
Metamodeling UML in Rewriting Logic

JIANFEI YIN ZHONG MING
School of Software

Shenzhen University
No. 2336, Nanhai Ave. Nanshan Dist. Shenzhen 518060

P.R. CHINA

Abstract: - Despite the popular MDA development paradigm, currently there is still some vague explanation of
the core concepts of MDA, such as model instantiation, verification, reflection, composition and transformation,
etc. To get a better understanding the core concepts, a metamodeling approach is adopted to metamodel the
UML, the important member of MDA. Based on rewriting logic and an implement environment Maude, the
approach may introduce important benefits to the MDA core concepts, such as formal support, provision for
rigorous specifications, and easy access to Maude's toolkit.

Key-Words: - MDA, UML, Rewriting Logic, Metamodeling

1 Introduction
Despite the popular MDA development paradigm,
currently there is still some vague explanation of the
core concepts, such as model instantiation,
verification, composition and transformation, etc.
Understanding above concepts clearly is crucial to
engage in the Model-Driven Development (MDD).
One of the reasons of the vague explanation comes
from using the semantic formalism (class diagram +
OCL + natural language) to define MDA related
concepts. Especially when we use them in cycle, e.g.,
using MOF to define UML and OCL , using UML to
define MOF and OCL, etc.

 To get a better understanding the MDA core
concepts, we adopt a metamodeling approach to
metamodel the UML, the important member in
MDA. The metamodeling approach uses a
wide-spectrum reflective formalism named
rewriting logic and an environment Maude [1] to
describe several important aspects of the UML,
such as model instantiation, verification,
composition and transformation, etc. The result
Maude object-oriented algebraic specifications are
organized into a framework named OMCR (Object
Message Concurrent Rewriting) framework.
 Through the initial process of metamodeling
UML in Maude, OMCR explores the semantics of
model instantiation, verification, reflection,
composition and transformation by programming
them in rewriting logic. The framework may
introduce important benefits to the MDA core
concepts, such as formal support, provision for
rigorous specifications, and easy access to Maude's
toolkit.

2 Related Work
In [2], formally supporting the evolution of the UML
metamodel is presented. The metamodel of class
diagram is built using Maude fmod modules
(functional modules). The extended fmod
META-LEVEL is used as the meta-metamodel for
meta-representing the metamodel of class diagram.
The formalization provides weak support for the
object and relationship semantics of the UML
metamodel. For example, modeling UML::Attribute
as sort not class, so inheritance relationships of UML
model elements can't be supported; The roles and
relationships in the UML metamodel are less
concerned (see Sect. 5). Because Maude fmod
modules can't use rewriting rules, the model
transformation will be implemented in equational
style and may lead to hard to code and reuse (see
Sect. 7). In [3], a rudimentary UML virtual machine
(UML-VM) as a Smalltalk extension is presented.
Leveraging ST-VM to build UML-VM is a feasible
method. But the inter-instantiation of Smalltalk ST-3
and ST-4 and how to relate it to MDA M3-level are
not described clearly, which is important for
self-description of MOF [4].

3 OMCR concepts
OMCR is built on top of Maude object-oriented
algebraic specification. Maude object-oriented model
is state (made of objects and messages) concurrent
rewriting and asynchronous message
communication. The system state is an instance of the
sort Configuration. An instance of the sort
Configuration is multiset made up of Maude objects
and messages. At runtime, the system state will be
rewritten concurrently by the rewriting engine

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)

against the user-defined rewriting rules. The general
form of rewrite rule is following:

....|:

...|:...

|:...|::][

''
0

'''

'
0

'
0

'
00

000

ConifMMavlCid

avlCidMM

avlCidavlCidrcrl

qnnn

p

mmm

><

><⇒

><><

Where r is the rule’s label. avl and 'avl are lists of
pairs of attribute identifier and value, M and 'M
are messages, Con is the condition of the rule. The
meaning of the rule is: in the system state, if local
state (subset of the system state) matches (modulo
associativity and commutativity [1]) the LHS of the
rule and Con is satisfied, the local state will be
replaced by corresponding instance of the RHS of the
rule. See the reference [1] for details of Maude
object-oriented algebraic specification.

