
Improvement heuristics for the Sparse Travelling Salesman Problem

FREDRICK MTENZI
Computer Science Department
Dublin Institute of Technology

School of Computing, DIT Kevin Street, Dublin 8
IRELAND

 http://www.comp.dit.ie/fmtenzi

Abstract: - The Sparse Travelling Salesman Problem (Sparse TSP) is a variant of the Travelling Salesman
Problem (TSP), which is one of the major success stories in optimization. The TSP can be described as the
problem of finding a route of a salesman starting from his home city, visiting each city in a particular region
exactly once and returning home at the end while minimizing the tour length. The Sparse TSP which is studied
in this paper is a problem of finding the shortest route of the salesman when visiting cities in a region making
sure that each city is visited at least once and returning home at the end. In the Sparse TSP, the distance
between cities may not obey the triangle inequality (i.e., the shortest distance between any two cities may not
be a direct road joining the two cities; it may be cheaper to go via other cities). In this paper we design and
implement improved versions of 2-opt and 3-opt heuristic algorithms, which are specifically designed to take
advantage of sparsity in the Sparse TSP. These improvement heuristic algorithms incorporate the use of large
neighbourhood structure, enabling them to produce results which are much better than existing ones. In our
implementation we use several, speed-up techniques to make our algorithms run faster. We test our
improvement heuristic algorithms using problems taken from road network in rural Ireland and the TSP
Library (TSPLIB).

Key-Words: - Sparse TSP, heuristics, neighbourhood structure, optimization, tour, local search

1 Introduction
The Sparse Travelling Salesman Problem (Sparse
TSP) is a variant of the Travelling Salesman
Problem (TSP), which is one of the major success
stories in optimization. There are many real world
problems which may be formulated as instances of
the TSP such as very large scale integration (VLSI)
chip manufacturing and drilling printed circuit
boards. The TSP can be described as the problem of
finding a route of a salesman starting from his home
city, visiting each city in a particular region exactly
once and returning home at end while minimizing
the tour length. The Sparse TSP which is studied in
this paper is a problem of finding the shortest route
of the salesman when visiting cities in a region
making sure that each city is visited at least once
and returning home at the end. In the Sparse TSP,
the distance between cities may not obey the triangle
inequality (i.e., the shortest distance between any
two cities may not be a direct road joining the two
cities; it may be cheaper to go via other cities). An
intriguing aspect of the problem is the relative ease
with which it can be described and the extreme
difficulty it presents in finding the optimal solution.
This problem has been shown to be NP-hard [1] and
therefore finding optimal solution to it is extremely
difficult.

One approach of finding solutions to the Sparse TSP
problem is by using improvement heuristic
algorithms. The main idea is to improve a feasible
solution by performing a series of transformations
(alterations) or moves. The transformations are
normally specified by a neighbourhood function that
defines which solutions can be generated by a single
move. Given a feasible initial solution, the algorithm
searches its neighbourhood for a better solution.

In the case of the Sparse TSP, we define the
neighbourhood of a tour say, T, to be all those tours
which can be obtained by changing at most k arcs of
T. A tour is said to be locally optimal if no tour in its
neighbourhood is shorter than it. We can search for
local k-opt tours by starting with a non-optimal tour

 and constructing a sequence of
tours . Each tour is obtained from the
previous one by performing a k-change, i.e. by
deleting k arcs and reconnecting the loose ends
using k arcs which are not in the present tour so as to
still have a tour. The k-change is required to
decrease the length of the tour, until no more
improvement can be made.

1T

1 2, , , mT T T

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

mailto:Fred.Mtenzi@comp.dit.ie

There are two ways in which the neighbourhood is
searched in improvement heuristic algorithms. First
improvement, in which the current solution is
replaced with the first better solution found in the
neighbourhood; and the best improvement, in which
the current solution is replaced with the best solution
in the neighbourhood. In this paper, we use the first
improvement for the majority of testing.

