
Improvement heuristics for the Sparse Travelling Salesman Problem 
 

FREDRICK MTENZI  
Computer Science Department 
Dublin Institute of Technology 

School of Computing, DIT Kevin Street, Dublin 8 
IRELAND 

    http://www.comp.dit.ie/fmtenzi 
 
 

Abstract: - The Sparse Travelling Salesman Problem (Sparse TSP) is a variant of the Travelling Salesman 
Problem (TSP), which is one of the major success stories in optimization. The TSP can be described as the 
problem of finding a route of a salesman starting from his home city, visiting each city in a particular region 
exactly once and returning home at the end while minimizing the tour length. The Sparse TSP which is studied 
in this paper is a problem of finding the shortest route of the salesman when visiting cities in a region making 
sure that each city is visited at least once and returning home at the end. In the Sparse TSP, the distance 
between cities may not obey the triangle inequality (i.e., the shortest distance between any two cities may not 
be a direct road joining the two cities; it may be cheaper to go via other cities). In this paper we design and 
implement improved versions of 2-opt and 3-opt heuristic algorithms, which are specifically designed to take 
advantage of sparsity in the Sparse TSP. These improvement heuristic algorithms incorporate the use of large 
neighbourhood structure, enabling them to produce results which are much better than existing ones. In our 
implementation we use several, speed-up techniques to make our algorithms run faster. We test our 
improvement heuristic algorithms using problems taken from road network in rural Ireland and the TSP 
Library (TSPLIB).  
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1 Introduction 
The Sparse Travelling Salesman Problem (Sparse 
TSP) is a variant of the Travelling Salesman 
Problem (TSP), which is one of the major success 
stories in optimization. There are many real world 
problems which may be formulated as instances of 
the TSP such as very large scale integration (VLSI) 
chip manufacturing and drilling printed circuit 
boards. The TSP can be described as the problem of 
finding a route of a salesman starting from his home 
city, visiting each city in a particular region exactly 
once and returning home at end while minimizing 
the tour length. The Sparse TSP which is studied in 
this paper is a problem of finding the shortest route 
of the salesman when visiting cities in a region 
making sure that each city is visited at least once 
and returning home at the end. In the Sparse TSP, 
the distance between cities may not obey the triangle 
inequality (i.e., the shortest distance between any 
two cities may not be a direct road joining the two 
cities; it may be cheaper to go via other cities). An 
intriguing aspect of the problem is the relative ease 
with which it can be described and the extreme 
difficulty it presents in finding the optimal solution. 
This problem has been shown to be NP-hard [1] and 
therefore finding optimal solution to it is extremely 
difficult.  

 
One approach of finding solutions to the Sparse TSP 
problem is by using improvement heuristic 
algorithms. The main idea is to improve a feasible 
solution by performing a series of transformations   
(alterations) or moves. The transformations are 
normally specified by a neighbourhood function that 
defines which solutions can be generated by a single 
move. Given a feasible initial solution, the algorithm 
searches its neighbourhood for a better solution.  
 
In the case of the Sparse TSP, we define the 
neighbourhood of a tour say, T, to be all those tours 
which can be obtained by changing at most k arcs of 
T. A tour is said to be locally optimal if no tour in its 
neighbourhood is shorter than it. We can search for 
local k-opt tours by starting with a non-optimal tour 

 and constructing a sequence of 
tours . Each tour is obtained from the 
previous one by performing a k-change, i.e. by 
deleting k arcs and reconnecting the loose ends 
using k arcs which are not in the present tour so as to 
still have a tour. The k-change is required to 
decrease the length of the tour, until no more 
improvement can be made.  
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There are two ways in which the neighbourhood is 
searched in improvement heuristic algorithms. First 
improvement, in which the current solution is 
replaced with the first better solution found in the 
neighbourhood; and the best improvement, in which 
the current solution is replaced with the best solution 
in the neighbourhood. In this paper, we use the first 
improvement for the majority of testing. 
 
