
A Memory Efficient FPGA Implementation of Quasi-Cyclic LDPC
Decoder

JIN SHA, MINGLUN GAO, ZHONGJIN ZHANG,LI LI

Institute of VLSI design

Key Laboratory of Advanced Photonic and Electronic Materials
Nanjing University

Nanjing, China, 210093

ZHONGFENG WANG

School of EECS
Oregon State University

Corvallis, OR 97331-5501,USA

Abstract - Low-Density Parity-Check (LDPC) code is one kind of prominent error correcting codes (ECC) being
considered in next generation industry standards. The decoder implementation complexity has been the
bottleneck of its application. This paper presents an implementation of Quasi-Cyclic Low-Density Parity-Check
decoder by using FPGA. Modified Min-Sum decoding algorithm is applied to reduce the memory size needed
for information storage. Partially parallel structures, memory management and pipelining schemes are discussed
in this paper.

Key-Words: - Low-density parity-check (LDPC) codes, VLSI architecture, decoder, Quasi-Cyclic, memory

1 Introduction
A basic communication system is composed of three
parts: a transmitter, channel, and receiver. Transmitted
information is usually corrupted due to noise and
channel distortion. To correct these errors, redundancy
coding is intentionally introduced, and the receiver
employs a decoder to make corrections based on the
redundancy. Turbo codes and LDPC codes [1] are the
two most popular error-correcting control codes (ECC)
which showing results very close to the Shannon limit.
Turbo code is overwhelmed by LDPC code in some
aspects such as lower error floor, less computation
requirement and fully parallel decoding schemes.

However, the implementation of LDPC decoder is
not trivial. Implementing it directly in its inherent
parallel manner may get the highest decoding
throughput，while the complex interconnection will
take up more than half of the chip area to avoid routing
conflict for large codeword length (bigger than 1K). A
rate-1/2, 1024-bit LDPC decoder [2] implemented in
0.16µm technology occupies an area of 7mm×7mm,
where logic density is only 50%. Serial VLSI
architecture or partly parallel architecture is well
studied nowadays [3] [4] [5] [6], which uses RAM to
store messages transferring between variable nodes
(VN) and check nodes (CN). Therefore, a huge

memory requirement for message storage will be a
problem.

As for the decoding algorithm, the minimum-sum
algorithm [7] [8] is an approximation of the Sum-
Product algorithm (SPA). From the perspective of
implementation, the Min-Sum algorithm requires less
computation and the noise power estimation is
unnecessary for an additive white Gaussian noise
(AWGN) channel. Furthermore, the Min-Sum
algorithm can help reducing the message storage
requirement because the messages transmitted from a
check node to adjacent variable nodes have only two
possible magnitudes per iteration. However, this
advantage is not easy to take in hardware
implementation. In [5], the authors implemented an
LDPC decoder utilizing the Min-Sum algorithm. The
memory requirement reduction is achieved, but the
hardware is complex, and the decoding latency is
extremely high. The efficient use of Min-Sum
algorithm in decoding LDPC codes still remains
unresolved.

In this paper, the VLSI design issues of a memory
efficient VLSI implementation for Quasi-Cyclic
LDPC (QC-LDPC) codes are discussed. In Section 2,
a brief review for the modified Min-Sum decoding
algorithm and QC-LDPC codes is given. Section 3
gives the VLSI architecture of our decoder. Synthesis

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp218-223)

results based on FPGA are given in Section 4. Section
5 concludes the paper.

2 Min-sum decoding algorithm and
QC-LDPC codes
LDPC codes can be typically defined by an M×N
parity check matrix H. The symbol N represents the
length of the block (i.e. the number of bits in the
codeword), while the symbol M represents the number
of parity checks in the code. The rate of such a code is
thus (N-M)/N. The LDPC code can be represented by
a bipartite graph (Tanner graph) of variable nodes and
check nodes as shown in Fig.1.

Figure.1 Tanner graph for a regular (2,3) LDPC code

The typical LDPC decoding algorithm is the sum-
product algorithm which has two phases. In the first
phase, the variable nodes compute updated
information which is sent to adjacent check nodes. In
the second phase, the check nodes compute updated
information based on the new massages from the
variable nodes. This update information is then sent
back to adjacent variable nodes and the process is
repeated over and over again.