 According to the m and p parameters in the
rule r , we classify rewriting rules to describe the
coordination aspects of objects as follows:

1) When 00 ≥∧< mp , there are no messages
participating the rule, and the coordination among
objects is realized through shared objects. We name
the rule OC (Object Configuration) rule, otherwise
OM (Object Message) rule, in which the coordination
among objects is realized through messages passing.
2) When 00)(00 idMoidmp =∧=∧= , where
oid is function to extract the object identifier of a
message, we name the rule asynchronous OM rule,
which defines the rule of rewriting the matched local
state when the object identified by 0id has received
the asynchronous message 0M .
3) When () ()()∧>∧≥∨=∧> 0000 mpmp
()ji idMoidmjpi =∧∈∃→∈∀)(],0[],0[, we
name the rule synchronous OM rule, which defines
the rule of rewriting the matched local state when one
object needs more than one asynchronous messages
to act, or more than one object need one or more than
one message to act synchronously.
 Using OM and OC rules as building blocks, we
can identify the coordination patterns of objects. As
UML models can be described by Maude objects (see
Sect. 4), different kinds of rewriting rules will be
chosen to programming model operations.

4 OMCR framework for UML
Figure 1 shows main packages of the OMCR
framework. We use term “package” to divide
metamodel elements and their instance conceptually
according to different subjects.

DTI-Checker

DT

DTI-CT

DTI

<<physical-instance-of>>
RT RTI

RTI-EX <<logical-instance-of>>

<<physical-instance-of>>

Fig. 1. Main packages of OMCR framework

 According to the abstract syntax of models at
M1-level and M0-level of the MDA 4-layered
metamodel architecture [4], the UML metamodel is
divided into segments at design-time (the DT
package) and run-time (the RT package). The
instance packages DTI and RTI are corresponding to
meta-representations [1] of models at M1-level and
M0-level. The facility packages DTI-Checker,
DTI-CT and RTI-EX work on the DTI/RTI packages
according to the DT/RT packages. The packages in
Fig.1 can be divided into more sub-packages
according to the UML metamodel. The OMCR
framework are briefly described as follows:

4.1 DT/RT and DTI/RTI packages
The DT (Design-Time) package is a class library for
the UML metamodel at design-time. The DT package
is further divided into sub-packages according to the
UML Specification [5], such as Classes,
Components, Actions, etc. For example, the signature
for the metaclass Class in the Kernel package of the
UML metamodel is following:
(omod CLASS is inc CLASSIFIER .
class Class | ownedAttributes :
 OidList, ownedOperations : OidList,
 nestedClassifiers : OidList .
subclass Class < Classifier .
msg getOwnedAttributes Oid Oid -> Msg .
msg getOwnedAttributes-r Oid OidList ->
 Msg .
msg apdOwnedAttributes Oid OidList ->
 Msg .
msg rmvOwnedAttributes Oid OidList ->
 Msg .
*** other get/apd/rmv msgs omitted here
endom)
 Because Maude message is always asynchronous,
a code style messageName-r is used to code return
messages, such as getOwnedAttributes-r message.
Because Maude message and operation are
first-class, non-trivial messages and operations can
be coded later in separate modules, which provides a
programming model in multi-method style.
 The RT (Run-Time) package is class library for
the UML metamodel at run-time. The RT package
includes model elements, such as

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)

InstanceSpecification, Slot, ValueSpecification, etc.
For example, the signature for the model element
InstanceSpecification in the Kernel package of the
UML metamodel is following:
(omod INSTANCE-SPECIFICATION is
 inc PACKAGEABLE-ELEMENT .
class InstanceSpecification |
 classifiers : OidList, slots :
OidList, specification : Oid .