By definition, any type of improvement heuristic 
terminates in a local optimum. Furthermore, the 
quality of the final solution as compared with the 
global optimum depends on the size and the 
structure of the neighbourhood. The time needed to 
verify local optimality is then proportional to the 
size of the neighbourhood and the time required to 
evaluate the objective value of any solution in the 
neighbourhood. Tour improvement heuristic 
searches a neighbourhood of polynomial size to find 
moves that transform the current solution into a new 
one. 
 
A well-known approach for improving the solution 
quality of improvement heuristics is to adopt a 
multi-start approach in which several independent 
runs, each using a different starting solution, are 
performed, and then the best of the resulting 
solutions is selected. Typically, the starting solutions 
can be chosen randomly, or by applying some tour 
construction heuristic. These starting solutions do 
not rely on the results of previous runs of the tour 
construction and/or improvement heuristics. We 
refer to this approach as the repeated local search. 
 
However, a far more effective approach is to allow 
dependent runs by generating the new starting 
solution from one of the previous local optima by a 
suitable perturbation method. Such an approach is 
known as iterated local search, and is a widely 
recognized method for obtaining high quality 
solutions at relatively low computational cost, 
without resorting to more intricate tour improvement 
heuristics [13].  
 
Our computational results are obtained for the data 
from the road network in rural Ireland. We consider 
problem instances of size between 10 and 4923 
cities. For each instance, we run each improvement 
heuristic with different starting solutions. We have 
done testing using data from TSPLIB which have 
been used in a lot of studies in the literature. 
Improvement heuristics designed and implemented 
in this study produce better results than those 
reported in literature. However, for random 

generated problems our algorithms are marginally 
worse. 
 
The rest of the paper is organized as follows. The 
Local search and neighbourhood structure 
background information is discussed in section 2. In 
section 3 we give a detailed explanation of the 
repeated local search heuristics, specifically the 2-
opt and 3-opt. Iterated local search heuristics 
techniques and other approaches to tour 
improvements are also discussed in section 3. We 
present a summary of our computational results and 
discuss these results in section 4. Finally our 
summary and conclusions are given in section 5. 
 
 
2   Background 
2.1 Local search  
The most common tour improvement heuristics are 
the 2-opt (see Croes [3]) and the 3-opt algorithm 
proposed by Lin [4]. Here, 2 or 3 arcs are removed 
from the tour, all possible reinsertions are attempted 
and the best is implemented. These operations are 
repeated until no further improvement is possible. 
The complexity of 2-opt and 3-opt heuristic 
algorithms are and  respectively. Lin 
and Kernighan [5] proposed an improvement to 
these algorithms. The value of k, (i.e. number of arcs 
to be deleted) is modified dynamically throughout 
the algorithm, but this procedure is more difficult to 
code than the original Lin 3-opt method. In a similar 
vein, Stewart [6] described an accelerated 3-opt 
version which considered neighbour tours 
constructed using only arcs of the k shortest 
spanning trees of G. Reinelt [7] and Bentley [8] 
have proposed other types of composite heuristics 
that emphasize low execution times rather than 
solution quality.  

2( )O n 3( )O n

 
2.2 Neighbourhood Structure  
We define neighbourhood structure as follows. Let 

denote the set of feasible solutions associated 
with the TSP problem. For every solution

nS

ns S∈ , a 
subset or neighbourhood of , , is defined. 
When such a neighbourhood has been defined for 
each

nS ( )N S

ns S∈ , we say that a neighbourhood structure 
N has been defined on . Given a specific 
parameter, x, a sequence of solutions in is then 
generated as follows. 

nS

nS

1. , the initial solution. 1s

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)



2. can be any point in such that 
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i2 j1≤ ∀ ∈  
is said to be locally optimal with respect to the 
neighbourhood structure N. It should be noted that 

may not necessarily be globally optimal, but the 
cost elements of the sequence are strictly decreasing. 

ks

 
Neighbourhoods can be complex, asymmetric, and 
cost dependent. Three types of neighbourhoods that 
have been applied to the Sparse TSP include the, k-
change neighbourhoods (Johnson and McGeoch 
[13]). Another by Rego [9] uses ejection chains to 
generate compound neighbourhood structures for the 
TSP. Thirdly, Gutin [10] uses exponential 
neighbourhoods to obtain in polynomial time the 
best among a very large number of tours. 
 
