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Abstract -  Low-Density Parity-Check (LDPC) code is one kind of prominent error correcting codes (ECC) being 
considered in next generation industry standards. The decoder implementation complexity has been the 
bottleneck of its application. This paper presents an implementation of Quasi-Cyclic Low-Density Parity-Check 
decoder by using FPGA. Modified Min-Sum decoding algorithm is applied to reduce the memory size needed 
for information storage. Partially parallel structures, memory management and pipelining schemes are discussed 
in this paper.  
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1    Introduction  
A basic communication system is composed of three 
parts: a transmitter, channel, and receiver. Transmitted 
information is usually corrupted due to noise and 
channel distortion. To correct these errors, redundancy 
coding is intentionally introduced, and the receiver 
employs a decoder to make corrections based on the 
redundancy. Turbo codes and LDPC codes [1] are the 
two most popular error-correcting control codes (ECC) 
which showing results very close to the Shannon limit. 
Turbo code is overwhelmed by LDPC code in some 
aspects such as lower error floor, less computation 
requirement and fully parallel decoding schemes.  

However, the implementation of LDPC decoder is 
not trivial. Implementing it directly in its inherent 
parallel manner may get the highest decoding 
throughput，while the complex interconnection will 
take up more than half of the chip area to avoid routing 
conflict for large codeword length (bigger than 1K). A 
rate-1/2, 1024-bit LDPC decoder [2] implemented in 
0.16µm technology occupies an area of 7mm×7mm, 
where logic density is only 50%. Serial VLSI 
architecture or partly parallel architecture is well 
studied nowadays [3] [4] [5] [6], which uses RAM to 
store messages transferring between variable nodes 
(VN) and check nodes (CN). Therefore, a huge 

memory requirement for message storage will be a 
problem.  

As for the decoding algorithm, the minimum-sum 
algorithm [7] [8] is an approximation of the Sum-
Product algorithm (SPA). From the perspective of 
implementation, the Min-Sum algorithm requires less 
computation and the noise power estimation is 
unnecessary for an additive white Gaussian noise 
(AWGN) channel. Furthermore, the Min-Sum 
algorithm can help reducing the message storage 
requirement because the messages transmitted from a 
check node to adjacent variable nodes have only two 
possible magnitudes per iteration. However, this 
advantage is not easy to take in hardware 
implementation. In [5], the authors implemented an 
LDPC decoder utilizing the Min-Sum algorithm. The 
memory requirement reduction is achieved, but the 
hardware is complex, and the decoding latency is 
extremely high. The efficient use of Min-Sum 
algorithm in decoding LDPC codes still remains 
unresolved. 

In this paper, the VLSI design issues of a memory 
efficient VLSI implementation for Quasi-Cyclic 
LDPC (QC-LDPC) codes are discussed. In Section 2, 
a brief review for the modified Min-Sum decoding 
algorithm and QC-LDPC codes is given. Section 3 
gives the VLSI architecture of our decoder. Synthesis 
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results based on FPGA are given in Section 4. Section 
5 concludes the paper. 
 

 
2 Min-sum decoding algorithm and  
QC-LDPC codes 
LDPC codes can be typically defined by an M×N 
parity check matrix H. The symbol N represents the 
length of the block (i.e. the number of bits in the 
codeword), while the symbol M represents the number 
of parity checks in the code. The rate of such a code is 
thus (N-M)/N. The LDPC code can be represented by 
a bipartite graph (Tanner graph) of variable nodes and 
check nodes as shown in Fig.1.  
 

 

Figure.1 Tanner graph for a regular (2,3) LDPC code 

The typical LDPC decoding algorithm is the sum-
product algorithm which has two phases. In the first 
phase, the variable nodes compute updated 
information which is sent to adjacent check nodes. In 
the second phase, the check nodes compute updated 
information based on the new massages from the 
variable nodes. This update information is then sent 
back to adjacent variable nodes and the process is 
repeated over and over again.  

The modified min-sum decoding algorithm is 
similar to the sum-product algorithm, with an 
approximation of check node process. It has some 
advantages in implementation against the sum-product 
algorithm, such as less computation and estimation of 
noise power is unnecessary for an AWGN channel. 

In the modified min-sum decoding algorithm, the 
check node processors compute the check-to-variable 
messages Rcv through the following formulation: 
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where α is a scaling factor. Lcv is the variable-to-check 
messages. N(c) denotes the set of variable nodes that 
participate in cth check node.  

The variable processor computes the variable-to-
check messages Lcv through the following formulation: 

 

v
cvMm
mvcv IRL += ∑

∈ \)(

    (2) 

Where, M(v)\c denotes the set of check nodes 
connected to the variable node v excluding the variable 
node c. Iv denotes the intrinsic message of variable 
node v.  

