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Abstract: - Despite the popular MDA development paradigm, currently there is still some vague explanation of 
the core concepts of MDA, such as model instantiation, verification, reflection, composition and transformation, 
etc. To get a better understanding the core concepts, a metamodeling approach is adopted to metamodel the 
UML, the important member of MDA. Based on rewriting logic and an implement environment Maude, the 
approach may introduce important benefits to the MDA core concepts, such as formal support, provision for 
rigorous specifications, and easy access to Maude's toolkit. 
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1   Introduction 
Despite the popular MDA development paradigm, 
currently there is still some vague explanation of the 
core concepts, such as model instantiation, 
verification, composition and transformation, etc. 
Understanding above concepts clearly is crucial to 
engage in the Model-Driven Development (MDD). 
One of the reasons of the vague explanation comes 
from using the semantic formalism (class diagram + 
OCL + natural language) to define MDA related 
concepts. Especially when we use them in cycle, e.g., 
using MOF to define UML and OCL , using UML to 
define MOF and OCL, etc. 

     To get a better understanding the MDA core 
concepts, we adopt a metamodeling approach to 
metamodel the UML, the important member in 
MDA. The metamodeling approach uses a 
wide-spectrum reflective formalism named 
rewriting logic and an environment Maude [1] to 
describe several important aspects of the UML, 
such as model instantiation, verification, 
composition and transformation, etc. The result 
Maude object-oriented algebraic specifications are 
organized into a framework named OMCR (Object 
Message Concurrent Rewriting) framework. 
     Through the initial process of metamodeling 
UML in Maude, OMCR explores the semantics of 
model instantiation, verification, reflection, 
composition and transformation by programming 
them in rewriting logic. The framework may 
introduce important benefits to the MDA core 
concepts, such as formal support, provision for 
rigorous specifications, and easy access to Maude's 
toolkit. 

 
 

2   Related Work 
In [2], formally supporting the evolution of the UML 
metamodel is presented. The metamodel of class 
diagram is built using Maude fmod modules 
(functional modules). The extended fmod 
META-LEVEL is used as the meta-metamodel for 
meta-representing the metamodel of class diagram. 
The formalization provides weak support for the 
object and relationship semantics of the UML 
metamodel. For example, modeling UML::Attribute 
as sort not class, so inheritance relationships of UML 
model elements can't be supported; The roles and 
relationships in the UML metamodel are less 
concerned (see Sect. 5). Because Maude fmod 
modules can't use rewriting rules, the model 
transformation will be implemented in equational 
style and may lead to hard to code and reuse (see 
Sect. 7). In [3], a rudimentary UML virtual machine 
(UML-VM) as a Smalltalk extension is presented. 
Leveraging ST-VM to build UML-VM is a feasible 
method. But the inter-instantiation of Smalltalk ST-3 
and ST-4 and how to relate it to MDA M3-level are 
not described clearly, which is important for 
self-description of MOF [4]. 
 
 
3   OMCR concepts  
OMCR is built on top of Maude object-oriented 
algebraic specification. Maude object-oriented model 
is state (made of objects and messages) concurrent 
rewriting and asynchronous message 
communication. The system state is an instance of the 
sort Configuration. An instance of the sort 
Configuration is multiset made up of Maude objects 
and messages. At runtime, the system state will be 
rewritten concurrently by the rewriting engine 

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)



against the user-defined rewriting rules. The general 
form of rewrite rule is following: 
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Where r  is the rule’s label. avl  and 'avl  are lists of 
pairs of attribute identifier and value, M  and 'M  
are messages, Con  is the condition of the rule. The 
meaning of the rule is: in the system state, if local 
state (subset of the system state) matches (modulo 
associativity and commutativity [1]) the LHS of the 
rule and Con  is satisfied, the local state will be 
replaced by corresponding instance of the RHS of the 
rule. See the reference [1] for details of Maude 
object-oriented algebraic specification.  

