) ( )d dK t K t K t K t
dt dt

− ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

, the adaptive law 

(9) can be written equivalently as follows 
 

( ) T
K t PxuΦ =&                              (10) 

 
where 

1 * 1

* 1 x

( ) ( ) withK
n n

t K t K

K B

− −

−

Φ = −

= ∈ℜ
    (11) 

 
Proof:  
 
Replacing u(t) from (5) in the equation (1) we get 
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( ) ( ) ( , )( ) ( ) ( ) ( )m m K t xx t A x t t A x t B α β= + Θ − +
)

&                              
 
which can be rewritten using definition (3) as 
 

( ) ( , )( ) ( ) ( ) ( )m K t xx t A x t A t x t B α β= + +
)

&        (12) 
 
Adding and subtracting the term ( , )xα β

)
 

from (6) we obtain 
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         (13) 

 
We define  * xn nK ∈ℜ  such that the 
following condition is satisfied 
 

* * 1 * 10 orI BK K B K B− −⎡ ⎤− = ⇒ = =⎣ ⎦
 
Then we can write equation (48) as 
 

( )1 1 ( ) ( , )

( ) ( ) ( ) ( )

( ) *
m
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or equivalently 
 

( ) ( , )

( ) ( ) ( ) ( )
( )

m

K t x

x t A x t A t x t
t u α β

−

−

= +

Φ +
)

&
         (15) 

 
where x( ) n n

K tΦ ∈ℜ  is defined in (11).  
 
In order to prove the stability of the overall daptive 
system, we choose the following Lyapunov function 
candidate 
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where ( ) ( )t tβ β β= − ∈ℜ% )

.. 

Computing the first derivative of (16)  we have 
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Evaluating (17) along the trajectory defined by (12) 
we get 
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Using T

m mA P PA Q+ = −  and replacing  ( , )xα β
)

 
from (6) we can write 
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Since Assumption 1 is satisfied then we can write 
the following inequality: 
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We can also write  
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Since we know that  
 

{ } { }
  and  T T T

F

T T

ab a b a b b a

Trace ab Trace ba

= = =

= =
          (22) 

 
then we can write 
 

( ) ( ) ( )≤T
F

x PA t x t xµ β                      (23) 
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On the other hand we have the following inequality  
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Furthermore it is easy to verify that 
 

2min ( )1
2 2

T Qx Qx xλ
− ≤ −                          (25) 

 
where min ( )Qλ is the minimum eigenvalue of the 
positive definite matrix Q. 
 
Replacing (23), (24) and (25) in (19) we obtain  
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Finally, replacing in (26) the adaptive laws given by 
(8) and (10) we obtain 
 

2
min

1 ( )
2

V Q xλ ε⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

&                        (27) 

 
Since min0 2 ( )Qε λ< <  then 0V ≤&  and the 
overall system is globally uniformly stable. In 
particular ( ), ( )Kx t tΦ and ( )tβ% are globally 
uniformly bounded. From this we can conclude that 

( )tβ
)

 is also globally uniformly bounded. From the 
definition of ( )K tΦ  given in (11) we can conclude 

that 1 x( ) n nK t− ∈ℜ  is globally uniformly bounded 
but x( ) n nK t ∈ℜ  is only locally uniformly bounded. 
From equation (27) we can conclude that  ( )x t  is a 

signal of square integral ( 2( )x t L∈ ). From 
equations (5), (6) and (7) it follows that the control 
signal ( )u t  is locally uniformly bounded. 
Consequently, from equation (15) we conclude that 

( )x t&  is locally uniformly bounded ( ( )x t L∞∈& ), 
since it corresponds to a sum and products of 
locally uniformly bounded functions. Using the 

Lemma of Barbalat [11], we can conclude that 
locally, ( ) 0x t →  when t →∞ . Therefore, the 
controller given by (5)-(7) and the adaptive laws 
given by (8) and (9) guarantee that the system (1) is 
locally uniformly stable.                                         ▄ 
 
For a more detailed proof of this Theorem the reader 
is referred to [15]. 
 
Remark 1: 
Theorem 1, applicable to linear systems with 22n  
unknown parameters (n2 time-varying and n2 
constant) of the form (1), guarantees that locally all 
the signals remain bounded and the state 
asymptotically converge to zero by adjusting 2 1n +  
parameters, providing local uniform stability results 
for the general case of B unknown.  
  
Remark 2:  
In the previous analysis, unity adaptive gains were 
chosen for simplicity in all the adaptive laws (8) and 
(9) used in the design.  It is possible to show that all 
the results stated in Section 2 will also be valid if 
constant and positive scalars adaptive gains are used, 
or constant and positive definite matrices adaptive 
gains are introduced, or finally, time-varying  
matrices adaptive gains with a special type of 
variation are defined [12, 13]. The effect of these 
adaptive gains will be to improve the transient 
behavior of the resultant adaptive system. 
 
Remark 3: 
The convergence of the controller parameter is not 
guaranteed in the proposed control scheme. This is 
achieved only if persistently exciting conditions are 
met for the vectors and matrices involved in the 
adaptive laws (8) and (9). 
 
Remark 4: 
If the control matrix B has certain particular form, the 
structure of the proposed control scheme can be 
simplified and the scope of the method can be 
enlarged. For example if B is a diagonal matrix, 
invertible, and the sign of all elements on the 
diagonal are known, then the resultant controller and 
adaptive laws have the following form [13, 14] 
 

( ) ( , )( )u t K xt α β=
)

 
 
with 
 

( ) { } TK t sign B Pxu=&  
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where for notation purposes we have 
{ }sign B BB = . In this case the results are proven to 

be global rather that local [13, 14]. Same kind of 
simplifications can be obtained if the matrix B is 
positive definite and invertible [13, 14] obtaining 
again global stability results. Finally, when the matrix 
B has any general form then we get the results shown 
in Section 3, which are only local in nature. 
 
Remark 5: 
For the case when the matrix B is known, it can be 
shown that the resulting adaptive scheme adjusts only 
one parameter. In fact, since B is known so 
is 1 x* n n

mK B B−= ∈ℜ  . Replacing K(t) in the control 
law (5) by the ideal controller parameter K* the 
control input becomes  
 

1( ) ( , )u t B xα β−=
)

                                  (28) 
 

with ( , ) nxα β ∈ℜ
)

 and ( ) pxµ ∈ℜ given by (6) and 
(7) respectively. Therefore, adaptation for 

x( ) n nK t ∈ℜ  is not needed. Thus, uniform global 
stability can be achieved for the adaptive system 
adjusting only the parameter β ∈ℜ

)
, with the 

adaptation given by (8).  
 
 
3 Conclusions 
 
Using Lyapunov’s stability theory it was designed a 
new scheme for adaptive stabilization of time-varying 
linear plants. This control scheme allows that the 
state of the plant with bounded time-varying 
parameters converge asymptotically to zero.  
 
For the linear case given by equation (1) having 2n2 
unknown parameters (n2 time-varying and n2 constant 
unknown parameters), when the matrix B is unknown 
the controller has to adjust n2+1 parameters and the 
proposed scheme provides only local stability results. 
On the contrary, when the matrix B is known only 
one parameter has to be adjusted and the proposed 
scheme provides global stability results.  
 
In order to verify the behavior of the controller based 
on Theorem 1 a set of simulations for a second order 
plant were performed but not shown here for the sake 
of space, finding that the simulation results are in 
complete agreement with the theoretically expected 
results. These simulations will be shown during the 
presentation of the paper.  
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