Quasi-Cyclic LDPC code is a kind of highly 
structured LDPC code which can achieve comparable 
performance to random codes. QC-LDPC codes are 
well suited for hardware implementation, especially in 
that its encoder can be easily built with shift-registers 
[9]. In addition, the structure in the parity check 
matrix of QC-LDPC codes can facilitate efficient 
partially parallel [4] [6] decoding architecture. A 
normally regular (c, t) QC-LDPC code is defined as 
its parity check matrix H (M×N) consisting of a c× t 
array of P× P sub-matrices which is a circulant of 
identity matrix I.  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ctcc

t

t

HHH

HHH
HHH

H

L

LOLL

L

L

21

22221

11211

 (3) 

 
Each sub-matrix Hij is a circulant matrix of identity 
matrix.  
Here gives a Hij example with P=6 and offset=3: 
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3  Decoder architecture  
This section gives the VLSI architecture of our 
decoder.  
 
3.1 The partially parallel decoder architecture 
Several papers have addressed partially parallel 
decoding architecture for QC-LDPC codes such as [4] 
and [6]. This kind of architecture generally achieves a 
good trade-off between hardware complexity and 
decoding throughput. Considering a regular LDPC 
code with column weight c and row weight t, t variable 
node processors (VNP1,VNP2, ... VNPt) and c check 
node processors (CNP1, CNP2, ... , CNPc) are 
instantiated, and totally t×c memory banks are used 
for storing the messages exchanging between VNPs 
and CNPs. In each clock cycle, each sub-block (with 
dimension P × P) provides a message data for 
processing and gets back the new message calculated. 
The architecture presented in this paper is based on the 
architecture described in [4]. 

In [7], it is stated that the implementation of Min-
Sum is more robust against quantization error, 
comparing with SPA. So, 4 bits uniform quantization 
method is applied. Our simulation shows that this 
quantized modified min-sum algorithm performs very 
close to the ideal belief-propagation algorithm.  

Some modifications are further applied to reduce 
the message memory.  

 
 

3.2 The method to save message memory 
Aiming at QC-LDPC code structure, a more memory 
efficient decoding schedule can be applied by using 
the Min-Sum decoding algorithm.  

Fig.2 shows the start points of variable process per 
iteration. In the shadowed place, the t variable-to-
check messages generated contemporarily are in the 
same row. Hence, the CNP can process these messages 
immediately after the variable process. It gives an 
opportunity to avoid storing the variable to check 
messages of the shadowed part. For 1/ c part of the 
matrix, the check node process can be done 
immediately after the variable node process. And, the 
check to variable messages of the shadowed part can 
be saved in compressed form just like what [5] 
mentioned, which is composed of four elements, i.e., 1) 
the smallest magnitude, 2) the second smallest 
magnitude, 3) the index of the smallest magnitude, and 
4) the signs of all messages.  

Here a quantitative comparison of the needed 
memory between the proposed method and the 
conventional designs is given [4]. Using a commonly 
used (4,32) regular QC-LDPC code mentioned in [10], 
with message quantized to four bits, this architecture 
can store the messages for each row with 43 bits (32 
for signs, 5 for index and 6 for two magnitudes) 
instead of 128 bits (4 x 32). This saves about 17% 
message memory in total. In addition, the memory 
access operation is reduced from 30 times to 1 time 
(96 percent reduced) for the shadowed place, which is 
significantly power saving.  

The decoding steps are given below:  
a) Initialization: Read the values from channel and 

store them in t memories. 
b) Iteration: Compute the message from Variable 

nodes to Check nodes and save them in message 
memory MEMij except the upper P rows. For the 
upper P rows, do the check node processing and save 
the returned message in MEM1 with compressed form.  

c) Check node process. Compute the check to 
variable messages of the lower 2P rows and save back 
in MEMij. Do iteration until all the check equations 
are satisfied or the maximum iteration number reached.  

d) Output the decoded codeword. 
 

3.2.1 Memory Banks 
Fig.2 shows the memory management of our decoder. 
A (3,5) code is used for clarity.  

As indicated in Fig.2, MEM1 is the message 
memory bank for the shadowed place in the parity 
check matrix. It saves only the check to variable 
messages, in compressed form. MEMij (i=2,3. j=1~5) 
saves the messages of subblock (i,j) of the parity check 
matrix. For each memory bank, there is an address 
generator to control the memory access. Because of 
the special structure of QC-LDPC codes, the address 
generator for each memory bank can be built with a 
simple counter. The VNP and CNP will get the input 
from appropriate MEMs and save back the computed 
messages at the same address. Besides this, five 
memory banks are instantiated to save the channel 
information, each for every P variable nodes. 