By definition, any type of improvement heuristic
terminates in a local optimum. Furthermore, the
quality of the final solution as compared with the
global optimum depends on the size and the
structure of the neighbourhood. The time needed to
verify local optimality is then proportional to the
size of the neighbourhood and the time required to
evaluate the objective value of any solution in the
neighbourhood. Tour improvement heuristic
searches a neighbourhood of polynomial size to find
moves that transform the current solution into a new
one.

A well-known approach for improving the solution
quality of improvement heuristics is to adopt a
multi-start approach in which several independent
runs, each using a different starting solution, are
performed, and then the best of the resulting
solutions is selected. Typically, the starting solutions
can be chosen randomly, or by applying some tour
construction heuristic. These starting solutions do
not rely on the results of previous runs of the tour
construction and/or improvement heuristics. We
refer to this approach as the repeated local search.

However, a far more effective approach is to allow
dependent runs by generating the new starting
solution from one of the previous local optima by a
suitable perturbation method. Such an approach is
known as iterated local search, and is a widely
recognized method for obtaining high quality
solutions at relatively low computational cost,
without resorting to more intricate tour improvement
heuristics [13].

Our computational results are obtained for the data
from the road network in rural Ireland. We consider
problem instances of size between 10 and 4923
cities. For each instance, we run each improvement
heuristic with different starting solutions. We have
done testing using data from TSPLIB which have
been used in a lot of studies in the literature.
Improvement heuristics designed and implemented
in this study produce better results than those
reported in literature. However, for random

generated problems our algorithms are marginally
worse.

The rest of the paper is organized as follows. The
Local search and neighbourhood structure
background information is discussed in section 2. In
section 3 we give a detailed explanation of the
repeated local search heuristics, specifically the 2-
opt and 3-opt. Iterated local search heuristics
techniques and other approaches to tour
improvements are also discussed in section 3. We
present a summary of our computational results and
discuss these results in section 4. Finally our
summary and conclusions are given in section 5.

2 Background
2.1 Local search
The most common tour improvement heuristics are
the 2-opt (see Croes [3]) and the 3-opt algorithm
proposed by Lin [4]. Here, 2 or 3 arcs are removed
from the tour, all possible reinsertions are attempted
and the best is implemented. These operations are
repeated until no further improvement is possible.
The complexity of 2-opt and 3-opt heuristic
algorithms are and respectively. Lin
and Kernighan [5] proposed an improvement to
these algorithms. The value of k, (i.e. number of arcs
to be deleted) is modified dynamically throughout
the algorithm, but this procedure is more difficult to
code than the original Lin 3-opt method. In a similar
vein, Stewart [6] described an accelerated 3-opt
version which considered neighbour tours
constructed using only arcs of the k shortest
spanning trees of G. Reinelt [7] and Bentley [8]
have proposed other types of composite heuristics
that emphasize low execution times rather than
solution quality.

2()O n 3()O n

2.2 Neighbourhood Structure
We define neighbourhood structure as follows. Let

denote the set of feasible solutions associated
with the TSP problem. For every solution

nS

ns S∈ , a
subset or neighbourhood of , , is defined.
When such a neighbourhood has been defined for
each

nS ()N S

ns S∈ , we say that a neighbourhood structure
N has been defined on . Given a specific
parameter, x, a sequence of solutions in is then
generated as follows.

nS

nS

1. , the initial solution. 1s

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

2. can be any point in such that

1is + ()iN s

1(,) (,i ic s x c s x+ <)

c s x c s x s N s s

When for some k, (,) (,) (), k k k

j2i1

i2 j1

j2i1

i2 j1≤ ∀ ∈
is said to be locally optimal with respect to the
neighbourhood structure N. It should be noted that

may not necessarily be globally optimal, but the
cost elements of the sequence are strictly decreasing.

ks

Neighbourhoods can be complex, asymmetric, and
cost dependent. Three types of neighbourhoods that
have been applied to the Sparse TSP include the, k-
change neighbourhoods (Johnson and McGeoch
[13]). Another by Rego [9] uses ejection chains to
generate compound neighbourhood structures for the
TSP. Thirdly, Gutin [10] uses exponential
neighbourhoods to obtain in polynomial time the
best among a very large number of tours.

