
A Reliable Task Scheduling Scheme For Sensor-based Real-time
Operating System

YINGWU WANG, XIAOHUA LUO, KOUGEN ZHENG, ZHAOHUI WU, YUNHE PAN

College of Computer Science
Zhejiang University

Hangzhou, Zhejiang Province 310027, China

Abstract: - The emergence of wireless networked sensors constitutes a hot research topic in embedded system
design. Although system resource is seriously limited, operating system applied in sensors has to implement
complex task scheduling, which should support concurrent operations, real-time constraint, adaptability and
reliability. In this paper, we present a reliable OS scheduling scheme for wireless networked sensors. According
to the analysis of operating model and task set of wireless networked sensors, a primary and subordinate
two-level task-scheduling scheme is implemented to schedule time-critical and non-time-critical tasks, and an
admission control policy is employed to meet hard real-time requirement of some real-time tasks. Furthermore,
based on this scheme, some fault tolerance strategies are outlined to improve reliability at run time, including
fault tolerance analysis, admission control based on fault tolerance, fault detection, and fault recovery.

Key-Words: - scheduling scheme, real-time, wireless network sensor, fault tolerance

1 Introduction
The capability to sense environment is a critical
element of pervasive computing [1]. Embedded
objects that support pervasive computing are more
and more equipped with computational power that
allows them to be smart devices with the ability to
interact with their environment. One of the most
challenging research fields is wireless networked
sensors.
A typical wireless networked sensor is usually made
up of four basic components: a sensing/actuating unit,
a processing unit, a communicating unit and a power
supply unit. These sensors have two remarkable
characters: limited in size and autonomous in
operation. In spite of the resource limitation, the tiny
sensors have to execute complicated autonomous
operation, and it should meet the requirements of
concurrent operation, real-time constraint, and
self-adaptability. And also, since these tiny devices
are usually numerous and largely unattended, they
will be expected to be operational for a large fraction
of the time without human intervention. Furthermore,
error recovery is often too complex to apply in
sensors, there is no real recovery mechanism except
for automatic reboot, and great efforts should be
taken to improve their fault tolerance and reliability.
Small physical size, modest active and power load
are provided by the hardware design. And the
concurrency-intensive operation and real-time
constraints should be implemented by software. A
tiny operating system is needed, which not only

retains these characteristics by managing the
software/hardware effectively, but also provides a
scheduling scheme to achieve efficient reliability and
robustness. Reliability can also be achieved through
redundancy. However, due to the seriously limitation
in weight, space, power and cost, traditional
hardware redundancy techniques can not be applied
in wireless networked sensors. Thus, it is essential for
software to enhance the reliability of individual
devices.
OS scheduling scheme in traditional embedded
systems are well-studying today. However, in small,
low-power and embedded wireless networked
sensors, it is quite a different novel region to study.
To meet this requirement, we present an embedded
operating system γOS, in which we concepts and
provides a flexible and reliable scheduling scheme
for tasks with different time constraint.

2 Related Work
A large amount of work has been completed on
developing wireless networked sensors, especially
the operating system for tiny sensors [2, 3, 4, 5].
Creem[2] and pOSEK[3] are typical real-time
operating system designed for deeply embedded
systems, but their control-centric design is very
different from dataflow-centric design in networked
sensors.
TinyOS [4], with its component-based architecture,
tasks and event-based concurrency and split-phase

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)

mailto:@cs.zju.edu.cn

operations, is applicable for dataflow-centric
applications. However, it simply uses a LCFS events
scheduler and a non-preemptive FIFO tasks
scheduler to manage sensor operation. Adaptability
and fault tolerance has not been considered.
MANTIS OS [5] resembles classical, UNIX-style
schedulers. However, it still does not consider fault
tolerance for sensors adequately.
As we mentioned above, reliability is very important
for wireless networked sensors. To improve
reliability, many scheduling algorithms have been
proposed to achieve executing efficiency and fault
tolerance in real-time embedded systems. Generally,
some typical scheduling algorithms include three
broad categories [6]: static scheduling, dynamic
scheduling, and scheduling of imprecise
computations.
A static scheduling is calculated off-line and fixed for
the life of the system, its adaptability is poor. A
dynamic scheduling makes its scheduling decisions
at run time based on requests for system services,
such as RMS (rate-monotonic scheduling) [7] or EDF
(earliest deadline first) [8]. Although microprocessor
in sensors is seriously restricted in computation
power, it is necessary to execute complex tasks with
precedence, synchronization, and exclusion
constraints under certain condition. It is still difficult
to not only assure the schedulability of tasks, but also
meet the requirement of restricted-resource. To meet
these requirements, γOS presents a new task
scheduler, which applies the RMS algorithm to
schedule time-critical tasks and adopts an admission
control policy to meet their real-time requirements,
and fault tolerance based on this scheme is also
considered.