 
3.2.2 Memory Partition 
Utilizing the partially parallel decoding architecture, 
for a single decoding step, two access operations need 
to be done for each memory bank, one time read and 
one time write. To save area, single-port memory is 
employed, instead of the dual-port memory. In order to 
enable the read and write process of one memory bank 
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in one clock cycle, the memory partition method [8] is 
adopted. Every memory bank is partitioned into two 
blocks, one for the even row numbers and the other for 
the odd row numbers. They can be distinguished from 
the last bit of the address generated. Table.1 illustrates 
the address generation method and the memory access 
procedure for MEMij. Table.2 illustrates the memory 
access procedure of MEM1. They are different 
because a delay with two extra clock cycle is induced 
by the pipeline in CNP1. It will be illustrated more 
clearly later. Message package [4] or more memory 
partition schemes [8] can be used to increase the 
parallel level and linearly increase the decoding speed.  
 

 

Figure.2 The mapping of the parity check matrix to 
message memorys and the decoding schedule 

 

TABLE I.  MEMORY ACCESS OF MEMIJ  

Memory Address 
Generator Bank A Bank B 
00 0 Read ADDR 0 / 
00 1 Write ADDR  0 Read ADDR 0 
01 0 Read ADDR 1 Write ADDR 0 
01 1 Write ADDR 1 Read ADDR 1 
10 0 Read ADDR 2 Write ADDR 1 
... ... ... 

TABLE II.  MEMORY ACCESS OF MEM1 

Memory Address 
Generator Bank A Bank B 
00 0 Read ADDR 0 / 
00 1 / Read ADDR 0 
01 0 Read ADDR 1 / 
01 1 Write ADDR 0 Read ADDR 1 
10 0 Read ADDR 2 Write ADDR 0 
10 1 Write ADDR 1 Read ADDR 2 
11 0 Read ADDR 3 Write ADDR 1 
... ... ... 

 
 
3.3  CNP architecture  
Fig.3 gives the CNP architecture of the shadow place. 
It finds the smallest two inputs and the index of the 
minimum one. Function of the sub-module MIN is to 
record the minimum, 2nd-Min and the index of the 
minimum.  

This check node process can be time consuming for 
a big row weight matrix. It has log2(t) levels of 
comparators. Plus the time needed in the variable node 
process, the critical path is long. To increase the clock 
speed, the data paths are cut by two level pipelining. It 
can be seen in Table.2 that the output of CNP1 is 
delayed with two more clock cycles. Hence, the 
pipelining can increase the clock speed without 
inducing memory access conflict.  
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Figure.3 Architecture of CNP1 
 

3.3 VNP architecture 
Fig.4 shows the architecture of variable node 

processor. The input messages are firstly transferred to 
two’s complement format and then do the add 
operation. Finally they are transferred back to sign and 
magnitude format. The scale module is shown in Fig.5. 

 

 

Figure.4 Architecture of VNP 

There are some methods to improve the 
performance of Min-Sum product algorithm [10]: to 
scale the variable to check node message or to minus 
an offset. The algorithm is developed to suit for 
hardware implementation. Here gives the pseudo code: 

if  input >= 8 output = 3’b111; 
else if input >= 4 output = input-1; 
else output = input (unchanged); 
Fig.5 shows the circuit. According to performance 

simulation, it is quite clear that this quantized scaling 
method is accuracy and performs well with QC-LDPC 
codes. 

 

Figure.5 Scale Module Architecture 

 

4 Implementation Result 
The LDPC decoder is implemented as a synthesizable 
Verilog HDL model. Results are obtained with the 
Quartus synthesis tool.  

It is worth noting that the RTL code is fully 
parameterized. The parameter P and shift value for 
each sub-matrix can be easily reconfigured. Here we 
choose a (3,6) code with P = 256, and get the 
codeword length 1536, code rate 1/2. Table Ⅲ gives 
the mapping result of our decoder on the Altera 
Cyclone EP1C12Q240C7 device. The maximum clock 
frequency is 90MHz. The throughput is 9Mbps (with 
15 iteration times). As stated above, by instantiating 
more processing units and applying massage pack or 
more memory partition, the decoder throughput can be 
linearly increased.  

TABLE III.  ALTERA FPGA MAPPING RESULT 

Resource Used 
Logic elements 1536 

Memory bits 22272 
Memory blocks 32 

 

 

5 Conclusions 
A memory efficient partially parallel architecture for 
decoding QC-LDPC codes has been designed and 
implemented on FPGA. The special structure of the 
parity check matrix not only makes the memory 
addressing simply, but also enables the use of 
modified Min-Sum decoding algorithm to save the 
message memory. This architecture can be easily 
configured for different code rates, block sizes, and 
parallelism factors.  
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