subclass InstanceSpecification
 < PackageableElement .
 *** get/apd/rmv msgs omitted here
endom)
 The DTI (Design-Time Instances) package
includes objects physical-instantiated [6] from
classes in the DT package. An object in the DTI
package meta-represents [1] a model element at
M1-level. For example, an object of Class in the DT
package is following (some attributes are omitted for
conciseness):
< cId : Class | name : “People”,
 visibility : package, isLeaf : true,
isAbstract : false, ownedAttributes :
pId >
< pId : Property | name : “age”, isStatic
: false, isReadOnly : false, isDrived
: false, aggregation : none, type : ptId
>

< ptId : PrimitiveType | name : “Integer”
>
 The cId identified object meta-represents
user-class (at M1-level) named “People” with
attribute named “age” whose type name is “Integer”.
 The RTI (Run-Time Instances) Package includes
objects physical-instantiated from classes in the RT
package. An object in the RTI package
meta-represents a model element at M0-level. For
example, an object of InstanceSpecification is
following (some attributes are omitted for
conciseness) :
< isId : InstanceSpecification |
 classifiers : cId, slots : sId >
< sId : Slot | values : liId,
 definingFeature : pId >
< liId : LiteralInteger | value : 25,
 type : ptId >
 The isId identified object meta-represents an
user-object whose classifier is the “People”. The isId
identified object has slot object whose classifier is the
“age”. The slot has the value 25 whose classifier is
the “Integer”. Each object in the RTI package has at
least [7] a metaobject in the DTI package. The
relationship is so-called “logical-instance-of”
relationship [6].

4.2 DTI-Checker, DTI-CT and RTI-EX
packages

The DTI-Checker (Design-Time Instances Checker)
package is used to check whether the content of the
DTI package is well-formed or not. The DTI-checker
package implements the constraints defined for the
UML metamodel.
 The DTI-CT (Design-Time Instances Composition
& Transformation) package is used to operate the
content of the DTI package. We think model
operation can be unified in the view of rewriting logic
(see Sect. 7).
 The RTI-EX (Run-Time EXecution) package is
used to operate the content of the RTI package.
Because each object A in the RTI package has at least
[7] metaobject B in the DTI package. B defines the
structure features and behavior rules of A, in theory,
we can access A’s meta-level B when running the
meta-representations of M0-level models. Accessing
the meta-level will do following reflective activities:
1) Dynamic model checking A’s state against the
structure features of B.
2) Reading behavior rules of in order to run by
rewriting A’s state.
3) Changing the definitions of B to change the future
behavior of A.
 The RTI-EX package will be designed as the place
to implement above dynamic model reflection. For
reason of space, we leave the design of the RTI-EX
package to another paper. In following sections, we
discuss designs of main packages of the OMCR
framework.

5 Design of DT/RT packages
The design of DT/RT packages is very important for
OMCR framework, because they provide type
information for other OMCR packages. Using a code
generator to generate main contents of the DT/RT
packages is possible. So we need to consider : 1) How
to map UML metamodel elements to Maude class
modules. 2) How to organize the result modules.
 To the first question, because the attributes of
UML metamodel elements can be mapped directly to
corresponding attributes of Maude classes, we
emphasize how to map the relationships of UML
metamodel elements to Maude codes. For example,
Fig. 2 shows the relationships of the metaclass
Behavior in the UML metamodel.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)

