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Abstract: - The emergence of wireless networked sensors constitutes a hot research topic in embedded system 
design. Although system resource is seriously limited, operating system applied in sensors has to implement 
complex task scheduling, which should support concurrent operations, real-time constraint, adaptability and 
reliability. In this paper, we present a reliable OS scheduling scheme for wireless networked sensors. According 
to the analysis of operating model and task set of wireless networked sensors, a primary and subordinate 
two-level task-scheduling scheme is implemented to schedule time-critical and non-time-critical tasks, and an 
admission control policy is employed to meet hard real-time requirement of some real-time tasks. Furthermore, 
based on this scheme, some fault tolerance strategies are outlined to improve reliability at run time, including 
fault tolerance analysis, admission control based on fault tolerance, fault detection, and fault recovery. 
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1   Introduction 
The capability to sense environment is a critical 
element of pervasive computing [1]. Embedded 
objects that support pervasive computing are more 
and more equipped with computational power that 
allows them to be smart devices with the ability to 
interact with their environment. One of the most 
challenging research fields is wireless networked 
sensors.  
A typical wireless networked sensor is usually made 
up of four basic components: a sensing/actuating unit, 
a processing unit, a communicating unit and a power 
supply unit. These sensors have two remarkable 
characters: limited in size and autonomous in 
operation. In spite of the resource limitation, the tiny 
sensors have to execute complicated autonomous 
operation, and it should meet the requirements of 
concurrent operation, real-time constraint, and 
self-adaptability. And also, since these tiny devices 
are usually numerous and largely unattended, they 
will be expected to be operational for a large fraction 
of the time without human intervention. Furthermore, 
error recovery is often too complex to apply in 
sensors, there is no real recovery mechanism except 
for automatic reboot, and great efforts should be 
taken to improve their fault tolerance and reliability. 
Small physical size, modest active and power load 
are provided by the hardware design. And the 
concurrency-intensive operation and real-time 
constraints should be implemented by software. A 
tiny operating system is needed, which not only 

retains these characteristics by managing the 
software/hardware effectively, but also provides a 
scheduling scheme to achieve efficient reliability and 
robustness. Reliability can also be achieved through 
redundancy. However, due to the seriously limitation 
in weight, space, power and cost, traditional 
hardware redundancy techniques can not be applied 
in wireless networked sensors. Thus, it is essential for 
software to enhance the reliability of individual 
devices. 
OS scheduling scheme in traditional embedded 
systems are well-studying today. However, in small, 
low-power and embedded wireless networked 
sensors, it is quite a different novel region to study. 
To meet this requirement, we present an embedded 
operating system γOS, in which we concepts and 
provides a flexible and reliable scheduling scheme 
for tasks with different time constraint.  
 
 
2   Related Work 
A large amount of work has been completed on 
developing wireless networked sensors, especially 
the operating system for tiny sensors [2, 3, 4, 5].  
Creem[2] and pOSEK[3] are typical real-time 
operating system designed for deeply embedded 
systems, but their control-centric design is very 
different from dataflow-centric design in networked 
sensors.  
TinyOS [4], with its component-based architecture, 
tasks and event-based concurrency and split-phase 
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operations, is applicable for dataflow-centric 
applications. However, it simply uses a LCFS events 
scheduler and a non-preemptive FIFO tasks 
scheduler to manage sensor operation. Adaptability 
and fault tolerance has not been considered. 
MANTIS OS [5] resembles classical, UNIX-style 
schedulers. However, it still does not consider fault 
tolerance for sensors adequately. 
As we mentioned above, reliability is very important 
for wireless networked sensors. To improve 
reliability, many scheduling algorithms have been 
proposed to achieve executing efficiency and fault 
tolerance in real-time embedded systems. Generally, 
some typical scheduling algorithms include three 
broad categories [6]: static scheduling, dynamic 
scheduling, and scheduling of imprecise 
computations. 
A static scheduling is calculated off-line and fixed for 
the life of the system, its adaptability is poor. A 
dynamic scheduling makes its scheduling decisions 
at run time based on requests for system services, 
such as RMS (rate-monotonic scheduling) [7] or EDF 
(earliest deadline first) [8]. Although microprocessor 
in sensors is seriously restricted in computation 
power, it is necessary to execute complex tasks with 
precedence, synchronization, and exclusion 
constraints under certain condition. It is still difficult 
to not only assure the schedulability of tasks, but also 
meet the requirement of restricted-resource. To meet 
these requirements, γOS presents a new task 
scheduler, which applies the RMS algorithm to 
schedule time-critical tasks and adopts an admission 
control policy to meet their real-time requirements, 
and fault tolerance based on this scheme is also 
considered. 
 