The modified min-sum decoding algorithm is
similar to the sum-product algorithm, with an
approximation of check node process. It has some
advantages in implementation against the sum-product
algorithm, such as less computation and estimation of
noise power is unnecessary for an AWGN channel.

In the modified min-sum decoding algorithm, the
check node processors compute the check-to-variable
messages Rcv through the following formulation:

cvvcNn
vcNn

cvcv LLsignR
\)(

\)(

min)(
∈

∈

××= ∏α (1)

where α is a scaling factor. Lcv is the variable-to-check
messages. N(c) denotes the set of variable nodes that
participate in cth check node.

The variable processor computes the variable-to-
check messages Lcv through the following formulation:

v
cvMm
mvcv IRL += ∑

∈ \)(

 (2)

Where, M(v)\c denotes the set of check nodes
connected to the variable node v excluding the variable
node c. Iv denotes the intrinsic message of variable
node v.

Quasi-Cyclic LDPC code is a kind of highly
structured LDPC code which can achieve comparable
performance to random codes. QC-LDPC codes are
well suited for hardware implementation, especially in
that its encoder can be easily built with shift-registers
[9]. In addition, the structure in the parity check
matrix of QC-LDPC codes can facilitate efficient
partially parallel [4] [6] decoding architecture. A
normally regular (c, t) QC-LDPC code is defined as
its parity check matrix H (M×N) consisting of a c× t
array of P× P sub-matrices which is a circulant of
identity matrix I.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ctcc

t

t

HHH

HHH
HHH

H

L

LOLL

L

L

21

22221

11211

 (3)

Each sub-matrix Hij is a circulant matrix of identity
matrix.
Here gives a Hij example with P=6 and offset=3:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000100
000010
000001
100000
010000
001000

ijH (4)

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp218-223)

3 Decoder architecture
This section gives the VLSI architecture of our
decoder.

3.1 The partially parallel decoder architecture
Several papers have addressed partially parallel
decoding architecture for QC-LDPC codes such as [4]
and [6]. This kind of architecture generally achieves a
good trade-off between hardware complexity and
decoding throughput. Considering a regular LDPC
code with column weight c and row weight t, t variable
node processors (VNP1,VNP2, ... VNPt) and c check
node processors (CNP1, CNP2, ... , CNPc) are
instantiated, and totally t×c memory banks are used
for storing the messages exchanging between VNPs
and CNPs. In each clock cycle, each sub-block (with
dimension P × P) provides a message data for
processing and gets back the new message calculated.
The architecture presented in this paper is based on the
architecture described in [4].

In [7], it is stated that the implementation of Min-
Sum is more robust against quantization error,
comparing with SPA. So, 4 bits uniform quantization
method is applied. Our simulation shows that this
quantized modified min-sum algorithm performs very
close to the ideal belief-propagation algorithm.

Some modifications are further applied to reduce
the message memory.

3.2 The method to save message memory
Aiming at QC-LDPC code structure, a more memory
efficient decoding schedule can be applied by using
the Min-Sum decoding algorithm.

Fig.2 shows the start points of variable process per
iteration. In the shadowed place, the t variable-to-
check messages generated contemporarily are in the
same row. Hence, the CNP can process these messages
immediately after the variable process. It gives an
opportunity to avoid storing the variable to check
messages of the shadowed part. For 1/ c part of the
matrix, the check node process can be done
immediately after the variable node process. And, the
check to variable messages of the shadowed part can
be saved in compressed form just like what [5]
mentioned, which is composed of four elements, i.e., 1)
the smallest magnitude, 2) the second smallest
magnitude, 3) the index of the smallest magnitude, and
4) the signs of all messages.

Here a quantitative comparison of the needed
memory between the proposed method and the
conventional designs is given [4]. Using a commonly
used (4,32) regular QC-LDPC code mentioned in [10],
with message quantized to four bits, this architecture
can store the messages for each row with 43 bits (32
for signs, 5 for index and 6 for two magnitudes)
instead of 128 bits (4 x 32). This saves about 17%
message memory in total. In addition, the memory
access operation is reduced from 30 times to 1 time
(96 percent reduced) for the shadowed place, which is
significantly power saving.

