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Abstract— A class of cosine modulated filter banks in which all the sub-band filters have linear phase is presented. 
It has only M bands compared to the M2 channel structures so far reported in the literature. The filter bank uses 
only one prototype filter for both analysis and synthesis side and structurally guarantee perfect reconstruction 
property. The formulation is based on DCT-II. The necessary and sufficient conditions for the perfect 
reconstruction and linear phase are derived.  
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1.  Introduction 
Maximally decimated multi-rate filter banks [1]-[3] are 
used in sub band processing of audio, image and video 
signals, analog to digital converters and signal 
compression systems. In a filter bank the analysis 
filters first channelise the  signal to be processed. The 
extracted sub band signals are then decimated and 
processed by a processing unit according to the 
application in hand. This is either stored or transmitted. 
In the receiver side a synthesis filter bank reverses this 
process and reconstructs the original signal    

 When the sub-band filters are modulated versions 
of a prototype filter, such systems are called modulated 
filter banks. Cosine modulated filter banks (CMFB) are 
well known and widely used in practical multirate 
applications due to its inherent design ease and 
computationally efficient implementations based on 
fast discrete cosine transform algorithms. The Perfect 
reconstruction conditions (PR) for a CMFB were 
established in [4]-[8]. The formulation in [5]-[6] does 
not give linear phase analysis and synthesis filters. 
Besides eliminating phase distortion linear phase 
property  permits use of simple symmetric extension 
methods to accurately handle the boundaries of finite 
length signals. Furthermore it leads to better sub band  

 

processing performance and  more efficient 
implementation . To get linear phase sub filters the 
structure proposed in [7]-[8] uses a peculiar M2 -band 
structure with sine and cosine modulation. 
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Fig.1. Proposed filter bank structure 

In this paper  the PR conditions for a M -Channel 
CMFB with linear phase sub filters are derived using 
the general framework given in [9]. The proposed filter 
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bank uses only M -channels, all the filters are linear 
phase, uses single modulation using an orthogonal 
transform and only one prototype filter.  

This paper is organized as follows: In section 2, 
classical CMFB is reviewed. Section 3, covers the 
general theory of the proposed linear phase CMFB. 
Section 4 presents the prototype filter design and 
results and section 5 concludes the paper. 
Notations: Bold letters indicate vectors and 

matrices. Matrix Im represents a m × m identity matrix 
.The notation AT represents transpose operation and 
tilde operation on a polynomial E(z) is defined as 

,where ∗ denotes conjugation of the 
coefficients [1].  is the reversal matrix as  
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2.   Cosine modulated filter banks 
An M -Channel maximally decimated filter bank is  
PR  if the analysis poly-phase matrix is invertible [1]. 
That is       where  
and  are the synthesis and analysis poly-phase 
matrices respectively. In a CMFB all the channel filters 
are modulated versions of a prototype filter. A typical 
CMFB generates the analysis filters, , and the 
synthesis filters  by the modulation of a linear 
phase low pass prototype filter  as follows [1]. 
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   ,   10 −≤≤ Mk 10 −≤≤ Nn ,  

 
PR is obtained when satisfies the following 
constraint [5]-[8]. 
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where  is the n)(zGn
th type 1 polyphase component 

of .But the   individual filters do not have linear 
phase even though the prototype filter is symmetric. 

)(zH

The linear phase CMFB reported in [7]-[8] has two 
subsystems in which first subsystem has M+1 channels 
and the second has M-1 channels or vice-versa. These 
use cosine modulation for one subsystem and sine 
modulation for the next. Also shifting of the window in 
[7]-[8] for the sine modulated filters introduces 
additional complexity in the handling of finite length 
signals [10]. The redundancy in this filter bank is 
evident. 

 

3.  M-channel  CMFB with linear-phase 
sub-band filters  
Schuller and Smith[9] have given a compact 
representation of classical filter banks. Fig. 1 shows the 
proposed M -channel filter bank using that structure. 
The input is represented as a row vector composed of 
sampled input   sequences  

x(n) =[ )1()..1(),( −++ MnMxnMxnMx ]  

  where  n, may be viewed as the index of  sequences 
.1,...1,0),( −=+ MmmnMx .With this definition it is 

clear from Fig.1  that the output of the block  is aP
].),........(),([)( 110 −= Mynynyny . 

