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Abstract: The data mining (DM) method is far more effective than any other method when a large number of input factors 
are considered on a process design procedure. This DM approach to a robust design problem has not been adequately 
addressed in the literature nor properly applied to industries. As a result, the primary objective of this paper is two-fold. 
First, we show how DM techniques can be effectively applied into a process design by proposing a correlation-based 
factor selection (CBFS) method. Second, we then show how DM results can be integrated into a robust design (RD) 
paradigm based on the selected significant factors.  
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1. Introduction 
Data mining (DA) is a term coined to describe the 

process of sifting through large databases for 
interesting patterns and relationships. This field spans 
several disciplines such as Databases, machine learning, 
intelligent information systems, statistics and expert 
system. Two approaches that enable standard machine 
learning algorithms to be applied to large databases are 
factor selection and sampling. Both approaches reduce 
the size of the database—factor selection by identifying 
the most salient factors in the data; sampling by 
identifying representative examples. According to our 
applications, in this paper we draw attention on the 
former approach. 

Factor selection is an integral step of data mining 
process to find an optimal subset of factors. The factor 
selection algorithms perform a search through the space 
of feature subsets [1]. In general, two categories of 
algorithms have been proposed to solve factor selection 
problem. The difference of these algorithms is whether 
or not the factor selection is done independently of the 
learning algorithm. The first category is filter approach 
that is independent of an learning algorithm and serves 

as a filter to sieve the irrelevant factors. The second 
category is wrapper approach that uses the induction 
algorithm itself as part of the function evaluating factor 
subset [2]. Because all filter methods use heuristics 
based on general characteristics of the data rather than a 
learning algorithm to evaluate the merit of factor 
subsets as wrapper methods do, therefore, filter 
methods are generally much faster than wrapper 
methods, and, as such, are more practical for use on 
data of high dimensionality. The CBFS method is 
classified in the filter methods. 

Most DA methods associated with the factor 
selection reported in literature may obtain a number of 
factors associated with the interesting response without 
providing the detailed information, such as 
relationships between the input factor and response, 
statistical inferences, and analyses [3], [4], [5], [6]. 

To address this situation, we first develop an 
enhanced robust design (RD) procedure integrating a 
DM methodology in order to select significant factors. 
The DM method is far more effective than any other 
method when a large number of input factors are 
considered on a process design procedure. This DM 
approach to a robust design problem has not been 
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adequately addressed in the literature nor properly 
applied to industry. As a result, the main purpose of this 
paper is two-fold. First, we show how DM techniques 
can be effectively applied into a process design by 
proposing a correlation-based factor selection (CBFS) 
method. This method can evaluate the worth of a subset 
including input factors by considering the individual 
predictive ability of each factor along with the degree 
of redundancy between pairs of input factors. Second, 
we then show how DM results can be integrated into a 
robust design paradigm based on the selected 
significant factors from the DM method, and that the 
robust design procedure based on the CBFS method can 
efficiently find significant factors and their associated 
statistical inferences. 

 

2. Problem Formulation 
2.1 Correlation-Based Factor Selection (CBFS) 

Correlation-Based Factor Selection (CBFS) is a filter 
algorithm that ranks subsets of input factors according 
to a correlation based heuristic evaluation function. The 
bias of the evaluation function is toward subsets that 
contain a number of input factors, which are not only 
highly correlated with a specified response of a quality 
characteristic but also uncorrelated with each other 
(Hall 1999). Among input factors, irrelevant factors 
should be ignored because they may have low 
correlation with the given response. Even though some 
selected factors are highly correlated with the specified 
response, redundant factors must be screened out 
because they are also highly correlated with one or 
more of these selected factors. The acceptance of a 
factor depends on the extent to which it predicts the 
response in areas of the instance space not already 
predicted by other factors. The evaluation function of 
the proposed subset is  
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where SEV , FRρ , and FFρ  represents the 

heuristic evaluation value of a factor subset S 
containing n factors, the mean of factor-response 

correlation )( SF ∈ , and the mean of  factor-factor 

inter-correlation, respectively. FFnnn ρ)1( −+  and 

FRnρ  indicate the prediction of the response based on 

a set of factors and the redundancy among the factors. 
In order to measure the correlation between two factors 
or a factor and the response, an evaluation of a criterion 
called symmetrical uncertainty introduced in Section 
2.2 is essential [3]. 