A critical issue in the design of a tour improvement 
heuristic is the choice of the neighbourhood 
structure, that is, the manner in which the 
neighbourhood is defined. In this paper we use large 
neighbourhoods (k-change and a variation of 
ejection chains), which produce near-optimal 
solutions of better quality. Large neighbourhoods 
takes longer to search, therefore we have included a 
number of speed-up techniques.  

 
 
3 Repeated and iterated local search  
3.1 The Two-opt algorithm  
A 2-opt algorithm consists of deleting two arcs from 
the tour and reconnecting the two resulting paths in 
a different way to obtain a new tour which is shorter. 
The arcs which are used to reconnect the new tour 
should not be in any of the previous tours. 
 
The 2-opt neighbourhood of the solution, contains 
all the tours that are obtained by selecting a pair of 
distinct, non-adjacent arcs, say and , 
and replacing them by the arcs and , 
as illustrated in figure 1. This is the only arc 
exchange that creates a feasible tour. In the 2-opt 
algorithm, the new tour is accepted as the current 
tour if and only if it is shorter than the current tour. 
The size of the 2-opt neighbourhood is .  

1 2( , )i i 1 2( , )j j

1 1( , )i j 2 2( , )i j

2( )O n

 
Fig. 1: A 2-opt exchange: original tour on the 
Left and improved tour on the right 

 
We redesigned and implemented the 2-opt 
improvement heuristic algorithm to take advantage 
of sparsity and utilize other large neighbourhoods. 
For any pair of arcs which are to be used for 
exchange, we checked if they existed. If they did not 
exist we found the shortest path between their end 
nodes. The modified 2-opt algorithm with shortest 
path is given as follows: 

The 2-opt algorithm using Existing path, shortest  
path and enlarged neighbourhood  
Construct the initial tour T with length f(T) 
Tour = f(T); Improve = 0 
Repeat 
If there exists any two unvisited nodes then 
Mark them visited 
Add them to the tour 
else 
Find a shortest path to the next unvisited pair of nodes 
For k=1 to n-2 do 
If  then 1 1ExistArc (( , ) ( , ))k k k ki i and j j+ +

Exchange arcs 

Improve= 1 1

1 1

( , ) ( , ) { ( , )
( , )}

k k k k k k

k k

d i i d j j d i j
d i j

+ +

+ +

+ − +
 

Else  
Find a shortest path to the next unvisited pair of nodes 
Exchange arcs 

Improve= 1 1

1 1

( , ) ( , ) { ( , )
( , )}

k k k k k k

k k

d i i d j j P i j
P i j

+ +

+ +

+ − +
 

EndElse 
EndIf 

( ) ( ) Improvef T f T′ = −  
Endfor 
Until Improve=0 and all nodes are visited 

( )Tour f T ′=  
 
3.2 The Three-opt algorithm  
A 3-opt algorithm is expensive, since each move 
replaces two or three arcs in the current tour by two 
or three others not in the tour. Suppose that arcs 

are to be replaced. If all 
three arcs are to be replaced and they are non-
adjacent, then there are four triples of new arcs that 
will produce a tour. If all three arcs are to be 

1 2 1 2 1 2( , ), ( , ) and ( , )i i j j k k
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replaced and exactly two of them are adjacent, then 
3-opt becomes the node reinsertion algorithm 
explained in Reinelt [11] and the new arcs are 
uniquely determined. Also, each pair of non-
adjacent arcs can be replaced to give a 2-opt tour. 
Since a tour has neighbours under a 3-opt 
search, verifying local optimality takes time. 