     According to the m  and p  parameters in the 
rule r , we classify rewriting rules to describe the 
coordination aspects of objects as follows:  

1) When 00 ≥∧< mp , there are no messages 
participating the rule, and the coordination among 
objects is realized through shared objects. We name 
the rule OC (Object Configuration) rule, otherwise 
OM (Object Message) rule, in which the coordination 
among objects is realized through messages passing. 
2) When 00 )(00 idMoidmp =∧=∧= , where 
oid  is function to extract the object identifier of a 
message, we name the rule asynchronous OM rule, 
which defines the rule of rewriting the matched local 
state when the object identified by 0id  has received 
the asynchronous message 0M .  
3) When ( ) ( )( )∧>∧≥∨=∧> 0000 mpmp  
( )ji idMoidmjpi =∧∈∃→∈∀ )(],0[],0[ , we 
name the rule synchronous OM rule, which defines 
the rule of rewriting the matched local state when one 
object needs more than one asynchronous messages  
to act, or more than one object need one or more than 
one message to act synchronously.  
     Using OM and OC rules as building blocks, we 
can identify the coordination patterns of objects. As 
UML models can be described by Maude objects (see 
Sect. 4), different kinds of rewriting rules will be 
chosen to programming model operations. 
 
 
4   OMCR framework for UML  
Figure 1 shows main packages of the OMCR 
framework. We use term “package” to divide 
metamodel elements and their instance conceptually 
according to different subjects. 

DTI-Checker

DT

DTI-CT

DTI

<<physical-instance-of>>
RT RTI

RTI-EX <<logical-instance-of>>

<<physical-instance-of>>

 
Fig. 1. Main packages of OMCR framework 

     According to the abstract syntax of models at 
M1-level and M0-level of the MDA 4-layered 
metamodel architecture [4], the UML metamodel is 
divided into segments at design-time (the DT 
package) and run-time (the RT package). The 
instance packages DTI and RTI are corresponding to 
meta-representations [1] of models at M1-level and 
M0-level. The facility packages DTI-Checker, 
DTI-CT and RTI-EX work on the DTI/RTI packages 
according to the DT/RT packages. The packages in 
Fig.1 can be divided into more sub-packages 
according to the UML metamodel. The OMCR 
framework are briefly described as follows:  
 
 
4.1 DT/RT and DTI/RTI packages  
The DT (Design-Time) package is a class library for 
the UML metamodel at design-time. The DT package 
is further divided into sub-packages according to the 
UML Specification [5], such as Classes, 
Components, Actions, etc. For example, the signature 
for the metaclass Class in the Kernel package of the 
UML metamodel is following:  
(omod CLASS is inc CLASSIFIER . 
class Class | ownedAttributes : 
 OidList, ownedOperations : OidList, 
 nestedClassifiers : OidList . 
subclass Class < Classifier . 
msg getOwnedAttributes Oid Oid -> Msg . 
msg getOwnedAttributes-r Oid OidList -> 
 Msg . 
msg apdOwnedAttributes Oid OidList -> 
 Msg . 
msg rmvOwnedAttributes Oid OidList -> 
 Msg . 
*** other get/apd/rmv msgs omitted here  
endom)  
     Because Maude message is always asynchronous, 
a code style messageName-r is used to code return 
messages, such as getOwnedAttributes-r message. 
Because Maude message and operation are 
first-class, non-trivial messages and operations can 
be coded later in separate modules, which provides a 
programming model in multi-method style.  
     The RT (Run-Time) package is class library for 
the UML metamodel at run-time. The RT package 
includes model elements, such as 
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InstanceSpecification, Slot, ValueSpecification, etc. 
For example, the signature for the model element 
InstanceSpecification in the Kernel package of the 
UML metamodel is following:  
(omod INSTANCE-SPECIFICATION is 
 inc PACKAGEABLE-ELEMENT . 
class InstanceSpecification | 
 classifiers : OidList, slots : 
OidList, specification : Oid . 

subclass InstanceSpecification 
 < PackageableElement . 
 *** get/apd/rmv msgs omitted here  
endom)  
     The DTI (Design-Time Instances) package 
includes objects physical-instantiated [6] from 
classes in the DT package. An object in the DTI 
package meta-represents [1] a model element at 
M1-level. For example, an object of Class in the DT 
package is following (some attributes are omitted for 
conciseness):  
< cId : Class | name : “People”,  
 visibility : package, isLeaf : true, 
isAbstract : false, ownedAttributes : 
pId >  
< pId : Property | name : “age”, isStatic 
: false, isReadOnly : false, isDrived 
: false, aggregation : none, type : ptId 
>  