 Let the Z transforms of and be  )(nx )(ny
)],(),.......(),([)( 110 zXzXzXz M −=X  

)](),......(),([)( 110 zYzYzYz M −=Y  respectively. The 
block denoted as  in Fig.1 is  an aP M × M  matrix  
formed from the analysis filters. The filter length is 
assumed to be integer multiple of M . Arbitrary length 
can be incorporated by padding zeros while forming 
the block elements. The matrix  has the form aP
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The matrix elements are polynomials defined as 
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where  is a positive integer such that filter             
length

L
LMN = .Similarly the matrix  for the             

synthesis bank is 
Ps
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with the elements 
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Let Z  be the z transform of the vector at the output 

of the block , then the  analysis is represented as 
 and reconstruction process as . The 

sub-band filters in a modulated filter bank have the 
form  where is the 
modulation kernel with ,

Ps
XPaY = YPsZ =

),().()( knTanhnhk = ),( knTa
10 −≤≤ LMn 10 −≤≤ Mk . 

Let   be a block ),( knTa M   transform  and Fa be a 
MM ×   matrix   such that  and 

,  and  being the  inverses of  and 
 respectively.   The  block transform chosen is   

Fa.TaPa =
Ts.FsPs = Ts Fs Ta

Fa
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The modulated analysis filters considered are 
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 For simplicity consider an even channel filter bank 

with filters of length where m is a positive 
integer. It is easy to verify that all the analysis filters 
have linear phase.  

mM2

The Type I 2M-polyphase representation of the 
prototype filter H(z) is  
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The Type I   polyphase matrix of the analysis section 
is [1], 
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Since  , for perfect reconstruction, only the 
conditions for the existence of  are to be 
investigated. A direct inverse leads to IIR synthesis 
filters. To get FIR solutions certain conditions are to be 

TTaTs =
1Fa−
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imposed on the prototype filters as is shown below. 

Equation (16) can be written as   = , where Fa FDJ
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Both D and  have simple inverses. . For a linear 
phase prototype filter 
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For perfect reconstruction with FIR synthesis filters  
the determinant should be a monomial and 

 where  is the delay to make the 
system causal and c  a non-zero constant . Applying 
these conditions and solving for the inverse and using 
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Fig.2 Frequency response of the prototype filter 
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Fig.3. Frequency responses of analysis filters 
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Fig.4. Impulse response of analysis filters. 

 

 

Fig.5 Transfer function 
 

 
 Since the prototype filter is symmetric from (21) 

and (23) the coefficients in both F  and  are the 
same and the matrix has coefficient symmetry. 
Therefore from (9) and (23) the synthesis filters are 
also modulated versions of the same prototype filter 
and have linear phase. Causality is achieved by 
introducing sufficient delay into (23). So the system is 
PR if (24) is satisfied. 

1F −

 

 
4.  Prototype filter design 
Modified form of the algorithms described in [11] may 
be used for the prototype filter design with constraint  
(24).  The frequency response of a linear phase 
prototype filter satisfying the PR condition (24), 
obtained for M=8, length=32 taps, is shown in Fig.2. 
Frequency response and impulse response  of the 
analysis filters are shown in Fig 3  and Fig.4  
respectively.. The overall transfer function of the filter 
bank is shown in Fig.5. 
 
 

5.  Conclusion 
The theory and design of a  class of M -channel cosine 
modulated filter banks with linear phase analysis and 
synthesis filters is presented.  The filter bank uses only 
one prototype filter for both analysis and synthesis and 
structurally guarantees perfect reconstruction property. 
Since DCT-II is used for the formulation, efficient 
implementation and wide range of applications are 
possible. Results show that prototype filters with good 
response and PR can be obtained with the constraints 
derived. 
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