3 Task Model Analysis
The emergence of wireless networked sensors has
created a wide space of new problems in systems
design. γOS is an embedded operating system
developed specially for these tiny devices. Therefore,
it should meet the special application requirements.
Often, the processor and other resources used in such
applications are shared by a certain number of
time-critical monitoring and control functions and a
number of non-time-critical jobs.
We define a task as a basic logic unit of programming
that an operating system controls. It is a schedulable
entity which can be appointed with priority and will
compete with other concurrent tasks for processor
execution time. Figure 1 shows the sensor task
model.

Memory

MCU

Processing Module

Transmitting Task

Transceiver

Sensory Task

Command Task

Data collecting module

Sensory
Device ADC

Actuator module

Actuator
Device DAC

Actuator Task
Fig.1 sensor task model

In γOS, Tasks can be classified into four types:
l Sensory task Ts denotes the task that collects

information from environment, and processes the
collected information. Task set Ts = { Ts1, Ts2, … ,
Tsn },

l Actuator task Ta denotes the task that generates
control signals for the actuator devices and
operates the actuator devices. Task set Ta = { Ta1,
Ta2, … , Tan }

l Command task Tc denotes the task that takes
actions according to the commands from other
sensor nodes or central machine. Task set Tc =
{ Tc1, Tc2, … , Tcn }

l Transmitting task Tt denotes the task that
transmits data by transceiver, including
publishing the services and status information, or
sending required data to subscribers. Task set Tt =
{ Tt1, Tt2, … , Ttn }

The whole task set T = { Ts, Ta, Tc , Tt }.

Table 1 Analysis of the task set of wireless sensors

Task Ta Ts Tc Tt
Activation Periodic Periodic Sporadic Sporadic
Priority High High Low Low
Deadline Actuating

interval
Collecting
interval

None None

WCET ta+ tDA tAD+ ts+ tp tp + tt tp + tt
Resource
conflict

Actuator
device,
Processor,
DAC

Sensory
device,
Processor,
ADC

Processor,
Transceiv
er

Processor,
Transceiv
er

Triggered
by

Timely
interrupt

Timely
interrupt

Command
interrupt

Posted by
Ts or Tc

tDA and tAD denotes D/A or A/D converting time, ts
denotes sensing time, ta denotes actuating time, tp
denotes data processing time, tt denotes data
transmitting time

Table 1 shows the property analysis of the task
set.Task Ts collects and processes information from
environment. It is periodic and triggered by timer.
The deadline of Ts is usually the periods of collecting
operations. Task Ta generates control signals and
operates the actuator devices according to the
processed data from Ts, or the command from Tc.
The deadline of Ta is usually the periods of activating
operations. For example, in a temperature control
system, if the sensory devices of the sensors detect

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)

that the environment temperature exceeds a certain
bound, the actuators of the sensors must be activated
in time to impact the temperature of the environment.
Task Ts and Ta are time-critical, and all the Ts and Ta
tasks have higher priority than the Tc and Tt tasks.
The priority level of task Tai is higher than that of Tsi,
for the task Tai is usually more critical than Tsi, in the
case that it is activated.
Task Tc responds the request or command from other
sensor nodes or central machine, and processes the
received data from other sensor nodes. Task Tc is
activated when the sensor receives command from
other sensor nodes or central machine. Task Tt
publishes the service and status information of the
sensor node, transmits the requested data to other
sensor nodes. Task Tt is posted by Ts when the
system status has changed or by Tc when sensor data
are requested by other devices. Task Tc and Tt are
non-time-critical, and all the Tc and Tt tasks have
lower priority than the tasks Ts and Ta. The priority
level of task Tci is equal to that of Tti.