< ptId : PrimitiveType | name : “Integer” 
>   
    The cId identified object meta-represents 
user-class (at M1-level) named “People” with 
attribute named “age” whose type name is “Integer”. 
    The RTI (Run-Time Instances) Package includes 
objects physical-instantiated from classes in the RT 
package. An object in the RTI package 
meta-represents a model element at M0-level. For 
example, an object of InstanceSpecification is 
following (some attributes are omitted for 
conciseness) : 
< isId : InstanceSpecification | 
 classifiers : cId, slots : sId > 
< sId : Slot | values : liId, 
 definingFeature : pId > 
< liId : LiteralInteger | value : 25, 
 type : ptId > 
    The isId identified object meta-represents an 
user-object whose classifier is the “People”. The isId 
identified object has slot object whose classifier is the 
“age”. The slot has the value 25 whose classifier is 
the “Integer”. Each object in the RTI package has at 
least [7] a metaobject in the DTI package. The 
relationship is so-called “logical-instance-of” 
relationship [6].  
 
 

4.2 DTI-Checker, DTI-CT and RTI-EX 
packages  

The DTI-Checker (Design-Time Instances Checker) 
package is used to check whether the content of the 
DTI package is well-formed or not. The DTI-checker 
package implements the constraints defined for the 
UML metamodel. 
    The DTI-CT (Design-Time Instances Composition 
& Transformation) package is used to operate the 
content of the DTI package. We think model 
operation can be unified in the view of rewriting logic 
(see Sect. 7).  
    The RTI-EX (Run-Time EXecution) package is 
used to operate the content of the RTI package. 
Because each object A in the RTI package has at least 
[7] metaobject B in the DTI package. B defines the 
structure features and behavior rules of A, in theory, 
we can access A’s meta-level B when running the 
meta-representations of M0-level models. Accessing 
the meta-level will do following reflective activities:  
1) Dynamic model checking A’s state against the 
structure features of B.  
2) Reading behavior rules of in order to run by 
rewriting A’s state.  
3) Changing the definitions of B to change the future 
behavior of A.  
    The RTI-EX package will be designed as the place 
to implement above dynamic model reflection. For 
reason of space, we leave the design of the RTI-EX 
package to another paper. In following sections, we 
discuss designs of main packages of the OMCR 
framework. 
 
 
5   Design of DT/RT packages 
The design of DT/RT packages is very important for 
OMCR framework, because they provide type 
information for other OMCR packages. Using a code 
generator to generate main contents of the DT/RT 
packages is possible. So we need to consider : 1) How 
to map UML metamodel elements to Maude class 
modules. 2) How to organize the result modules.  
    To the first question, because the attributes of 
UML metamodel elements can be mapped directly to 
corresponding attributes of Maude classes, we 
emphasize how to map the relationships of UML 
metamodel elements to Maude codes. For example, 
Fig. 2 shows the relationships of the metaclass 
Behavior in the UML metamodel.  
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+context  0..1

BehavioralFeature
+specification  0..1

*  +redefinedBehavior {subsets redefinedElement}  

Behavior
isReentrant : Boolean

 
Fig. 2. Relationships of the metaclass Behavior  

    In Fig. 2, from the view of box (class notation), 
there are three kinds of relationships, namely, 
inheritance (vertical dimension), composition and 
non-composition (horizontal dimension). For using 
the object-oriented programming style and rewriting 
logic, composition relationships will be implemented 
similarly as non-composition relationships besides 
additional codes for objects creation and deletion. 
The class module for the metaclass Behavior in Fig. 2 
is following:  
(omod BEHAVIOR is inc CLASS .  *** I&P  
class Behavior | isReentrant : Bool,  

parameters : OidList,         *** C  
context : Oid, specification : Oid,  
redefinedBehaviors : OidList . *** N 

subclass Behavior < Class .   *** I&P 
msg getParameters Oid Oid -> Msg . 
msg getContext Oid Oid -> Msg . *** C|N 
*** other get/apd/rmv omitted here  
vars O X : Oid.  
vars EIL PIL GL AL NL OL PL : OidList.  
rl : getOwnedMembers(O, X) < O : 
Behavior| 
elementImports : EIL,  
packageImports : PIL, 
generalizations : GL, 
ownedAttributes : AL, 
nestedClassifiers : NL, 
ownedOperations : OL, 
parameters : PL > => 
getOwnedMembers-r(X, EIL ; PIL ; GL ; AL 
; NL ; OL ; PL) 