The decoding steps are given below:
a) Initialization: Read the values from channel and

store them in t memories.
b) Iteration: Compute the message from Variable

nodes to Check nodes and save them in message
memory MEMij except the upper P rows. For the
upper P rows, do the check node processing and save
the returned message in MEM1 with compressed form.

c) Check node process. Compute the check to
variable messages of the lower 2P rows and save back
in MEMij. Do iteration until all the check equations
are satisfied or the maximum iteration number reached.

d) Output the decoded codeword.

3.2.1 Memory Banks
Fig.2 shows the memory management of our decoder.
A (3,5) code is used for clarity.

As indicated in Fig.2, MEM1 is the message
memory bank for the shadowed place in the parity
check matrix. It saves only the check to variable
messages, in compressed form. MEMij (i=2,3. j=1~5)
saves the messages of subblock (i,j) of the parity check
matrix. For each memory bank, there is an address
generator to control the memory access. Because of
the special structure of QC-LDPC codes, the address
generator for each memory bank can be built with a
simple counter. The VNP and CNP will get the input
from appropriate MEMs and save back the computed
messages at the same address. Besides this, five
memory banks are instantiated to save the channel
information, each for every P variable nodes.

3.2.2 Memory Partition
Utilizing the partially parallel decoding architecture,
for a single decoding step, two access operations need
to be done for each memory bank, one time read and
one time write. To save area, single-port memory is
employed, instead of the dual-port memory. In order to
enable the read and write process of one memory bank

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp218-223)

in one clock cycle, the memory partition method [8] is
adopted. Every memory bank is partitioned into two
blocks, one for the even row numbers and the other for
the odd row numbers. They can be distinguished from
the last bit of the address generated. Table.1 illustrates
the address generation method and the memory access
procedure for MEMij. Table.2 illustrates the memory
access procedure of MEM1. They are different
because a delay with two extra clock cycle is induced
by the pipeline in CNP1. It will be illustrated more
clearly later. Message package [4] or more memory
partition schemes [8] can be used to increase the
parallel level and linearly increase the decoding speed.

Figure.2 The mapping of the parity check matrix to
message memorys and the decoding schedule

TABLE I. MEMORY ACCESS OF MEMIJ

Memory Address
Generator Bank A Bank B
00 0 Read ADDR 0 /
00 1 Write ADDR 0 Read ADDR 0
01 0 Read ADDR 1 Write ADDR 0
01 1 Write ADDR 1 Read ADDR 1
10 0 Read ADDR 2 Write ADDR 1
...

TABLE II. MEMORY ACCESS OF MEM1

Memory Address
Generator Bank A Bank B
00 0 Read ADDR 0 /
00 1 / Read ADDR 0
01 0 Read ADDR 1 /
01 1 Write ADDR 0 Read ADDR 1
10 0 Read ADDR 2 Write ADDR 0
10 1 Write ADDR 1 Read ADDR 2
11 0 Read ADDR 3 Write ADDR 1
...

3.3 CNP architecture
Fig.3 gives the CNP architecture of the shadow place.
It finds the smallest two inputs and the index of the
minimum one. Function of the sub-module MIN is to
record the minimum, 2nd-Min and the index of the
minimum.

This check node process can be time consuming for
a big row weight matrix. It has log2(t) levels of
comparators. Plus the time needed in the variable node
process, the critical path is long. To increase the clock
speed, the data paths are cut by two level pipelining. It
can be seen in Table.2 that the output of CNP1 is
delayed with two more clock cycles. Hence, the
pipelining can increase the clock speed without
inducing memory access conflict.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp218-223)

ABS

ABS

ABS

ABS

ABS

ABS

MIN

MIN

MIN

REG

MIN

REG SIGN
OUT

MIN
MIN

2nd-MIN
location

Pipeline Pipeline

Figure.3 Architecture of CNP1

3.3 VNP architecture
Fig.4 shows the architecture of variable node

processor. The input messages are firstly transferred to
two’s complement format and then do the add
operation. Finally they are transferred back to sign and
magnitude format. The scale module is shown in Fig.5.