4 Scheduling Scheme Implementation

4.1 Basic Analysis
According to the above analysis, the scheduling
scheme and priority policies for γOS should meet the
following requirements:
l The scheduler should support periodic tasks and

sporadic tasks scheduling.
l Ta and Ts tasks are time-critical and should meet

their real-time constraint.
l Tc and Tt tasks are non-time-critical.
l The task priority level is: Ta> Ts > Tt = Tc.
l The priority levels of Ts tasks are based on their

periods. The Ts with shorter period is appointed
with higher priorities.

l The priority levels of Ta tasks are based on their
periods. The Ta with shorter period is appointed
with higher priorities.

l Let Ts1, Ts2, … , Tsm denote a set of
priority-ordered tasks with Tsm being the task with
the lowest priority.

l Let Ta1, Ta2, … , Tam denote a set of
priority-ordered tasks with Tam being the task
with the lowest priority.

l Task Ts with data processing commonly more
complex than task Ta, so we can assume the
execution time of Ta task is shorter than that of Ts
task.

l Admission control policy should assure the
schedulability of task set when it is changed by
the arriving of new task.

4.2 Scheduling Scheme
γOS scheduler provides two-level task scheduling
scheme, which includes primary task scheduling and
subordinate task scheduling, to isolate time-critical
tasks and non-time-critical tasks.
The primary task scheduling is responsible for
scheduling the task Ta and Ts, and a background task
Tb. The primary task scheduling must meet the
requirement of time constraint of task Ta and Ts. In
the primary task scheduling, task Tb is imported to
isolate time-critical tasks and non-time-critical tasks.
Tb possesses the lowest priority level. When task Tb
is scheduled, the processor switches to subordinate
task scheduling. There are many existing scheduling
schemes [9] which can be adapted to primary task
scheduling. Based on the analysis in section 4.1, RM
scheduling algorithm [7] is adapted.
The subordinate task scheduling is responsible for
scheduling the lower priority task Tc and Tt. Tc and
Tt tasks are non-time-critical. Tci and Tti have equal
priorities and can not preempt each other. Tc and Tt
can be preempted by time-critical task Ta and Ts. The
“First Come First Served” (FCFS) policy is adapted.

Table 2. An instance of task set

Task Priority Period CPU
time

Legend

Ta High 6 1
Ts Med High 8 2
Tc Low Sporadic 2
Tt Low Sporadic 5

6 12 180
primary

level

subordinate
level

6 12 180

Ta Ts

Tb

Tt Tc

Tidle

Figure 2. Basic scheduling of a task set

Table 2 listed an instance of task set which contains
four tasks: one Ta task, one Ts task, one Tc task and
one Tt. The priority level of every task is assigned as:
Ta > Ts > Ts = Tt. Figure 2 shows how the instance is
scheduled. The blank section task Tidle indicates idle
of the processor. If Tidle is scheduled, the processor
will enter a sleeping mode, which will greatly reduce
power consumption of sensors. Using the two-level
task scheduling policy, time-critical task set Ta and
Ts can be efficiently distinguished from
non-time-critical task set Tc and Tt. Furthermore,
priority ceiling protocol [11] is adapted to avoid the
problem of priority inversion and deadlock.
The impact of interrupt service routines(ISR) is also
needed to be considered, for the ISR may expend

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)

much CPU time in resource restricted sensors. For
instance, three types of interrupts are considered in
γOS. There are two timer interrupts Ita and Its, Ita
triggers task Ta timely, and Its triggers task Ts timely.
The second is command arriving interrupt Ic, which
indicates that a new command has arrived. The third
is transmission completion interrupt It, which
indicates that the data transmission has been
completed. Furthermore, The A/D and D/A
conversion interrupt are also considered. IAD indicates
task Ts that the AD conversion has been completed,
and IDA indicates task Ta that the DA conversion has
been completed.

4.3 Admission control policy
When a new task is triggered, the status of whole task
set is changed. The schedulability of the whole task
set must be discussed, especially for the real-time
task set. In γOS, we mainly discuss the schedulability
of the real-time task set. An admission control policy
is applied to assure the schedulability of the changed
task set. The tasks in primary task scheduling level
are hard real-time, they must be considered under
admission control policy administration. In the basic
RMS, Liu and Layland [7] have derived a simple
schedulability test based on the resource utilization
by the task as shown in (1).