3( )O n
3( )O n

 
In the 3-opt exchange, removal of three arcs from 
the current tour results in three paths which can be 
joined with three arcs not in the tour to form a new 
tour in eight possible ways. Since we are assuming 
that the tour is already 2-opt, only two cases needs 
to be considered in the 3-opt case. These cases are 
shown in figure 2. 
 

j1i2

i1

k2

j2

k1

j1i2

i1

k2

j2

k1

j1i2

i1

k2

j2

k1

(a) (b)

(c)  
Fig. 2: Possible 3-opt exchanges: (a) is the  
Original Tour, (b) and (c) are improved tours 

 
The 3-opt algorithm considers only the arc 
exchanges that are feasible. Referring to the figure 2 
for each arc that is chosen, the arcs 

and can be determined by 
examining a list of the arcs that have as one end 
node and the list of arcs that have as one end 
node. For each node attached to  and for each node 
attached to , one of the two nodes in each of the 
arcs and can be identified. If the 
necessary pair of arcs exist, then a feasible exchange 
is possible. If this exchange represents a saving, the 
exchange is made and the process is repeated. When 
no more feasible improvements can be identified, 
the algorithm terminates.  

1 2( , )i i

1 2( , )j j 1 2( , )k k

1i

2i

1i

2i

1 2( , )j j 1 2( , )k k

 
The 3-opt heuristic algorithm implement in this 
study uses existing arcs and shortest path whenever 
the arc to be exchanged does not exist in the original 
graph. It also utilizes large neighbourhood structure 
as described in section 3.1. The following is the 

modified 3-opt algorithm with the shortest path 
option, using existing arcs. 
 

The 3-opt algorithm using Existing path, shortest  
path and  enlarged neighbourhood 
Use 2-opt improve 
Tour = f(T); ImproveA = 0;ImproveB=0 
Repeat 
If there exists two unvisited nodes then 
Mark them as visited 
Exchange arcs 
Else 
Find a shortest path to the next unvisited pair of nodes 
For k=1 to n do 
Pick two unvisited nodes  1,k kj j +

For m=3 to n-3 do 

  1 1

1

If ExistArc (( , ) and ( , )
 and ( , )) then

m m m m

m m

i i j j
k k

+ +

+

1 1( , ) ( , ) ( , 1)m m m m m mdelweight d i i d j j d k k+ + += + +
1 1

1

ImproveA=Delweight-{ ( , ) ( , )
( , )}

m m m m

m m

d i j d j k
d i k

+ +

+

+

+
 

Exchange arcs 
Else 
Find a shortest path to the next unvisited pair of nodes 

1 1

1

ImproveS=Delweight { ( , ) ( , )
( , )}

m m m m

m m

P i j P i k
P j k

+ +

+

− +
+
EndElse  
EndIf 
If ImproveS < ImproveA then 

( ) ( )  ImproveAf T f T′ = −  
Else ( ) ( )  ImproveSf T f T′ = −  
Endfor{m} 
Endfor{k} 
Until (ImproveA=0)and (ImproveS=0) and all nodes  
Are visited 

( )Tour f T ′=  
 
3.3 Iterated algorithm and other 

approaches  
A promising but relatively unexplored idea is to 
restart near a local optimum, rather than from an 
initial solution generated by the tour construction 
heuristics. Under this approach, the next starting 
solution is obtained from the current local optimum 
(where the current local optimum is usually either 
the best local optimum found thus far, or the most 
recently generated local optimum) by applying a 
pre-specified move to it. We refer to such a move a 
perturbation, and to the approach as iterated local 
search. In this way, not all good characteristics from 
previously found solutions are lost. Recent research 
such as Johnson [12], Johnson and McGeoch [13], 
Martin, Otto and Felten([14],[15]), Martin and Otto 
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[16] shows that iterated local search can be 
extremely competitive. 
 
We also considered two other perturbation strategies 
for the iterated local search for the Sparse TSP. The 
first approach we considered was to change the 
distance between cities for a few random cities. This 
was done to the original problem. Then using the 
local optimal solution we had, we tried to continue 
improving the solution.  
 
We implemented an approach of adding a few 
missing arcs whose arc length were the shortest 
distance between the nodes. In this approach we 
were making the graph denser. This approach is 
based on the work by Codenotti et al ([17], [18]). 
The improvement in terms of tour quality was 
reasonable. Making the graph denser produced 
better results. In order to achieve this, parameter 
tuning was given a lot of attention. Some of the 
parameters we used here include the number of arcs 
whose distances were to be changed, by how much, 
and how many missing arcs should be added.  
 