RedefinableElement

{union}
+/redefinedElement

 *

Element

{union}
+/ownedElement

 *

Class

Parameter
+ownedParameter

{Ordered,
Subsets ownedMember} *

BehavioredClassif ier
+context 0..1

BehavioralFeature
+specification 0..1

* +redefinedBehavior {subsets redefinedElement}

Behavior
isReentrant : Boolean

Fig. 2. Relationships of the metaclass Behavior

 In Fig. 2, from the view of box (class notation),
there are three kinds of relationships, namely,
inheritance (vertical dimension), composition and
non-composition (horizontal dimension). For using
the object-oriented programming style and rewriting
logic, composition relationships will be implemented
similarly as non-composition relationships besides
additional codes for objects creation and deletion.
The class module for the metaclass Behavior in Fig. 2
is following:
(omod BEHAVIOR is inc CLASS . *** I&P
class Behavior | isReentrant : Bool,

parameters : OidList, *** C
context : Oid, specification : Oid,
redefinedBehaviors : OidList . *** N

subclass Behavior < Class . *** I&P
msg getParameters Oid Oid -> Msg .
msg getContext Oid Oid -> Msg . *** C|N
*** other get/apd/rmv omitted here
vars O X : Oid.
vars EIL PIL GL AL NL OL PL : OidList.
rl : getOwnedMembers(O, X) < O :
Behavior|
elementImports : EIL,
packageImports : PIL,
generalizations : GL,
ownedAttributes : AL,
nestedClassifiers : NL,
ownedOperations : OL,
parameters : PL > =>
getOwnedMembers-r(X, EIL ; PIL ; GL ; AL
; NL ; OL ; PL)

<O : Behavior | > . *** S&I
*** other rules omitted here endom)
 Comments are added to indicate the contributions
from the UML metamodel information, namely, I
stands for inheritance, C for composition, N for
non-composition, P for package, S for subsets
constraint. The subset constraints are always come
with inheritance relationships (marked with S&I).
 To the second question, we map UML metamodel
elements to Maude class modules one by one. For
horizontal relationships, we use the sort OidList that
is independent of type information of the horizontal
relationships, so we needn’t import corresponding

modules. For vertical relationships, the modules of
superclasses have to be imported for inheritance
declaration, rule overriding, etc. Using this mode,
generating a Maude class module for a UML
metamodel element will only need to access limited
meta-information, which makes the code generation
easy to implement.
 As the design of the DT/RT packages, we can also
generate the DTI/RTI packages through code
generators. For reason of space, we omit the design
details of DTI/RTI packages.

6 Design of DTI-Checker package
In this section, we discuss the design of the general
checking flow in the DTI-Checker package. After the
flow is designed, concrete constraints checking rules
can be inserted into the flow, which is an application
of template method pattern. According to the
relationship classification of UML metamodel
elements (Sect. 5), instances of the UML metamodel
elements will be checked in two dimensions (i.e.
composition and inheritance relationships). We first
show the checking flow for an object in the general
object-oriented style, then that in the rewriting logic
style. By comparing them, we present the important
design principles for the DTI-Checker package.
 Figure 3(a) shows the general checking flow for
the object a1 : A1 in the general object-oriented style.
Composition relationships are marked with <<C>>.
Inheritance relationships are marked with <<I>>.
Classes A1 and B1 inherit classes A, B respectively.

b1 : B a1 : A<<C>>

a1 : A1b1 : B1 <<C>>
6:

3:
<<N>>

<<I>>
2:

1:

<<I>>
5:

4:

(a)

pi : Element

pi : PackageImport

p : Element

p : NamedElement

p : PackageableElement p : Namespace

p : Package

<<I>> 1:

3: 2:<<I>> <<I>>

<<I>> <<I>>5: 4:

<<C>>

<<C>>
7:

10:<<I>>

8:

9:

6:
(b)

Fig. 3. General checking flow in the general
object-oriented style (a) and in the rewriting logic

style (b)

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)