 
3   Task Model Analysis 
The emergence of wireless networked sensors has 
created a wide space of new problems in systems 
design. γOS is an embedded operating system 
developed specially for these tiny devices. Therefore, 
it should meet the special application requirements. 
Often, the processor and other resources used in such 
applications are shared by a certain number of 
time-critical monitoring and control functions and a 
number of non-time-critical jobs.  
We define a task as a basic logic unit of programming 
that an operating system controls. It is a schedulable 
entity which can be appointed with priority and will 
compete with other concurrent tasks for processor 
execution time. Figure 1 shows the sensor task 
model. 

Memory

MCU

Processing Module

Transmitting Task

Transceiver

Sensory Task

Command Task

Data collecting module

Sensory 
Device ADC

Actuator module

Actuator 
Device DAC

Actuator Task  
Fig.1 sensor task model 

In γOS, Tasks can be classified into four types: 
l Sensory task Ts denotes the task that collects 

information from environment, and processes the 
collected information. Task set Ts = { Ts1, Ts2, … , 
Tsn }, 

l Actuator task Ta denotes the task that generates 
control signals for the actuator devices and 
operates the actuator devices. Task set Ta = { Ta1, 
Ta2, … , Tan } 

l Command task Tc denotes the task that takes 
actions according to the commands from other 
sensor nodes or central machine. Task set Tc = 
{ Tc1, Tc2, … , Tcn } 

l Transmitting task Tt denotes the task that 
transmits data by transceiver, including 
publishing the services and status information, or 
sending required data to subscribers. Task set Tt = 
{ Tt1, Tt2, … , Ttn } 

The whole task set T = { Ts, Ta, Tc , Tt }. 
 
Table 1 Analysis of the task set of wireless sensors 

Task  Ta Ts Tc Tt 
Activation Periodic Periodic Sporadic Sporadic 
Priority  High High Low Low 
Deadline Actuating 

interval 
Collecting 
interval 

None None 

WCET ta+ tDA tAD+ ts+ tp tp + tt tp + tt 
Resource 
conflict 

Actuator 
device, 
Processor, 
DAC 

Sensory 
device, 
Processor, 
ADC 

Processor, 
Transceiv
er 

Processor, 
Transceiv
er 

Triggered 
by 

Timely 
interrupt 

Timely 
interrupt 

Command 
interrupt 

Posted by 
Ts or Tc 

tDA and tAD denotes D/A or A/D converting time, ts 
denotes sensing time, ta denotes actuating time, tp 
denotes data processing time, tt denotes data 
transmitting time 

Table 1 shows the property analysis of the task 
set.Task Ts collects and processes information from 
environment. It is periodic and triggered by timer. 
The deadline of Ts is usually the periods of collecting 
operations. Task Ta generates control signals and 
operates the actuator devices according to the 
processed data from Ts, or the command from Tc. 
The deadline of Ta is usually the periods of activating 
operations. For example, in a temperature control 
system, if the sensory devices of the sensors detect 

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp206-211)



that the environment temperature exceeds a certain 
bound, the actuators of the sensors must be activated 
in time to impact the temperature of the environment. 
Task Ts and Ta are time-critical, and all the Ts and Ta 
tasks have higher priority than the Tc and Tt tasks. 
The priority level of task Tai is higher than that of Tsi, 
for the task Tai is usually more critical than Tsi, in the 
case that it is activated. 
Task Tc responds the request or command from other 
sensor nodes or central machine, and processes the 
received data from other sensor nodes. Task Tc is 
activated when the sensor receives command from 
other sensor nodes or central machine. Task Tt 
publishes the service and status information of the 
sensor node, transmits the requested data to other 
sensor nodes. Task Tt is posted by Ts when the 
system status has changed or by Tc when sensor data 
are requested by other devices. Task Tc and Tt are 
non-time-critical, and all the Tc and Tt tasks have 
lower priority than the tasks Ts and Ta. The priority 
level of task Tci is equal to that of Tti. 
 