 
2.2 Symmetrical Uncertainty 

In order to consider symmetrical uncertainty as a 
criterion, we may consider entropy that is a measure of 
the uncertainty or unpredictability in a given data set. 
Assuming a uniform manner of the specified response 
and all other factors based on the factor-response 

correlation FRρ  and factor-factor inter-correlation 

FFρ  in Eq. (1), Entropy of the specified response Y is  

∑
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where p(y) represents the probability of y value. If the 
values Y in the data set are partitioned according to the 
values of a second factor X, and the entropy of Y with 
respect to the partitions induced by X is less than the 
entropy of Y prior to partitioning, then there is a 
relationship between factors Y and X. Conditional 
entropy of Y given X can further be formulated as 
follows: 

∑ ∑
∈ ∈
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Based on entropy )(YH  and conditional entropy 

)|( XYH , the amount of decreasing entropy of Y 

called the information gain which is a symmetrical 
measure reflects additional information about Y given X 
[4]. Information gain can then be derived as follows: 

)|()()|()( YXHXHXYHYHgain −=−= . 
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The symmetrical measure represents that the amount of 
information gained about Y after observing X is equal to 
the amount of information gained about X after 
observing Y. Symmetry is a desirable property for a 
measure of factor-factor inter-correlation or 
factor-response correlation. Unfortunately, information 
gain is not apt to factors with more values. In addition, 

FRρ  and FFρ  should be normalized to ensure they 

are comparable and have the same effect. Symmetrical 
uncertainty can minimize bias of information gain 
toward factors with more values and normalize its value 
to the range [0, 1]. The coefficient of symmetrical 
uncertainty can be calculated by  
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2.3 Best First Search Method (BFS) 

In much literature, finding a best subset is hardly 
achieved in many industrial situations by using an 
exhaustive enumeration method. In order to reduce the 
search spaces for evaluating the number of subsets, one 
of the most effective methods is the best first search 
(BFS) method (Quinlan, R. R., 1986) which is a 
heuristic search method to implement CBFS algorithm. 
This method is based on an advanced search strategy 
that allows backtracking along a search space path. If 
the path being explored begins to look less promising, 
the best first search can back-track to a more promising 
previous subset and continue searching from there. The 
procedure using the proposed BFS algorithm is given 
by the following steps: 

Step 1. Begin with the OPEN list containing the 
start state, the CLOSE list empty, and 
BEST← start state (put start state to 
BEST). 

Step 2. Let a subset, θ = arg max EVS (subset), (get 
the state from OPEN with the highest 
evaluation EVS). 

Step 3. Remove s from OPEN and add to  
CLOSED. 

Step 4. If EVS (θ ) ≥ EVS (BEST ), then BEST ← θ  
(put θ to BEST). 

Step 5. For each next subset ξ of θ that is not in the 
OPEN or CLOSED list, evaluate and add 
to OPEN. 

Step 6. If BEST changed in the last set of  
expansions, go to step 2. 

Step 7. Return BEST. 
 

2.4 The proposed data mining procedure based 
on Correlation-Based Factor Selection  

The evaluation function given in Eq. (1) is a 
fundamental element of CBFS to impose a specific 
ranking on factor subsets in the search spaces. In most 
cases, enumerating all possible factor subsets is 
astronomically time-consuming. In order to reduce the 
computational complexity, the BFS method is utilized 
to find a best subset. The BFS method can start with 
either no factor or all factors. The former search 
process moves forward through the search space adding 
a single factor into the result, and the latter search 
process moves backward through the search space 
deleting a single factor from the result. To prevent the 
BFS method from exploring the entire search space, a 
stopping criterion is imposed. The search process may 
terminate if five consecutive fully expanded subsets 
show no improvement over the current best subset. 
Figure 1 shows the entire process of the proposed 
CBFS algorithm. The CBFS method is used to calculate 
factor-response and factor-factor correlations using Eq 
(1). As a result, a factor subset with the highest 
evaluation value can be found. 
 

3. Connection to robust design 
Even though a data warehouse contains many factors 
including both controllable and uncontrollable factors 
which is known as noise factors. the proposed data 
mining method may provide significant factors 
associated with the given response. Based on the data 
mining solutions, a further analysis of the given 
solutions may also be an important part of a process 
design for applying the detailed and analyzed 
information to develop a process/product. In this 
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situation, RD principle can be utilized to provide 
statistical analyses and optimal factor settings for the 
selected factors associated with the given response by 
considering the effect of noise factors. 

[Figure1. The proposed CBFS method] 
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3.1 Response surface methodology 

Response surface methodology (RSM) is a statistical 
tool that is useful for modeling and analysis in 
situations where the response of interest is affected by 
several factors. RSM is typically used to optimize the 
response by estimating an input-response functional 
form when the exact functional relationship is not 
known or is very complicated. RSM is a collection of 
mathematical and statistical techniques that are useful 
for the modeling and analysis of problems in which the 
response of interest is influenced by several variables 
and the objective is to optimize (either minimize or 
maximize) this response. For a comprehensive 
presentation of RSM, see [7], [8], [9], and [10]. 

Using responses for the interesting factor y and 
associated factors x, the estimated response function for 
y is as follows:  

( ) xAxaxx TTy ++= 0ˆˆ α    (6) 

where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

kkx

x
x

α

α
α

ˆ

ˆ
ˆ

, 2

1

2

1

ΜΜ
ax  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

kkkk

k

k

ααα

ααα
ααα

ˆ2ˆ2ˆ

2ˆˆ2ˆ
2ˆ2ˆˆ

21

22212

11211

Λ
ΜΟΜΜ

Λ
Λ

A , 

x is the vector of the associated factors, and vector a 
and matrix A are the estimated regression coefficients 
for the interesting factor. 

