
Integrating Network QoS and Web QoS to

Provide End-to-End QoS
Wang Fei Wang Wen-dong Li Yu-hong Chen Shan-zhi

State Key Lab of Networking and Switching ,
Beijing University of Posts & Telecommunications,

Beijing 100876,
CHINA

Abstract: To provide end-to-end QoS guarantees, it is not sufficient to provide QoS in the network
layer or in the web servers alone. This paper analyzes and studies web QoS and network QoS, and
proposes a scheme which considers both network QoS and web QoS. The scheme can provide the
end-to-end QoS.

Keyword: Network QoS, Web QoS, MPLS,Diffserv

1 Introduction

With the evolvement of the E-commerce, the
Internet is undergoing substantial changes from a
communication and browsing infrastructure to a
medium for conducting business and selling services.
These changes place the Web server at the center of
the E-commerce infrastructure with increasing
requirement s for providing service differentiation
and performance assurance. So web servers must
have mechanisms and policies for establishing and
supporting QoS. In addition, to provide end-to-end
QoS guarantees, it is not sufficient to provide QoS in
the network layer or in the web servers alone.

In this paper, we propose a scheme which
considers both network QoS and web QoS in order to
provide the end-to-end QoS.

The organization of this paper is as follows. In
section 2, we describe our web server with QoS
model. In section 3, we discuss network QoS. We
propose a framework integrating network QoS and
web QoS in section 4 and conclude in section 5.

This work was supported by the National Natural Science
Foundation of China (No. 60472067), the National 863 Program
of China (No. 2005AA 121630) and NCET-04-0113.

2 Web Server with QoS Model

Web servers are increasingly serving dynamic web
pages.They run servlets, scripts, beans etc to generate
web pages. In order to provide guaranteed response,
this processing must be done according to some QoS.
In our model, each HTTP request determines the
QoS by the connection manager[1].

The connection manager uses request
classification policy to determine the QoS to be
provided to the HTTP request. Once the required
QoS is determined, an admission control decision has
to be made. Requests are then queued up in the
appropriate queue. There are priority classes, and the
request is placed in one of them. Once queued, the
processing of these requests depends upon the
scheduler[2]. When the reply is ready to be
transmitted back, the appropriate DiffServ marking is
set on the socket to be used. This marking indicates
to the underlying the network QoS that is expected
by the transmitted packets. Figure 1 depicts the
procedure[3].

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp212-216)

嗫

HTTP

request Connection

Manager

Admission

Control

Queue 1

Queue 2

Queue n

Scheduler

Request

Classification

CPU

execution
Diffserv

Making
Transmit

Fig. 1 Web Server with QoS Model

2.1 Connection Manager

The connection manager intercepts all requests
and classifies the requests and places the requests on
the appropriate queue. Since all requests must be
accepted by the connection manager it is essential
that the connection manager runs frequently enough
to keep request queues full. If the connection
manager does not run frequently enough worker
processes may execute requests from lower classes
because all the requests from higher classes have
been processed even though there may be top-class
requests waiting to be accepted. This results in a
server that is more “fair” but may allocate server
processes to lower-priority work, and thus make it
difficult to quickly respond to newly arriving
premium requests, thereby violating the preferential
treatment policy.

2.2 Request Classification

A key requirement to web server with QoS is the
ability to identify and classify the incoming requests
of different classes. There are several ways to
classify requests. These classification mechanisms
can be divided into two categories, user class-based
or target class-based. User class-based classification
characterizes requests by the source of the request;
target class-based classification classifies by the

content or destination of the request[4].

2.2.1 User class-based classification

The client IP address is used to distinguish one
individual client from another. This method is the
simplest to implement. However, the client IP
address can be masked due to proxies or fire walls,
so this method has limited application.

HTTP cookies, a unique identifier sent to the
browser, can he embedded in the request to indicate
to which class the client belongs. For example, a
subscription to a particular service is implemented as
a persistent cookie. A cookie can also be used to
identify a session that has been established for
session-based classification.

Browser plug-ins can also embed special client
identifiers in the body of each HTTP request. Such a
plug-in could be downloaded by clients who have
paid for a subscription to premium service.

2.2.2 Target class-based classification

The URL request type or filename path can he
used to classify the relative importance of the request.
In this case the sender of the request is irrelevant.
Content can be classified as mission-critical,
delay-sensitive, or best-effort. This would allow
e-commerce purchase activities, for example, to have
higher priority than browsing activities.

Destination IP addresses can he used by a server

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp212-216)

when the server supports co-hosting of multiple
destinations (Web sites) on the same node.

2.3 Admission Control

When the server processing rate falls behind the
client demand rate, the server becomes unresponsive
to both premium and basic classes. To protect the
server from high client loads some requests must be
rejected. Naturally, basic requests rather than
premium requests should be rejected first, and
existing sessions should be maintained. Admission
control of basic requests is triggered when the server
starts to be loaded.