 
4   Scheduling Scheme Implementation 
 
4.1 Basic Analysis 
According to the above analysis, the scheduling 
scheme and priority policies for γOS should meet the 
following requirements: 
l The scheduler should support periodic tasks and 

sporadic tasks scheduling. 
l Ta and Ts tasks are time-critical and should meet 

their real-time constraint. 
l Tc and Tt tasks are non-time-critical. 
l The task priority level is: Ta> Ts > Tt = Tc.  
l The priority levels of Ts tasks are based on their 

periods. The Ts with shorter period is appointed 
with higher priorities. 

l The priority levels of Ta tasks are based on their 
periods. The Ta with shorter period is appointed 
with higher priorities. 

l Let Ts1, Ts2, … , Tsm denote a set of 
priority-ordered tasks with Tsm being the task with 
the lowest priority.  

l Let Ta1, Ta2, … , Tam denote a set of 
priority-ordered tasks with Tam being the task 
with the lowest priority. 

l Task Ts with data processing commonly more 
complex than task Ta, so we can assume the 
execution time of Ta task is shorter than that of Ts 
task. 

l Admission control policy should assure the 
schedulability of task set when it is changed by 
the arriving of new task. 

 
4.2 Scheduling Scheme 
γOS scheduler provides two-level task scheduling 
scheme, which includes primary task scheduling and 
subordinate task scheduling, to isolate time-critical 
tasks and non-time-critical tasks.  
The primary task scheduling is responsible for 
scheduling the task Ta and Ts, and a background task 
Tb. The primary task scheduling must meet the 
requirement of time constraint of task Ta and Ts. In 
the primary task scheduling, task Tb is imported to 
isolate time-critical tasks and non-time-critical tasks. 
Tb possesses the lowest priority level. When task Tb 
is scheduled, the processor switches to subordinate 
task scheduling. There are many existing scheduling 
schemes [9] which can be adapted to primary task 
scheduling. Based on the analysis in section 4.1, RM 
scheduling algorithm [7] is adapted. 
The subordinate task scheduling is responsible for 
scheduling the lower priority task Tc and Tt. Tc and 
Tt tasks are non-time-critical. Tci and Tti have equal 
priorities and can not preempt each other. Tc and Tt 
can be preempted by time-critical task Ta and Ts. The 
“First Come First Served” (FCFS) policy is adapted. 
 
Table 2. An instance of task set 

Task Priority Period CPU 
time 

Legend 

Ta High 6 1  
Ts Med High 8 2  
Tc Low Sporadic 2  
Tt Low Sporadic 5  

 

6 12 180
primary 

level

subordinate 
level

6 12 180

Ta Ts

Tb

Tt Tc

Tidle

 
Figure 2. Basic scheduling of a task set 
 

Table 2 listed an instance of task set which contains 
four tasks: one Ta task, one Ts task, one Tc task and 
one Tt. The priority level of every task is assigned as: 
Ta > Ts > Ts = Tt. Figure 2 shows how the instance is 
scheduled. The blank section task Tidle indicates idle 
of the processor. If Tidle is scheduled, the processor 
will enter a sleeping mode, which will greatly reduce 
power consumption of sensors. Using the two-level 
task scheduling policy, time-critical task set Ta and 
Ts can be efficiently distinguished from 
non-time-critical task set Tc and Tt. Furthermore, 
priority ceiling protocol [11] is adapted to avoid the 
problem of priority inversion and deadlock. 
The impact of interrupt service routines(ISR) is also 
needed to be considered, for the ISR may expend 
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much CPU time in resource restricted sensors. For 
instance, three types of interrupts are considered in 
γOS. There are two timer interrupts Ita and Its, Ita 
triggers task Ta timely, and Its triggers task Ts timely. 
The second is command arriving interrupt Ic, which 
indicates that a new command has arrived. The third 
is transmission completion interrupt It, which  
indicates that the data transmission has been 
completed. Furthermore, The A/D and D/A 
conversion interrupt are also considered. IAD indicates 
task Ts that the AD conversion has been completed, 
and IDA indicates task Ta that the DA conversion has 
been completed. 
 
4.3 Admission control policy 
When a new task is triggered, the status of whole task 
set is changed. The schedulability of the whole task 
set must be discussed, especially for the real-time 
task set. In γOS, we mainly discuss the schedulability 
of the real-time task set. An admission control policy 
is applied to assure the schedulability of the changed 
task set. The tasks in primary task scheduling level 
are hard real-time, they must be considered under 
admission control policy administration. In the basic 
RMS, Liu and Layland [7] have derived a simple 
schedulability test based on the resource utilization 
by the task as shown in (1). 

( )121 −≤ nnU                                   (1) 
For the task set we described in section 3, Ta task set 
can be denoted as Ta1 (Ca1, Pa1), … , Tan (Can, Pan), 
where Cai denotes the execution time of task Tai, Pai 
denotes the period of task Tai, and 1+≤ ii PaPa , 
i=1,2,…,n-1. Ts task set can also be denoted as Ts1 
(Cs1, Ps1), … , Tsn (Csn, Psn). In terms of the task in 
primary scheduling level, the utilization factor is as 
shown in (2). 