Figure.4 Architecture of VNP

There are some methods to improve the
performance of Min-Sum product algorithm [10]: to
scale the variable to check node message or to minus
an offset. The algorithm is developed to suit for
hardware implementation. Here gives the pseudo code:

if input >= 8 output = 3’b111;
else if input >= 4 output = input-1;
else output = input (unchanged);
Fig.5 shows the circuit. According to performance

simulation, it is quite clear that this quantized scaling
method is accuracy and performs well with QC-LDPC
codes.

Figure.5 Scale Module Architecture

4 Implementation Result
The LDPC decoder is implemented as a synthesizable
Verilog HDL model. Results are obtained with the
Quartus synthesis tool.

It is worth noting that the RTL code is fully
parameterized. The parameter P and shift value for
each sub-matrix can be easily reconfigured. Here we
choose a (3,6) code with P = 256, and get the
codeword length 1536, code rate 1/2. Table Ⅲ gives
the mapping result of our decoder on the Altera
Cyclone EP1C12Q240C7 device. The maximum clock
frequency is 90MHz. The throughput is 9Mbps (with
15 iteration times). As stated above, by instantiating
more processing units and applying massage pack or
more memory partition, the decoder throughput can be
linearly increased.

TABLE III. ALTERA FPGA MAPPING RESULT

Resource Used
Logic elements 1536

Memory bits 22272
Memory blocks 32

5 Conclusions
A memory efficient partially parallel architecture for
decoding QC-LDPC codes has been designed and
implemented on FPGA. The special structure of the
parity check matrix not only makes the memory
addressing simply, but also enables the use of
modified Min-Sum decoding algorithm to save the
message memory. This architecture can be easily
configured for different code rates, block sizes, and
parallelism factors.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp218-223)

6 Acknowledgments
The work presented in this paper was supported by

the Foundation of High-Tech of Jiangsu Province of
China under Grant No.BG2005030; the National
Nature Science Foundation of China under Grant
No.90307011.

References:
[1] R.G.Gallager. “Low density parity check codes.”

IRE Trans. Info. Theory, vol. IT-8,pp.21-28,1962.
[2] A.J.Blanksby and C.J.Howland, “A 690-mW 1-

Gbps 1024-b, Rate-1/2 Low-Density Parity-Check
Code Decoder” IEEE J.Solid-State Circuits,
vol.37, pp.404-412,2002.

[3] T.Zhang. “Efficient VLSI Architectures for Error-
Correcting Coding.” Ph.D. Thesis. 2002.

[4] Marjan Karbooti “Semi-Parallel Reconfiguable
Architectures for Real-Time LDPC Decoding”
Proceedings of the International Conference on
Information Technololy: Coding and
Compution(ITCC’04)

[5] Mauro Cocco “A Scalable Architecture for LDPC
Decoding” Proceedings of the Design,
Automation and Test in Europe Conference and
Exhibition Designers’ Forum(DATE’04)

[6] Mohammad M.Mansour “Low-Power VLSI
Decoder Architectures for LDPC Codes”
ISLPED’02

[7] Jianguang Zhao, “On Implementation of Min-
Sum Algorithm and Its Modifications for
Decoding Low-Density Parity-Check (LDPC)
Codes” IEEE Transactions on Communications
VOL.53, NO.4 2005

[8] Jinghu Chen, “Reduced-Complexity Decoding of
LDPC Codes” IEEE Transactions on
Communications VOL.53, NO.8 2005

[9] Z.Li, L.Chen and S.Lin, W Fong and P Yeh,
“Efficient Encoding of Quasi-Cyclic Low Density
Parity-Check Codes,” IEEE Transactions on
Communications

[10] L.Chen, J.Xun, I.Djurdjevic, and S.Lin, “Near
Shannon Limit Quasi-Cyclic Low Density Parity
Check Codes” IEEE Transactions on
Communications

[11] Z.Wang, “Low Complexity, High Speed
Decoder Architecture for Quasi-Cyclic LDPC
Codes” ISCAS 2005, pp.5786-5789.

[12] J. Heo. “Analysis of Scaling Soft Information
on Low Density Parity Check Codes” Elect.
Letters, 39(2):219–221, Jan 2003.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp218-223)