We have observed that usually a decrease in the 
objective function value is considerable in the first 
steps of the heuristic and then tails off. In particular, 
it takes a final complete round through all allowed 
moves to verify that no further improving move is 
possible. Therefore, in our implementation we 
stopped the heuristics early after observing a very 
slow decrease over some period. And we noted that 
not too much quality is lost. 
 
3.4 Speed-up  
Given the proven usefulness of the improvement 
heuristic algorithms and the many problems to 
which they have been applied, it is only natural to 
seek to improve their computational performance 
while maintaining the quality of the final solution. 
We aim to reduce the amount of computations done, 
without letting the solution quality deteriorate too 
much.  
 
In dealing, with problems similar to large TSP, 
where a really efficient algorithm for the best 
solution is unavailable, it is in general time 
consuming, if not entirely hopeless, to work on 
refinement techniques to obtain the best solution. 
Rather, the approach should be to develop a 
technique by which good locally optimal solutions 
can be obtained very quickly and with reasonable 
probability that, among the locally optimal 
solutions, we may indeed find the best which is near 
optimal. Sometimes this best solution can be 

optimal. To get this type of speed-up we used the 
first improvement.  
 
A straightforward implementation of the k-opt 
heuristic algorithm, for example, is hopelessly slow. 

It takes 
n
k

 tests to check whether a tour can be 

improved by k-exchange. Even for k=3, the heuristic 
runs almost forever on medium size instances of a 
few thousand nodes. To make this approach 
practical, a number of modifications limiting the 
exchanges considered are necessary. They are based 
on insights about the probability of success of 
certain exchanges, or on knowledge about special 
structures. Well designed fast data structures play an 
important role as discussed in Fredman et al [19]. 
The issue of speeding up TSP heuristics is treated in 
depth in Johnson [12], Bentley [8], and Reinelt [7]. 
Adopting these techniques and applying them on the 
Sparse TSP instances of up to a five thousand cities 
were solved using reasonable computing effort. 
Hence, most savings in terms of computational cost 
come from using and designing appropriate data 
structures particularly those designed to take 
advantage of the special structures of the 
applications, employing programming tricks, 
problem reduction techniques and concentrating 
search effort on nodes that tend to yield good 2-opt 
or 3-opt swaps. 
 
In this paper the issue of identifying non-optimal 
arcs has been studied and implemented. Most of the 
results used in identifying non-optimal arcs are 
adopted from the work by Jonker and Volgenant 
[20]. The results are encouraging. We managed to 
reduce the size of the problems and to restrict the 
search space.  
 
Lastly, in implementations of our algorithms we 
limited in advance the number of possible exchange 
steps to be considered. This leads to deterministic 
running times and appropriately led to good 
solutions because the most substantial improvements 
are usually found early.  
 
 
4 Computational Results and 

discussions 
Our computational results are obtained for the data 
from the road network in rural Ireland. We consider 
problem instances of size between 10 and 4923 
cities. For each instance, we ran each improvement 
heuristic with different starting solutions fifteen 
times and then took the average. We have also done 
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testing using data from TSPLIB which have been 
used in a lot of studies in the literature. Due to space 
constraints we only report on some of the results, 
detailed results are found in Mtenzi [21]. 
 
Computational results for random starting solutions 
demonstrate that 2-opt exchanges are not powerful 
enough. Results provided in figure 1 show that 2-opt 
improved a random initial tour on average only by 
9%. In his study on large Geometric TSP, Reinelt 
[7] concludes that random starts are not advisable 
for the 2-opt heuristic and that restricted search to 
speed-up the computations is necessary. Because of 
the smaller neighbourhood of 2-opt, it is 
recommended to use starting tours which are 
reasonable. 
 

Fig. 1:Solution time for tour improvement heuristics  
For problems taken from road network in rural Ireland 

 
The performance of the 2-opt algorithm varies as a 
function of the starting tour to which it is applied. 
Bentley [8] point out that the 2-opt heuristic 
algorithm is very sensitive to starting tours. In our 
computational study in this paper we used the 
Nearest Neighbour, Farthest Insertion, and Random 
Insertion tour construction heuristics to provide 
starting tours for the Sparse TSP. We show that the 
Farthest Insertion and 2-opt combination gives the 
best results. 
 