()121 −≤ nnU (1)
For the task set we described in section 3, Ta task set
can be denoted as Ta1 (Ca1, Pa1), … , Tan (Can, Pan),
where Cai denotes the execution time of task Tai, Pai
denotes the period of task Tai, and 1+≤ ii PaPa ,
i=1,2,…,n-1. Ts task set can also be denoted as Ts1
(Cs1, Ps1), … , Tsn (Csn, Psn). In terms of the task in
primary scheduling level, the utilization factor is as
shown in (2).

∑∑
==

+=
n

i
ii

n

i
ii PaCaPsCsU

11

 (2)

Task Tb is a background task without deadline, so it
is not considered in schedulability test. The
shortcoming of the equation (2) is that it does not take
the effect of the resource access control protocol and
interrupt service routines (ISR) into account.
According to the result proved by Sha, Rajkumar and
Lehoczky [10], the primary task scheduling using the
priority ceiling protocol can be scheduled by the
rate-monotonic algorithm if the following condition
is satisfied:






 −≤









++∑∑
==

12,,,,,max
1

1

1

1

1

11

n

n

n

n

n

n

i
ii

n

i
ii

n
Pa
Ba

Pa
Ba

Ps
Bs

Ps
Bs

PaCaPsCs

LL

(3)

In inequation (3), Bsi and Bai separately denotes the
worst case blocking time of task Tsi and Tai. The
value of Bsi and Bai are determined by the scheduling
scheme and resource access policy. Considering that
the priority ceiling protocol is adopted, Bsi or Bai is
the worst access time of the resource possessed by
lower priority task. In γOS, the worst access time for
all the resources, can be determined approximately,
let Bw denotes it. Therefore, we can simplify the
calculation in a pessimistic way shown in (4):

()121

min11
−≤++∑∑

==

nw
n

i
ii

n

i
ii n

P
BPaCaPsCs (4)

In inequation (4), Pmin is the minimal interval of all
the Ta and Tc tasks.
Now, we consider the effect of ISRs. Let CIa, CIs, CIc
and CIt denote the worst ISR execution times of
interrupt Ita, Its, Ic and It. PIa, PIs, PIc and PIt denote
the minimum triggered intervals. So the admission
control algorithm of γOS can be adjusted as:

()121

min

11

−≤++++

++∑∑
==

n

It

It

Ic

Ic

Is

Is

Ia

Iaw

n

i
ii

n

i
ii

n
P
C

P
C

P
C

P
C

P
B

PaCaPsCs
 (5)

Inequation (5) is too pessimistic for most cases.
Whether for Ta task or for Ts task, the actual
executing time is greatly less than WCET in most
cases. For example, in temperature control sensor
system, Ta task is activated only when the
environment temperature exceeds a certain bound.
The time saved by short Ta and Tc task, named slack,
can be assigned to the background task Tb, which
ensures Tt and Tc tasks could be executed. No
admission control policy is currently considered for
the subordinate task scheduling as the tasks Tt and Tc
are not time-critical.

5 Fault Tolerance Implementation
Fault tolerance is increasingly important in modern
autonomous sensor system. In a typical deployment,
hundreds of sensors will be expected to work
unattendedly for a long period. Though sensors are
resource restricted, fault tolerance should be
considered enough.
Generally, there are three kinds of faults: permanent,
intermittent, and transient faults. Most permanent
faults are due to the breakdown of computing unit.
Usually, they are resolved by hardware redundancy.
Transient faults are hard to detect, but significantly
more frequent than permanent faults [11]. The
incorrect data race, unexpected temporary hardware
errors can be the cause. Intermittent faults are
nightmare for micro embedded sensors. But

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)

sometimes, it is the result of repeated transient faults.
Therefore, γOS pay attention on the tolerance of
transient faults by adding time redundancy to
reexecute the wrong task. More research has been
conducted on detecting and tolerating faults using
both hardware [12] and software [13].