2.4 Request Scheduling

After requests are classified according to one of
the above classification schemes and admitted by
admission control, the server must actually realize
different service levels for each class of requests.
This is done by selecting the order of request
execution. Workers are autonomous processes that
select requests to process based on the scheduling
policy. The scheduling policy may depend on queue
lengths. Worker processes may be able to execution
requests from any class, or, to reserve capacity for
higher-class processes, they may be restricted to
executing premium-class traffic. Below we outline
several potential policies[4].

Strict priority schedules all higher-class requests
before lower-class requests even when low-priority
requests are waiting.

Weighted priority schedules a class based on its
weighted importance. For example, one class will get
twice as many requests scheduled if its class weight
is twice another’s.

Shared capacity schedules each class to a set
capacity, and any unused capacity can be given to
another class. The class may also have a minimum
reserve capacity that cannot be assigned to another
class.

Fixed capacity schedules each class to a fixed
capacity that cannot be shared with another class.

Earliest deadline first establishes schedules based
on the deadline for completion of each request. This
can be used to give predicted response time
guarantees.

3 Network QoS

IETF has done a lot of work in standardizing
mechanisms to provide QoS for IP networks. By now
two QoS architectures have been specified:
Integrated Services (IntServ) and Differentiated
Services (DiffServ). The IntServ approach can not be
deployed in large-scale Internet backbones. So we
adopt DiffServ as the basis of QoS mechanism. Our
framework is based on the below assumptions.

3.1 Assumptions

(1) Internet backbone is MPLS network supporting
DiffServ.

(2) Access networks are configured as DiffServ
network.

(3) Internet backbone has enough resources to
supply QoS guarantee.

3.2 Diffserv over MPLS

RFC3270[5] specifies a solution for supporting the
Diffserv Behavior Aggregates whose corresponding
PHBs are currently defined over an MPLS network.
This solution also offers flexibility for easy support
of PHBs that may be defined in the future. This
solution relies on the combined use of two types of
LSPs: E-LSP and L-LSP.

A.E-LSP(EXP-Infered-PSC LSP)
 LSPs which can transport multiple Ordered

Aggregates, so that the EXP field of the MPLS Shim
Header conveys to the LSR the PHB to be applied to
the packet (covering both information about the
packet's scheduling treatment and its drop
precedence).

B.L-LSP(Label-Only-Infered-PSC LSP)
 LSPs which only transport a single Ordered

Aggregate, so that the packet's scheduling treatment

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp212-216)

is inferred by the LSR exclusively from the packet's
label value while the packet's drop precedence is
conveyed in the EXP field of the MPLS Shim Header
or in the encapsulating link layer specific selective
drop mechanism (ATM, Frame Relay, 802.1).

In E-LSP, LSR may obtain TOS(type of service) of
packet from header label of MPLS direct. It doesn't

need to modify the structure of existing
ILM(Incoming Label Map) and FTN(FEC To
NHLFE). So we adopt the mode of E-LSP.

4 The Integrating Network QoS and

Web QoS

client

LSR

LSR

LER

LER Access Network

(Diffserv domain)

ER

Web server

LER

MPLS Network

(Diffserv domain)

ER

Fig. 2 the QoS framework integrating network QoS and web QoS

Note:

ER — Edge Route; LER — Label Edge Route; LSR — Label Switch Route;

The web server determine the reply Diffserv
making. LER classifies the traffic and aggregates
into BA, and mark by DSCP in the backbone
network. Then packet is transmitted by E-LSP. When
the traffic leave the backbone network, it enter access
network through SLS negotiation between access
network and backbone network. ER of access
network reclassifies the traffic and aggregates into
BA, and mark by DSCP. Core routers transmit packet
through PHB related per BA. The reply is sent to the
client finally.

5 Conclusions

In this paper, we propose a scheme which
integrates network QoS and web QoS to provide the
end-to-end QoS. In our model, each HTTP request m
determines the QoS by the connection manager on

the basis of request classification policy. Once the
required QoS is determined, an admission control
decision has to be made. Requests are then queued
up in the appropriate queue. When the reply is ready
to be transmitted back, the appropriate DiffServ
marking is set on the socket to be used. This marking
indicates to the underlying the network QoS that is
expected by the transmitted packets.

In future work, we will use the system parameters
to integrated network QoS and web QoS.

Reference:
[1] N. Bhatti and R. Friedrich. Web server support
for tiered services. IEEE Network,
September/October 1999.64~71
[2] V.R. Subramaniam and C.K. Tham. Integrating
Network QoS to Provide Differentiated Service in a
Web Server. IEEE,2002.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp212-216)

[3] C.K. Tham and V.R. Subramaniam. Integrating
Web Server and Network QoS to Provide End-to-End
Service Differentiation. IEEE,2002.
[4] C. Lin, Z.G. Shang and F.Y. Ren. QoS of
Computer Network. TsingHua Publishing

Company,2004
[5] F.L. Faucheur and B. Davie, et al. Multiprotocol
Label Switching Support of Differentiated Service.
RFC 3270,2002

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp212-216)