 For lack of constructs for procedure invoking in
rewriting logic, the checking flow will be
implemented using additional states coding, such as
the states coding for invoking methods of a
superclass and returning back to the invoking point.
To decrease additional states coding, we propose an
Control Flow Reversed (CFR) design principle:
 Control flows should be reversed as far as possible
to be expressed as message flows in rewriting logic.
 By this principle, we should move the start point of
the checking flow from leaf class to its root
superclass. From the UML metamodel, we can elicit
an observation named Root Generalized
Composition relationship (RGC):
 Whenever there is a composition relationship
between subclasses, the composition relationship
must be generalized to that of corresponding
superclasses by subsets constraints. The root of all
generalized composition relationships is the
association (owner, ownedElements) between the
metaclass Element and itself. See Fig. 2 for an
example.
 Using the CFR principle and RGC observation, the
general checking flow for an object in the rewriting
logic style can be coded in the metaclass Element.
Fig. 3(b) shows an example of checking a package
metaobject p : Package in the rewriting logic style.
For reason of space, we omit the Maude codes for the
general checking flow algorithm.

7 Design of DTI-CT package
In this section, we discuss design principles of model
operations. First, a unified form for model
composition and transformation in rewriting logic is
presented, then the design of model transformation is
discussed.
 Under Maude object-oriented algebraic
specification, when models are described as instances
of the sort Object, model compositions are natural
applications of the mixfix operation (with the empty
syntax __) declared in the mod CONFIGURATION :

subsort Object Msg < Configuration .
op __ Configuration Configuration ->
 Configuration [ctor config assoc comm
id: none]

 Above definition means model composition is just
like object composition in Maude. Putting models of
different metamodels together as an instance of the
sort Configuration, we can combine models without
changing the metamodels or designing special
metamodels for model composition. Definitions of
model transformations are expressed as OM and OC
rules and equations. The running of rules and
equations on models connected by the mixfix

operation gives the meaning to model compositions.
The result model is still in the composite form. Using
Maude reflection, the rules and equations can be
modified at the meta-level and compiled into their
object-level [1], which implements a kind of
higher-order model transformation. The unified
model form for model composition and
transformation in rewriting logic is:

{ }
{ }''

22
'
11

2211

,,...,,,,

)]],,...,,,,([[

nn

Rnn

MTMTMT

MTMTMTo ⇒

Where TypeModelT ∈ , TokenModelMM ∈, ,
()UR ρ∈ , tionSymbolModelOperao∈ .

TypeModel and TokenModel are terms proposed
in [8], which correspond to elements in the DT/RT
packages and DTI/RTI packages. U is the total set
of rewriting rules. R[[]] means using R to interpret
the application of model operation symbol o .
 Model transformation is an important application
of MDA. A lot of model transformation
implementations follow tree-based transformation,
because the composition relationships implicated in
metamodels are the main contribution of the
transformation. In Maude, when using only equations
to do model transformation, we can only use the tree
transformation model. When some dynamic or
shared information (e.g. inherited and synthesized
attributes [9]) are not available in current node, but
needed to fill target nodes, only the tree
transformation model is not enough. As an example,
Figure 4 shows a metamodel of LHS and RHS and
transformation running in rewriting logic.

A1

C1

D1

0..*
C

1

A

B1
0..*

B
0..*0..*

1

(a)

a : A a1 : A1

b1 : B1 c1 : C1

c1-d1 : D1
7 : giveInfo(c1-d1, x)

b : B c : C4 : sendInfoTo(b, c1-d1)
<<N>>

<<C>> <<C>>

5 : apd(a1, c1)3 : trans(b, a1)
2 : trans(c, a1) <<C>> <<C>>

6 : apd(a1, b1)

<>

<>

<> <>

<>un
1 : trans(a)

(b)
Fig. 4. (a) Sample metamodel of LHS and RHS.