∑∑
==

+=
n

i
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n
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                  (2) 

Task Tb is a background task without deadline, so it 
is not considered in schedulability test. The 
shortcoming of the equation (2) is that it does not take 
the effect of the resource access control protocol and 
interrupt service routines (ISR) into account. 
According to the result proved by Sha, Rajkumar and 
Lehoczky [10], the primary task scheduling using the 
priority ceiling protocol can be scheduled by the 
rate-monotonic algorithm if the following condition 
is satisfied: 
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In inequation (3), Bsi and Bai separately denotes the 
worst case blocking time of task Tsi and Tai. The 
value of Bsi and Bai are determined by the scheduling 
scheme and resource access policy. Considering that 
the priority ceiling protocol is adopted, Bsi or Bai is 
the worst access time of the resource possessed by 
lower priority task. In γOS, the worst access time for 
all the resources, can be determined approximately, 
let Bw denotes it. Therefore, we can simplify the 
calculation in a pessimistic way shown in (4): 

( )121

min11
−≤++∑∑

==

nw
n

i
ii

n

i
ii n

P
BPaCaPsCs            (4) 

In inequation (4), Pmin is the minimal interval of all 
the Ta and Tc tasks. 
Now, we consider the effect of ISRs. Let CIa, CIs, CIc 
and CIt denote the worst ISR execution times of 
interrupt Ita, Its, Ic and It. PIa, PIs, PIc and PIt denote 
the minimum triggered intervals. So the admission 
control algorithm of γOS can be adjusted as: 

( )121

min

11

−≤++++
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==
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Ic

Ic
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Iaw
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i
ii

n

i
ii

n
P
C

P
C

P
C

P
C

P
B

PaCaPsCs
  (5) 

Inequation (5) is too pessimistic for most cases. 
Whether for Ta task or for Ts task, the actual 
executing time is greatly less than WCET in most 
cases. For example, in temperature control sensor 
system, Ta task is activated only when the 
environment temperature exceeds a certain bound. 
The time saved by short Ta and Tc task, named slack, 
can be assigned to the background task Tb, which 
ensures Tt and Tc tasks could be executed. No 
admission control policy is currently considered for 
the subordinate task scheduling as the tasks Tt and Tc 
are not time-critical. 
 
 
5   Fault Tolerance Implementation 
Fault tolerance is increasingly important in modern 
autonomous sensor system. In a typical deployment, 
hundreds of sensors will be expected to work 
unattendedly for a long period. Though sensors are 
resource restricted, fault tolerance should be 
considered enough. 
Generally, there are three kinds of faults: permanent, 
intermittent, and transient faults. Most permanent 
faults are due to the breakdown of computing unit. 
Usually, they are resolved by hardware redundancy. 
Transient faults are hard to detect, but significantly 
more frequent than permanent faults [11]. The 
incorrect data race, unexpected temporary hardware 
errors can be the cause. Intermittent faults are 
nightmare for micro embedded sensors. But 
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sometimes, it is the result of repeated transient faults. 
Therefore, γOS pay attention on the tolerance of 
transient faults by adding time redundancy to 
reexecute the wrong task. More research has been 
conducted on detecting and tolerating faults using 
both hardware [12] and software [13]. 
 
5.1 Fault Tolerance Analysis 
Since γOS focuses on the implementation of transient 
fault tolerance by reexecuting the wrong task, two 
attribute requirements should be considered in the 
task model for fault tolerance. 
l Time redundancy: The reserving time should be 

adequate to reexecute the task. This condition can 
be converted into a scheduling problem where the 
schedule scheme should guarantee error recovery 
from transient faults by providing sufficient 
backup time for re-execution [14].  

l Data integrity: The shared variables and status 
information should be backuped to reexecute the 
task. Each task instance maintains two copies of 
status information and variables, named 
primary/backup data block, to support fault 
tolerance.  

When a task is firstly invoked, the two blocks are 
initialized with the same data. The primary block is 
updated synchronously according to the task 
executing. If the task is finished successfully, the 
primary block will contain information that indicates 
the task is finished successfully, and next task can be 
scheduled. If not so, the γOS will reexecute the task 
based on the backup data block. For example, if a 
task fails to operate actuator device at first time, it can 
be re-scheduled till it executes successfully. 
Once a new task arrives, the admission control starts 
to test whether this new task can be dispatched, and 
decide the schedule strategy according to the result of 
evaluation. In a general way, the typical RMS is 
adapted to schedule active tasks in the primary level. 
When a task is terminated, a fault detection 
mechanism detects whether a fault occurred during 
the task execution. If time-critical tasks, such as Ts or 
Ta, are terminated with errors, scheduler would 
reexecute them under certain fault recovery scheme. 
For Tc and Tt are not time-critical, they can be 
re-execution more freely. 
 