<O : Behavior | > . *** S&I 
*** other rules omitted here endom)  
    Comments are added to indicate the contributions 
from the UML metamodel information, namely, I 
stands for inheritance, C for composition, N for 
non-composition, P for package, S for subsets 
constraint. The subset constraints are always come 
with inheritance relationships (marked with S&I).  
    To the second question, we map UML metamodel 
elements to Maude class modules one by one. For 
horizontal relationships, we use the sort OidList that 
is independent of type information of the horizontal 
relationships, so we needn’t import corresponding 

modules. For vertical relationships, the modules of 
superclasses have to be imported for inheritance 
declaration, rule overriding, etc. Using this mode, 
generating a Maude class module for a UML 
metamodel element will only need to access limited 
meta-information, which makes the code generation 
easy to implement. 
    As the design of the DT/RT packages, we can also 
generate the DTI/RTI packages through code 
generators. For reason of space, we omit the design 
details of DTI/RTI packages.  
 
 
6   Design of DTI-Checker package  
In this section, we discuss the design of the general 
checking flow in the DTI-Checker package. After the 
flow is designed, concrete constraints checking rules 
can be inserted into the flow, which is an application 
of template method pattern. According to the 
relationship classification of UML metamodel 
elements (Sect. 5), instances of the UML metamodel 
elements will be checked in two dimensions (i.e. 
composition and inheritance relationships). We first 
show the checking flow for an object in the general 
object-oriented style, then that in the rewriting logic 
style. By comparing them, we present the important 
design principles for the DTI-Checker package.  
    Figure 3(a) shows the general checking flow for 
the object a1 : A1 in the general object-oriented style. 
Composition relationships are marked with <<C>>. 
Inheritance relationships are marked with <<I>>. 
Classes A1 and B1 inherit classes A, B respectively. 

b1 : B a1 : A<<C>>

a1 : A1b1 : B1 <<C>>
6:

3:
<<N>>

<<I>>
2:

1:

<<I>>
5:

4:

 
(a) 

pi : Element

pi : PackageImport

p : Element

p : NamedElement

p : PackageableElement p : Namespace

p : Package

<<I>> 1:

3: 2:<<I>> <<I>>

<<I>> <<I>>5: 4:

<<C>>

<<C>>
7:

10:<<I>>

8:

9:

6:  
(b) 

Fig. 3. General checking flow in the general 
object-oriented style (a) and in the rewriting logic 

style (b)  
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    For lack of constructs for procedure invoking in 
rewriting logic, the checking flow will be 
implemented using additional states coding, such as 
the states coding for invoking methods of a 
superclass and returning back to the invoking point. 
To decrease additional states coding, we propose an 
Control Flow Reversed (CFR) design principle: 
    Control flows should be reversed as far as possible 
to be expressed as message flows in rewriting logic.  
   By this principle, we should move the start point of 
the checking flow from leaf class to its root 
superclass. From the UML metamodel, we can elicit 
an observation named Root Generalized 
Composition relationship (RGC):  
    Whenever there is a composition relationship 
between subclasses, the composition relationship 
must be generalized to that of corresponding 
superclasses by subsets constraints. The root of all 
generalized composition relationships is the 
association (owner, ownedElements) between the 
metaclass Element and itself. See Fig. 2 for an 
example.  
    Using the CFR principle and RGC observation, the 
general checking flow for an object in the rewriting 
logic style can be coded in the metaclass Element. 
Fig. 3(b) shows an example of checking a package 
metaobject p : Package in the rewriting logic style. 
For reason of space, we omit the Maude codes for the 
general checking flow algorithm.  
 
 
7   Design of DTI-CT package  
In this section, we discuss design principles of model 
operations. First, a unified form for model 
composition and transformation in rewriting logic is 
presented, then the design of model transformation is 
discussed. 
    Under Maude object-oriented algebraic 
specification, when models are described as instances 
of the sort Object, model compositions are natural 
applications of the mixfix operation (with the empty 
syntax __) declared in the mod CONFIGURATION :  

subsort Object Msg < Configuration .  
op __ Configuration Configuration -> 
 Configuration [ctor config assoc comm 
id: none]  

    Above definition means model composition is just 
like object composition in Maude. Putting models of 
different metamodels together as an instance of the 
sort Configuration, we can combine models without 
changing the metamodels or designing special 
metamodels for model composition. Definitions of 
model transformations are expressed as OM and OC 
rules and equations. The running of rules and 
equations on models connected by the mixfix 

operation gives the meaning to model compositions. 
The result model is still in the composite form. Using 
Maude reflection, the rules and equations can be 
modified at the meta-level and compiled into their 
object-level [1], which implements a kind of 
higher-order model transformation. The unified 
model form for model composition and 
transformation in rewriting logic is: 

{ }
{ }''

22
'
11

2211

,,...,,,,

)]],,...,,,,([[

nn

Rnn

MTMTMT

MTMTMTo ⇒
  

Where TypeModelT ∈ , TokenModelMM ∈, , 
( )UR ρ∈ , tionSymbolModelOperao∈ . 