 
Fig. 2 Solution quality using the Farthest Insertion 
Heuristic as a starting solution 

 
 
Having performed a 2-opt exchange, the direction 
has to be updated for one of the two segments of the 
tour. We managed to save some CPU time by 
maintaining the direction of the longer paths and 
only reversing the shorter path. This was 
accomplished by using an additional array giving the 
rank of the nodes in the current tour. An arbitrary 
node receives rank 1, its successor gets rank 2 etc. 
Having initialized these ranks we could determine in 
constant time which of the two parts is shorter, with 
the ranks updated only for the nodes in the shorter 
part. 
 
For problems taken from the TSPLIB, each tour 
improvement heuristic was run four times on an 
instance using different starting tours. In this case 
there was no need to use any of the modified 
heuristic algorithms designed in this paper because 
they are/were complete graphs, where all arcs exist. 
Also due to space constraint we do not include these 
results, they can be found in Mtenzi [21].  
 
From the results given in figure 2 it can be said that 
the quality of the final solution that 2-opt generates 
strongly depends on the starting solution. This is 
because 2-opt is a weaker neighbourhood. On the 
other hand 3-opt algorithms are not dependent on 
the starting solution and produce nearly the same 
solution quality regardless of the starting solution. 
This is true for both problem instances we use in this 
study. 
 
Computational results after including perturbation in 
our algorithms shows that iterated local search is 
competitive only if the perturbation is sufficiently 
large to move a solution outside the neighbourhood 
of the local optimum. If it is not, then the effect of 
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the perturbation might be reversed in a single or 
small number of iterations, and the perturbation 
would literally lead nowhere. On the other hand we 
noted that, perturbation should not be too large, or 
else the good characteristics of the previous local 
optimum may be lost, and the procedure is then 
effectively multi-start rather than iterated local 
search.  
 
Heuristics designed in this study may work with 
other types of data such as random generated 
problems. However, considerable amount of 
redesign may be necessary in some cases, especially 
in the pre-processing algorithms of the data. 
 
Starting from completely random tours we get a 
wide sample of all local optima. In problems where 
we used relatively weaker neighbourhoods, it was 
crucial to use ‘good’ starting solutions. Results from 
our testing uphold this conclusion. 
 
 
5   Summary and Conclusions 
Computational experience of our speed-up 
techniques discussed in this paper suggests that our 
improvement heuristics are running significantly 
fast. However, we have noted deterioration in terms 
of the tour quality. Nevertheless, using these 
approaches it was possible to run a large number of 
experiments within a given time, hence increasing 
our probability of getting a global optimum tour or 
better near-optimal tour.  
 
This study has a strong experimental flavour, for the 
simple reason that, theorems seem to be incapable of 
adequately characterizing the algorithms. This is so 
as theoretical results of the Standard TSP are 
derived with the constraint that the triangle 
inequality be obeyed. Algorithms designed and 
implemented in this study are for the sparse graph 
problem instances in which in some cases the 
triangle inequality may not necessarily be obeyed. 
This means that there is a room for more research to 
be done in the area of theoretical aspects of the 
Sparse TSP. Moreover, it might be interesting to 
study the mathematical properties and geometrical 
characteristics of local optimal produced by our 
algorithms.  
 
The study of the Sparse TSP is still not finished. 
Important questions got to be pursued include 
exploitation of parallel architectures and 
classification of problem instances to be able to 
choose automatically the most appropriate algorithm 

in certain situations, and the most appropriate 
combination of algorithms. The ultimate goal, of 
course, is the solution of the Sparse TSP to 
optimality. But, when claiming to be able to solve 
practical problems we have to be able to adapt to 
limits imposed in practice. 
 
Computational experiences obtain from this study 
highlight the need for using neighbourhoods which 
are easy to search. At the same time a 
neighbourhood must be large enough to ensure that 
the quality of the local optimal obtained is good 
enough. For large problems the running time of 
improvement heuristics may, however, be excessive 
unless sophisticated reduction and data handling 
techniques are employed. And more important is 
that the Sparse TSP methods seem to benefit from 
implementing more than a single neighbourhood. 
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