5.2 Admission control 
The system needs to reserve some extra utilization 
for the re-execution to tolerate transient fault. The 
tasks can be guaranteed to meet their deadlines under 
an assumption of minimum fault interval if the 
following condition is satisfied [15]. 

( ) ( )msxLL

n

i
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            (6) 

In inequation (6), ULLdenotes the Liu and Layland 
bound, and Umax is the backup utilization of task (Umax 
= max{Ui}) to protect Ta and Ts task from faults. 
Based on the discussion in section 4.3, the admission 
control policy can be improved to the following 
condition. 
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For tasks Tt and Tc are non-time-critical, Admission 
control policy in the subordinate task scheduling 
level can be achieved by using buffer queue. New Tt 
and Tc tasks can be queued to wait for the assignment 
of processor, I/O or communication resources. 
 
5.3 Fault Detection 
To provide fault tolerant capabilities, the methods of 
detecting failures must be implemented first. A task 
status structure is added to record task information. 
When a fault occurs, error information will be 
recorded in task status structure. An exception 
handler, a safety monitor, and even the task itself, can 
complete this operation. After the task procedure is 
terminated, the task status structure should be 
checked to estimate whether a fault occurs. If so, the 
scheduler then decides how to deal with it, simply 
abandon it or reexecute it. 
Actually, wireless networked sensors are resource 
restricted devices used to monitor and control 
environment. In terms of non-time-critical tasks, a 
better choice is to abandon them and wait for the next 
same type task.  
 
5.4 Fault Recovery 
Once a task terminates and fault information is found 
in task status structure, γOS scheduler will evaluate 
the task. There are three strategies can be employed: 
l Simply abandon, such as some Tc and Tt tasks that 

can not be accomplished in time limit. They will 
be invalid in the next period. 

l Reexecute with some delay, including some 
backup Tc or Tt tasks. They are crucial, but not 
time-critical. Once a fault occurs, they can be 
reexecuted with its original subordinate priority.  

l Reexecute immediately, such as some Ta or Ts 
tasks that are crucial and time-critical. To finish 
them within time limit, scheduler will reinitialize 
and reactivate the task according to backup data 
block, and reexecute it immediately.  
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The third kind of operation is the most complicated. 
In section 4.3 we have mentioned slack saved by 
short task Ta and Ts. Fault recovery can be achieved 
by adding time redundancy. One general approach of 
fault-tolerance is to make sure that there is enough 
slack time to allow for the re-execution of fault task. 
Slacks are distributed throughout the schedule in the 
form of backup slots at each period boundary. [15] 
showed that the following conditions must hold true 
to ensure re-execution of any one faulty task: 
l For every task Ti, a slack of at least Ci should be 

present between kTi and (k+1)Ti. 
l If there is a fault during the execution of task Ti, 

the recovery scheme should enable task Ti to 
reexecute for a duration Ci before its deadline. 

l When a task reexecutes, it should not cause any 
task to miss its deadline. 

Let UB denotes the backup utilization for any task. 
[15] has proved that if UB = max{Ui} and recovery 
scheme RS is adopted then the above conditions will 
be satisfied. The recovery scheme RS is that any 
instance of a task that has a priority higher than that 
of task Ti and a deadline greater than Di (deadline of 
task Ti) will be delayed until recovery is complete. 

S1 C1S4C1 C1S3S2C1

C2

C1 S4C1 C1 S3S2C1

C2

S1

(a) before swapping of C1 and slack

(b) after swapping of C1 and slack

D2

D2

 
Fig. 3. An instance of fault recovery by swapping slack 

 
Fig. 3 shows an example of fault recovery applying 
RS on two tasks T1 and T2, in which C1 and C2 are the 
execution time of T1 and T2 separately, D2 is the 
deadline of task C2, Si is the slack time of each period 
boundary. This figure illustrates that if T2 fails then it 
can be re-executed using the swapped slack before 
deadline. 
 
 
6   Conclusion 
In this paper, we proposed a task scheduling scheme 
for sensor-base real-time system. After analyzing the 
operating model and task set, a two-level task 
scheduling scheme is implemented in the scheduler 
of γOS. RMS algorithm is used to schedule 
time-critical tasks, and an admission control policy is 
applied to meet  real-time requirement. Furthermore, 
some fault tolerance strategies are also taken into 
account to improve reliability at run time, including 

fault tolerance analysis, admission control based on 
RMS, fault detection, and fault recovery.  
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