TypeModel  and TokenModel  are terms proposed 
in [8], which correspond to elements in the DT/RT 
packages and DTI/RTI packages. U  is the total set 
of rewriting rules. R[[]]  means using R to interpret 
the application of model operation symbol o .  
    Model transformation is an important application 
of MDA. A lot of model transformation 
implementations follow tree-based transformation, 
because the composition relationships implicated in 
metamodels are the main contribution of the 
transformation. In Maude, when using only equations 
to do model transformation, we can only use the tree 
transformation model. When some dynamic or 
shared information (e.g. inherited and synthesized 
attributes [9]) are not available in current node, but 
needed to fill target nodes, only the tree 
transformation model is not enough. As an example, 
Figure 4 shows a metamodel of LHS and RHS and 
transformation running in rewriting logic.  

A1

C1

D1

0..*
C

1

A

B1
0..*

B
0..*0..*

1

 
(a) 

a : A a1 : A1

b1 : B1 c1 : C1

c1-d1 : D1
7 : giveInfo(c1-d1, x)

b : B c : C4 : sendInfoTo(b, c1-d1)
<<N>>

<<C>> <<C>>

5 : apd(a1, c1)3 : trans(b, a1)
2 : trans(c, a1) <<C>> <<C>>

6 : apd(a1, b1)

<<B>>

<<B>>

<<B>> <<B>>

<<B>>un
1 : trans(a)

(b) 
Fig. 4. (a) Sample metamodel of LHS and RHS. 

(b) transformation implementation for (a)  

    In Fig. 4 (a), the dependence associations indicate 
source nodes when building target nodes. The node 
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D1 depends more than one nodes (i.e. B and C). The 
node B is shared between the node B1 and D1, so 
does the node C.  Those phenomena are common in 
model transformation, which indicates an 
observation :  
    Through building the target model is in the order 
of a tree with links between the nodes of the tree, the 
nodes of source model may not organize in that 
order. 
    This is one reason that only the tree transformation 
model is not easy to deal with model transformation. 
The coordination facilities (e.g. OM and OC rules) 
for transferring inherited and synthesized attributes  
are needed. 
    Figure 4(b) shows a running of the transformation 
defined in Fig. 4(a). The stereotype <<B>> means 
creating target node, other stereotypes are same as 
those in Fig. 3(a). Maude message format  is used [1]. 
The first parameter of a message is the object 
identifier (of sort Oid) of the target object. The 
transformation running is described briefly as 
follows:  
1) When the message 1 is received by a : A, an OM 
rule is fired to create a1 : A1, and send the Oid a1 
with the message 2 and 3 to the contained objects. 
The message 2 and 3 are for constructing the 
inherited attribute Oid of c and b.  
2) When the message 2 is received by c : C, an OM 
rule is fired to create c1 : C1, c1-d1 : D1 and send the 
message 4 to b : B, message 5 to a1 : A1. The 
message 5 is for constructing synthesized attribute 
Oid of a1.  
3) When the message 4 is received by b : B, an OM 
rule is fired to send message 7 to c1-d1 : D1 to give 
more information to fill it. The OM rules for message 
3 and 6 are similar as that for message 2 and 5.  
    For reason of space, the Maude codes for above 
OM rules are not presented here. As we can see in 
above example, it will be much complex to 
implement the same transformation in only tree 
transformation model. The coordination in model 
transformation is another important horizontal 
dimension in addition to vertical dimension.  
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9 Conclusion  

Understanding the core concepts of MDA clearly is 
crucial to engage in the Model-Driven Development 
(MDD). The core concepts include model 
instantiation, verification, reflection, composition, 
transformation, etc. Based on rewriting logic, an 
OMCR (Object Message Concurrent Rewriting) 
framework is presented for metamodeling UML. The 
framework is divided into seven main packages to 
explore the semantics of the core concepts. The 
framework may introduce important benefits to the 
(usually ambiguous) UML specifications, such as 
formal support, provision for rigorous specifications, 
and easy access to Maude’s toolkit.  
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