5.1 Fault Tolerance Analysis
Since γOS focuses on the implementation of transient
fault tolerance by reexecuting the wrong task, two
attribute requirements should be considered in the
task model for fault tolerance.
l Time redundancy: The reserving time should be

adequate to reexecute the task. This condition can
be converted into a scheduling problem where the
schedule scheme should guarantee error recovery
from transient faults by providing sufficient
backup time for re-execution [14].

l Data integrity: The shared variables and status
information should be backuped to reexecute the
task. Each task instance maintains two copies of
status information and variables, named
primary/backup data block, to support fault
tolerance.

When a task is firstly invoked, the two blocks are
initialized with the same data. The primary block is
updated synchronously according to the task
executing. If the task is finished successfully, the
primary block will contain information that indicates
the task is finished successfully, and next task can be
scheduled. If not so, the γOS will reexecute the task
based on the backup data block. For example, if a
task fails to operate actuator device at first time, it can
be re-scheduled till it executes successfully.
Once a new task arrives, the admission control starts
to test whether this new task can be dispatched, and
decide the schedule strategy according to the result of
evaluation. In a general way, the typical RMS is
adapted to schedule active tasks in the primary level.
When a task is terminated, a fault detection
mechanism detects whether a fault occurred during
the task execution. If time-critical tasks, such as Ts or
Ta, are terminated with errors, scheduler would
reexecute them under certain fault recovery scheme.
For Tc and Tt are not time-critical, they can be
re-execution more freely.

5.2 Admission control
The system needs to reserve some extra utilization
for the re-execution to tolerate transient fault. The
tasks can be guaranteed to meet their deadlines under
an assumption of minimum fault interval if the
following condition is satisfied [15].

() ()msxLL

n

i
ii UUUaUc −≤+∑

=

1
1

 (6)

In inequation (6), ULLdenotes the Liu and Layland
bound, and Umax is the backup utilization of task (Umax
= max{Ui}) to protect Ta and Ts task from faults.
Based on the discussion in section 4.3, the admission
control policy can be improved to the following
condition.









−−≤+++

+++∑∑
==

min
max

min11

1
P
BUU

P
C

P
C

P
C

P
C

P
BPaCaPsCs

w
LL

It

It

Ic

Ic

Is

Is

Ia

Ia

w
n

i
ii

n

i
ii

 (7)

For tasks Tt and Tc are non-time-critical, Admission
control policy in the subordinate task scheduling
level can be achieved by using buffer queue. New Tt
and Tc tasks can be queued to wait for the assignment
of processor, I/O or communication resources.

5.3 Fault Detection
To provide fault tolerant capabilities, the methods of
detecting failures must be implemented first. A task
status structure is added to record task information.
When a fault occurs, error information will be
recorded in task status structure. An exception
handler, a safety monitor, and even the task itself, can
complete this operation. After the task procedure is
terminated, the task status structure should be
checked to estimate whether a fault occurs. If so, the
scheduler then decides how to deal with it, simply
abandon it or reexecute it.
Actually, wireless networked sensors are resource
restricted devices used to monitor and control
environment. In terms of non-time-critical tasks, a
better choice is to abandon them and wait for the next
same type task.

5.4 Fault Recovery
Once a task terminates and fault information is found
in task status structure, γOS scheduler will evaluate
the task. There are three strategies can be employed:
l Simply abandon, such as some Tc and Tt tasks that

can not be accomplished in time limit. They will
be invalid in the next period.

l Reexecute with some delay, including some
backup Tc or Tt tasks. They are crucial, but not
time-critical. Once a fault occurs, they can be
reexecuted with its original subordinate priority.

l Reexecute immediately, such as some Ta or Ts
tasks that are crucial and time-critical. To finish
them within time limit, scheduler will reinitialize
and reactivate the task according to backup data
block, and reexecute it immediately.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)

The third kind of operation is the most complicated.
In section 4.3 we have mentioned slack saved by
short task Ta and Ts. Fault recovery can be achieved
by adding time redundancy. One general approach of
fault-tolerance is to make sure that there is enough
slack time to allow for the re-execution of fault task.
Slacks are distributed throughout the schedule in the
form of backup slots at each period boundary. [15]
showed that the following conditions must hold true
to ensure re-execution of any one faulty task:
l For every task Ti, a slack of at least Ci should be

present between kTi and (k+1)Ti.
l If there is a fault during the execution of task Ti,

the recovery scheme should enable task Ti to
reexecute for a duration Ci before its deadline.

l When a task reexecutes, it should not cause any
task to miss its deadline.