A critical issue in the design of a tour improvement
heuristic is the choice of the neighbourhood
structure, that is, the manner in which the
neighbourhood is defined. In this paper we use large
neighbourhoods (k-change and a variation of
ejection chains), which produce near-optimal
solutions of better quality. Large neighbourhoods
takes longer to search, therefore we have included a
number of speed-up techniques.

3 Repeated and iterated local search
3.1 The Two-opt algorithm
A 2-opt algorithm consists of deleting two arcs from
the tour and reconnecting the two resulting paths in
a different way to obtain a new tour which is shorter.
The arcs which are used to reconnect the new tour
should not be in any of the previous tours.

The 2-opt neighbourhood of the solution, contains
all the tours that are obtained by selecting a pair of
distinct, non-adjacent arcs, say and ,
and replacing them by the arcs and ,
as illustrated in figure 1. This is the only arc
exchange that creates a feasible tour. In the 2-opt
algorithm, the new tour is accepted as the current
tour if and only if it is shorter than the current tour.
The size of the 2-opt neighbourhood is .

1 2(,)i i 1 2(,)j j

1 1(,)i j 2 2(,)i j

2()O n

Fig. 1: A 2-opt exchange: original tour on the
Left and improved tour on the right

We redesigned and implemented the 2-opt
improvement heuristic algorithm to take advantage
of sparsity and utilize other large neighbourhoods.
For any pair of arcs which are to be used for
exchange, we checked if they existed. If they did not
exist we found the shortest path between their end
nodes. The modified 2-opt algorithm with shortest
path is given as follows:

The 2-opt algorithm using Existing path, shortest
path and enlarged neighbourhood
Construct the initial tour T with length f(T)
Tour = f(T); Improve = 0
Repeat
If there exists any two unvisited nodes then
Mark them visited
Add them to the tour
else
Find a shortest path to the next unvisited pair of nodes
For k=1 to n-2 do
If then 1 1ExistArc ((,) (,))k k k ki i and j j+ +

Exchange arcs

Improve= 1 1

1 1

(,) (,) { (,)
(,)}

k k k k k k

k k

d i i d j j d i j
d i j

+ +

+ +

+ − +

Else
Find a shortest path to the next unvisited pair of nodes
Exchange arcs

Improve= 1 1

1 1

(,) (,) { (,)
(,)}

k k k k k k

k k

d i i d j j P i j
P i j

+ +

+ +

+ − +

EndElse
EndIf

() () Improvef T f T′ = −
Endfor
Until Improve=0 and all nodes are visited

()Tour f T ′=

3.2 The Three-opt algorithm
A 3-opt algorithm is expensive, since each move
replaces two or three arcs in the current tour by two
or three others not in the tour. Suppose that arcs

are to be replaced. If all
three arcs are to be replaced and they are non-
adjacent, then there are four triples of new arcs that
will produce a tour. If all three arcs are to be

1 2 1 2 1 2(,), (,) and (,)i i j j k k

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

replaced and exactly two of them are adjacent, then
3-opt becomes the node reinsertion algorithm
explained in Reinelt [11] and the new arcs are
uniquely determined. Also, each pair of non-
adjacent arcs can be replaced to give a 2-opt tour.
Since a tour has neighbours under a 3-opt
search, verifying local optimality takes time.

3()O n
3()O n

In the 3-opt exchange, removal of three arcs from
the current tour results in three paths which can be
joined with three arcs not in the tour to form a new
tour in eight possible ways. Since we are assuming
that the tour is already 2-opt, only two cases needs
to be considered in the 3-opt case. These cases are
shown in figure 2.

j1i2

i1

k2

j2

k1

j1i2

i1

k2

j2

k1

j1i2

i1

k2

j2

k1

(a) (b)

(c)
Fig. 2: Possible 3-opt exchanges: (a) is the
Original Tour, (b) and (c) are improved tours

The 3-opt algorithm considers only the arc
exchanges that are feasible. Referring to the figure 2
for each arc that is chosen, the arcs

and can be determined by
examining a list of the arcs that have as one end
node and the list of arcs that have as one end
node. For each node attached to and for each node
attached to , one of the two nodes in each of the
arcs and can be identified. If the
necessary pair of arcs exist, then a feasible exchange
is possible. If this exchange represents a saving, the
exchange is made and the process is repeated. When
no more feasible improvements can be identified,
the algorithm terminates.