When using RSM, it is important to check that an 
estimated regression function is significant. An analysis 
of variance can be used to confirm that the regression 
function is indeed significant. The estimated regression 
functions can then be used for the optimization of the 
process parameters associated with the region of 
interest, such as the process mean and variance.  
 

4. Problem Solution  
4.1 Significant factor selection using data 
mining method 

The data set comes from the daily measures of 
sensors in an urban wastewater treatment plant [4]. We 
select COND-S that is output conductivity of treated 
water as the response. Since the conductivity of water is 
an essential criterion for water purification, the lower 
the value of conductivity is, the purer the water is. One 
of the indispensable purposes of water treatment is to 
reduce the conductivity of water. 

The data set contains 34 factors and 527 instances [4]. 
Among 34 factors, COND-S may include uncertain 
effects that are either irrelevant or redundant. If 
potential significant factors are selected by subjective 
opinions or experiences, it may often not include 
important factors on a factor selection process. Our 
objective is to find the most significant factors to the 
output response by short time consuming. In particular, 
during the two-step process of wastewater treatment, 
we want to make sure whether some input factors can 
affect the response factor significantly. The factors of 
the water treatment data set are shown in Table 1. 
Factor2-22 cover all input values measured during the 
process of two-step treatment, and factor 23-29 cover 
all output criterion values after two settlers treatment, 
and factor 30-38 cover the performance criterions.  
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[Table 1. The Water-Treatment Plant Data Set] 

 
Q-E ZN-E  PH-E DBO-E  DQO-E  … SED-D  COND-S  

35023 3.5 7.9 205 588 ... 0.4 2060 

29156 2.5 7.7 206 451 ... 0.3 1233 

39246 2 7.8 172 506 ... 0.6 1825 

42393 0.7 7.9 189 478 ... 0.4 1562 

40923 3.5 7.6 146 329 ... 0.2 1467 

43830 1.5 7.8 177 512 ... 0.4 1401 

... ... ... ... ... ... ... ... 

 
4.1 factor selection result  
 Table 2 shows the evaluation result of the numeric 
example calculated by the DM software named “Weka” 
[6]. The merit of best subset equals 0.92, the highest 
value among the calculated 371 subsets. The factor set 
F = {ZN-E, SED-D, COND-E, COND-P, SS-S, 
RD-DBO-P, DQO-S} is considered the best factor 
subset towards the response factor COND-S. Aside 
from the output factors including SS-S, RD-DBO-P and 
DQO-S, we get the best input factor subset BFS = 
{ZN-E, SED-D, COND-E, COND-P}. Among the BFS, 
COND-E represents the observation value of initial 
input conductivity to plants, therefore, it can hardly be 
controlled during the RD process. Consequently, we 
consider COND-E the noise factor, and consider other 
input factors among BFS the controlled factors.  
 
4.2 Response surface methodology based on both 
control and noise factors 

The data mining solution provides the four 
significant factors as ZH-E, COND-P, SED-D, and 
COND-E. Among these solutions, a primary input 
conductivity, COND-E, may often not be controlled in 
a water treatment process. For this reason, we regard 
COND-E as a noise factor incorporating the RD 
principle in order to achieve a robust process and the 
other factors as control factors. As shown in Figure 2, 
the regression is significant based on the results of the 
global F-test and its associated p-values. In addition, 
the response model has 85% R-sq, which implies the 
model may adequate to utilize as a response function. 
  

 [Table 2. Experiments result] 
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5. Conclusion  
In this paper, we developed an enhanced process 

design method by integrating DM method to select 
significant factors associated with the given response to 
an RD method to provide best factor settings. Based on 
the factor selection procedure including CFBS method 
and BFS heuristic search method on the DM stage, we 
quickly find important factors for water treatment 
process among a large set of data including many 
factors. When utilizing BFS method, the proposed 
CFBS method in its pure form is exhaustive, but the use 
of a stopping criterion makes the probability of 
searching the whole data set quickly. We then analyze 
the factor selection results using RD and RSM while 
incorporating a noise factor for uncontrollable one. 
Further, we will integrate more DM techniques and 
conduct other recent RD methods. For further studies, 
we may find the best factor settings using an RD 
optimization based on the analyzed RD results.  

 
 

 
 
 
 
 
 
 
 

Estimated Regression Coefficients for y        

Term             Coef       SE Coef          T           P 

Constant       546.13      103.060       5.299       0.000 

x1 -16.00 15.225 -1.051       0.294  

x2 -0.43         0.493      -0.867       0.387 

x3              174.80      113.587       1.539       0.125 

z1                0.79         0.487       1.615       0.107 

x1*x1           -0.63         0.580      -1.088       0.277 
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