Let UB denotes the backup utilization for any task.
[15] has proved that if UB = max{Ui} and recovery
scheme RS is adopted then the above conditions will
be satisfied. The recovery scheme RS is that any
instance of a task that has a priority higher than that
of task Ti and a deadline greater than Di (deadline of
task Ti) will be delayed until recovery is complete.

S1 C1S4C1 C1S3S2C1

C2

C1 S4C1 C1 S3S2C1

C2

S1

(a) before swapping of C1 and slack

(b) after swapping of C1 and slack

D2

D2

Fig. 3. An instance of fault recovery by swapping slack

Fig. 3 shows an example of fault recovery applying
RS on two tasks T1 and T2, in which C1 and C2 are the
execution time of T1 and T2 separately, D2 is the
deadline of task C2, Si is the slack time of each period
boundary. This figure illustrates that if T2 fails then it
can be re-executed using the swapped slack before
deadline.

6 Conclusion
In this paper, we proposed a task scheduling scheme
for sensor-base real-time system. After analyzing the
operating model and task set, a two-level task
scheduling scheme is implemented in the scheduler
of γOS. RMS algorithm is used to schedule
time-critical tasks, and an admission control policy is
applied to meet real-time requirement. Furthermore,
some fault tolerance strategies are also taken into
account to improve reliability at run time, including

fault tolerance analysis, admission control based on
RMS, fault detection, and fault recovery.

References:
[1] M. Weiser, The Computer for the 21st Century,

Sci.Amer., Sept. 1991.
[2] http://www.goofee.com/creem.htm.
[3] http://www.isi.com/products/posek/index.htm.
[4] http://webs.cs.berkeley.edu/tos/
[5] http://mantis.cs.colorado.edu
[6] N. Kandasamy, J. P. Hayes, and B. T. Murray,

“Scheduling Algorithms for Fault Tolerance in
Real-Time Embedded Systems.” Dependable
Network Computing, D. Avresky (Ed.), Kluwer
Academic Publishers, Boston, 1999.

[7] C. L. Liu and J. Layland, “Scheduling algorithms
for multiprogramming in a hard real-time
environment,” J. Assoc. Comput. Mach., vol. 24,
1973, pp. 46-61.

[8] J. Stankovic, M. Spuri, K. Ramamritham, and G.
Buttazzo, “Deadline Scheduling For Real-Time
Systems: EDF and Related Algorithms.” Kluwer
Academic Publishers, 1998.

[9] D. B. Stewart and P. K. Khosla, "Real-Time
Scheduling of Sensor-Based Control Systems", in
Proceedings of Eighth IEEE Workshop on
Real-Time Operating Systems and Software,
Atlanta GA, May 1991, pp. 144-150.

[10] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority
inheritance protocols: An approach to real-time
synchronization.” IEEE Trans. Computers, 1990.

[11] X. Castillo, S.R. McConnel, and D.P. Siewiorek,
“Derivation and Caliberation of a Transient Error
Reliability Model.” IEEE Trans. on Computers,
1982, pp. 658-671.

[12] J. Gaisler, “Concurrent Error-detection and
Modular Fault-tolerance in a 32-bit Processing
Core for Embedded Space Flight Applications”.
In Symp. on Fault Tolerant Computing
(FTCS-24), pages 128-130. IEEE, 1994.

[13] B. Randell. System Structure for Software Fault
Tolerance. IEEE Trans. on Software Engineering,
SE-1(2):220-232, June 1975.

[14] Dong, Libin (ed.), “Implementation of a
Transient-Fault-Tolerance Scheme on DEOS,” In
Proceedings of the Real-Time Technology and
Application Symposium, Vancouver, Canada,
1999.

[15] S. Ghosh, R. Melhem, D. Mosse, and J. Sen
Sarma, “Fault Tolerant Rate Monotonic
Scheduling.” Journal of Real-Time Systems,
vol.15, no.2, 1998, pp.149-181.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)

http://www.goofee.com/creem.htm
http://www.isi.com/products/posek/index.htm
http://webs.cs.berkeley.edu/tos/
http://mantis.cs.colorado.edu