1 2(,)i i

1 2(,)j j 1 2(,)k k

1i

2i

1i

2i

1 2(,)j j 1 2(,)k k

The 3-opt heuristic algorithm implement in this
study uses existing arcs and shortest path whenever
the arc to be exchanged does not exist in the original
graph. It also utilizes large neighbourhood structure
as described in section 3.1. The following is the

modified 3-opt algorithm with the shortest path
option, using existing arcs.

The 3-opt algorithm using Existing path, shortest
path and enlarged neighbourhood
Use 2-opt improve
Tour = f(T); ImproveA = 0;ImproveB=0
Repeat
If there exists two unvisited nodes then
Mark them as visited
Exchange arcs
Else
Find a shortest path to the next unvisited pair of nodes
For k=1 to n do
Pick two unvisited nodes 1,k kj j +

For m=3 to n-3 do

 1 1

1

If ExistArc ((,) and (,)
 and (,)) then

m m m m

m m

i i j j
k k

+ +

+

1 1(,) (,) (, 1)m m m m m mdelweight d i i d j j d k k+ + += + +
1 1

1

ImproveA=Delweight-{ (,) (,)
(,)}

m m m m

m m

d i j d j k
d i k

+ +

+

+

+

Exchange arcs
Else
Find a shortest path to the next unvisited pair of nodes

1 1

1

ImproveS=Delweight { (,) (,)
(,)}

m m m m

m m

P i j P i k
P j k

+ +

+

− +
+
EndElse
EndIf
If ImproveS < ImproveA then

() () ImproveAf T f T′ = −
Else () () ImproveSf T f T′ = −
Endfor{m}
Endfor{k}
Until (ImproveA=0)and (ImproveS=0) and all nodes
Are visited

()Tour f T ′=

3.3 Iterated algorithm and other

approaches
A promising but relatively unexplored idea is to
restart near a local optimum, rather than from an
initial solution generated by the tour construction
heuristics. Under this approach, the next starting
solution is obtained from the current local optimum
(where the current local optimum is usually either
the best local optimum found thus far, or the most
recently generated local optimum) by applying a
pre-specified move to it. We refer to such a move a
perturbation, and to the approach as iterated local
search. In this way, not all good characteristics from
previously found solutions are lost. Recent research
such as Johnson [12], Johnson and McGeoch [13],
Martin, Otto and Felten([14],[15]), Martin and Otto

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

[16] shows that iterated local search can be
extremely competitive.

We also considered two other perturbation strategies
for the iterated local search for the Sparse TSP. The
first approach we considered was to change the
distance between cities for a few random cities. This
was done to the original problem. Then using the
local optimal solution we had, we tried to continue
improving the solution.

We implemented an approach of adding a few
missing arcs whose arc length were the shortest
distance between the nodes. In this approach we
were making the graph denser. This approach is
based on the work by Codenotti et al ([17], [18]).
The improvement in terms of tour quality was
reasonable. Making the graph denser produced
better results. In order to achieve this, parameter
tuning was given a lot of attention. Some of the
parameters we used here include the number of arcs
whose distances were to be changed, by how much,
and how many missing arcs should be added.

We have observed that usually a decrease in the
objective function value is considerable in the first
steps of the heuristic and then tails off. In particular,
it takes a final complete round through all allowed
moves to verify that no further improving move is
possible. Therefore, in our implementation we
stopped the heuristics early after observing a very
slow decrease over some period. And we noted that
not too much quality is lost.