(b) transformation implementation for (a)

 In Fig. 4 (a), the dependence associations indicate
source nodes when building target nodes. The node

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)

D1 depends more than one nodes (i.e. B and C). The
node B is shared between the node B1 and D1, so
does the node C. Those phenomena are common in
model transformation, which indicates an
observation :
 Through building the target model is in the order
of a tree with links between the nodes of the tree, the
nodes of source model may not organize in that
order.
 This is one reason that only the tree transformation
model is not easy to deal with model transformation.
The coordination facilities (e.g. OM and OC rules)
for transferring inherited and synthesized attributes
are needed.
 Figure 4(b) shows a running of the transformation
defined in Fig. 4(a). The stereotype <> means
creating target node, other stereotypes are same as
those in Fig. 3(a). Maude message format is used [1].
The first parameter of a message is the object
identifier (of sort Oid) of the target object. The
transformation running is described briefly as
follows:
1) When the message 1 is received by a : A, an OM
rule is fired to create a1 : A1, and send the Oid a1
with the message 2 and 3 to the contained objects.
The message 2 and 3 are for constructing the
inherited attribute Oid of c and b.
2) When the message 2 is received by c : C, an OM
rule is fired to create c1 : C1, c1-d1 : D1 and send the
message 4 to b : B, message 5 to a1 : A1. The
message 5 is for constructing synthesized attribute
Oid of a1.
3) When the message 4 is received by b : B, an OM
rule is fired to send message 7 to c1-d1 : D1 to give
more information to fill it. The OM rules for message
3 and 6 are similar as that for message 2 and 5.
 For reason of space, the Maude codes for above
OM rules are not presented here. As we can see in
above example, it will be much complex to
implement the same transformation in only tree
transformation model. The coordination in model
transformation is another important horizontal
dimension in addition to vertical dimension.

8. Acknowledgements
The research program is financially supported by
National Social Science Foundation of China
(No.05CTQ001), Guangdong Natural Science
Foundation (No.04011304), and Shenzhen Science
Technology Plan (No.200422).

9 Conclusion

Understanding the core concepts of MDA clearly is
crucial to engage in the Model-Driven Development
(MDD). The core concepts include model
instantiation, verification, reflection, composition,
transformation, etc. Based on rewriting logic, an
OMCR (Object Message Concurrent Rewriting)
framework is presented for metamodeling UML. The
framework is divided into seven main packages to
explore the semantics of the core concepts. The
framework may introduce important benefits to the
(usually ambiguous) UML specifications, such as
formal support, provision for rigorous specifications,
and easy access to Maude’s toolkit.

References:
[1] Manuel Clavel, Francisco Durán and Steven

Eker, et al, Maude Manual, v2.1, SRI
International, 2004.

[2] Ambrosio Toval and José Luis Fernández,
Formally Modeling UML and its Evolution: A
Holistic Approach, Formal Methods for Open
Object-Based Distributed Systems IV - Proc.
FMOODS'2000, Kluwer Academic Publishers,
2000, pp. 183–206.

[3] Trygve M. H. Reenskaug, Rudimentary UML
Virtual Machine as a Smalltalk Extension,
Working paper, University of Oslo, Norway,
2005.

[4] OMG, MOF 2.0 Core Final Adopted
Specification, OMG Document ptc/03-10-04,
2003.

[5] OMG, UML Superstructure Specification, v2.0,
OMG Document formal/05-07-04, 2005.

[6] Dirk Riehle, Steven Fraleigh, Dirk
Bucka-Lassen, et al, The Architecture Of Uml
Virtual Machine, Proc. 2001 Conference on
Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’01).
ACM Press, 2001, pp. 327–341.

[7] OMG, UML 2.0 Infrastructure Final Adopted
Specifcation, OMG Document ptc/03-09-15,
2003.

[8] Thomas Kühne, What is Model?, Proc. Language
Engineering for Model-Driven Software
Development. Dagstuhl Seminar Proceedings,
Vol. 04101, Internationales Begegnungs-und
Forschungszentrum (IBFI), Schloss Dagstuhl,
Germany, 2005.

[9] Kenneth Slonneger, Barry L. Kurtz, Formal
Syntax and Semantics of Programming
Languages: Laboratory Based Approach,
Addison-Wesley, 1995.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp379-384)