3.4 Speed-up
Given the proven usefulness of the improvement
heuristic algorithms and the many problems to
which they have been applied, it is only natural to
seek to improve their computational performance
while maintaining the quality of the final solution.
We aim to reduce the amount of computations done,
without letting the solution quality deteriorate too
much.

In dealing, with problems similar to large TSP,
where a really efficient algorithm for the best
solution is unavailable, it is in general time
consuming, if not entirely hopeless, to work on
refinement techniques to obtain the best solution.
Rather, the approach should be to develop a
technique by which good locally optimal solutions
can be obtained very quickly and with reasonable
probability that, among the locally optimal
solutions, we may indeed find the best which is near
optimal. Sometimes this best solution can be

optimal. To get this type of speed-up we used the
first improvement.

A straightforward implementation of the k-opt
heuristic algorithm, for example, is hopelessly slow.

It takes
n
k

 tests to check whether a tour can be

improved by k-exchange. Even for k=3, the heuristic
runs almost forever on medium size instances of a
few thousand nodes. To make this approach
practical, a number of modifications limiting the
exchanges considered are necessary. They are based
on insights about the probability of success of
certain exchanges, or on knowledge about special
structures. Well designed fast data structures play an
important role as discussed in Fredman et al [19].
The issue of speeding up TSP heuristics is treated in
depth in Johnson [12], Bentley [8], and Reinelt [7].
Adopting these techniques and applying them on the
Sparse TSP instances of up to a five thousand cities
were solved using reasonable computing effort.
Hence, most savings in terms of computational cost
come from using and designing appropriate data
structures particularly those designed to take
advantage of the special structures of the
applications, employing programming tricks,
problem reduction techniques and concentrating
search effort on nodes that tend to yield good 2-opt
or 3-opt swaps.

In this paper the issue of identifying non-optimal
arcs has been studied and implemented. Most of the
results used in identifying non-optimal arcs are
adopted from the work by Jonker and Volgenant
[20]. The results are encouraging. We managed to
reduce the size of the problems and to restrict the
search space.

Lastly, in implementations of our algorithms we
limited in advance the number of possible exchange
steps to be considered. This leads to deterministic
running times and appropriately led to good
solutions because the most substantial improvements
are usually found early.

4 Computational Results and

discussions
Our computational results are obtained for the data
from the road network in rural Ireland. We consider
problem instances of size between 10 and 4923
cities. For each instance, we ran each improvement
heuristic with different starting solutions fifteen
times and then took the average. We have also done

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

testing using data from TSPLIB which have been
used in a lot of studies in the literature. Due to space
constraints we only report on some of the results,
detailed results are found in Mtenzi [21].

Computational results for random starting solutions
demonstrate that 2-opt exchanges are not powerful
enough. Results provided in figure 1 show that 2-opt
improved a random initial tour on average only by
9%. In his study on large Geometric TSP, Reinelt
[7] concludes that random starts are not advisable
for the 2-opt heuristic and that restricted search to
speed-up the computations is necessary. Because of
the smaller neighbourhood of 2-opt, it is
recommended to use starting tours which are
reasonable.

Fig. 1:Solution time for tour improvement heuristics
For problems taken from road network in rural Ireland

The performance of the 2-opt algorithm varies as a
function of the starting tour to which it is applied.
Bentley [8] point out that the 2-opt heuristic
algorithm is very sensitive to starting tours. In our
computational study in this paper we used the
Nearest Neighbour, Farthest Insertion, and Random
Insertion tour construction heuristics to provide
starting tours for the Sparse TSP. We show that the
Farthest Insertion and 2-opt combination gives the
best results.

Fig. 2 Solution quality using the Farthest Insertion
Heuristic as a starting solution

Having performed a 2-opt exchange, the direction
has to be updated for one of the two segments of the
tour. We managed to save some CPU time by
maintaining the direction of the longer paths and
only reversing the shorter path. This was
accomplished by using an additional array giving the
rank of the nodes in the current tour. An arbitrary
node receives rank 1, its successor gets rank 2 etc.
Having initialized these ranks we could determine in
constant time which of the two parts is shorter, with
the ranks updated only for the nodes in the shorter
part.

For problems taken from the TSPLIB, each tour
improvement heuristic was run four times on an
instance using different starting tours. In this case
there was no need to use any of the modified
heuristic algorithms designed in this paper because
they are/were complete graphs, where all arcs exist.
Also due to space constraint we do not include these
results, they can be found in Mtenzi [21].

From the results given in figure 2 it can be said that
the quality of the final solution that 2-opt generates
strongly depends on the starting solution. This is
because 2-opt is a weaker neighbourhood. On the
other hand 3-opt algorithms are not dependent on
the starting solution and produce nearly the same
solution quality regardless of the starting solution.
This is true for both problem instances we use in this
study.

Computational results after including perturbation in
our algorithms shows that iterated local search is
competitive only if the perturbation is sufficiently
large to move a solution outside the neighbourhood
of the local optimum. If it is not, then the effect of

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

the perturbation might be reversed in a single or
small number of iterations, and the perturbation
would literally lead nowhere. On the other hand we
noted that, perturbation should not be too large, or
else the good characteristics of the previous local
optimum may be lost, and the procedure is then
effectively multi-start rather than iterated local
search.

Heuristics designed in this study may work with
other types of data such as random generated
problems. However, considerable amount of
redesign may be necessary in some cases, especially
in the pre-processing algorithms of the data.

Starting from completely random tours we get a
wide sample of all local optima. In problems where
we used relatively weaker neighbourhoods, it was
crucial to use ‘good’ starting solutions. Results from
our testing uphold this conclusion.

5 Summary and Conclusions
Computational experience of our speed-up
techniques discussed in this paper suggests that our
improvement heuristics are running significantly
fast. However, we have noted deterioration in terms
of the tour quality. Nevertheless, using these
approaches it was possible to run a large number of
experiments within a given time, hence increasing
our probability of getting a global optimum tour or
better near-optimal tour.

This study has a strong experimental flavour, for the
simple reason that, theorems seem to be incapable of
adequately characterizing the algorithms. This is so
as theoretical results of the Standard TSP are
derived with the constraint that the triangle
inequality be obeyed. Algorithms designed and
implemented in this study are for the sparse graph
problem instances in which in some cases the
triangle inequality may not necessarily be obeyed.
This means that there is a room for more research to
be done in the area of theoretical aspects of the
Sparse TSP. Moreover, it might be interesting to
study the mathematical properties and geometrical
characteristics of local optimal produced by our
algorithms.

The study of the Sparse TSP is still not finished.
Important questions got to be pursued include
exploitation of parallel architectures and
classification of problem instances to be able to
choose automatically the most appropriate algorithm

in certain situations, and the most appropriate
combination of algorithms. The ultimate goal, of
course, is the solution of the Sparse TSP to
optimality. But, when claiming to be able to solve
practical problems we have to be able to adapt to
limits imposed in practice.

Computational experiences obtain from this study
highlight the need for using neighbourhoods which
are easy to search. At the same time a
neighbourhood must be large enough to ensure that
the quality of the local optimal obtained is good
enough. For large problems the running time of
improvement heuristics may, however, be excessive
unless sophisticated reduction and data handling
techniques are employed. And more important is
that the Sparse TSP methods seem to benefit from
implementing more than a single neighbourhood.

References:
[1] Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., and

Shmoys, The Traveling Salesman Problem, John
Wiley and Sons Ltd, 1985.

[2] Johnson, D.S. and McGeoch, L.A., The
Traveling Salesman Problem: A case study, in
Local search in Combinatorial Optimization,
Aarts, E. and Lenstra, J.K., Editors., John Wiley
and Sons Ltd. pp. 215--310, 1995.

[3] Croes, G.A., A method for solving traveling
salesman problems. Operations Research, 6: pp.
791--812, 1958.

[4] Lin, S., Computer solutions of the traveling
salesman problem. The Bell system technical
journal, 1965. 44: p. 2245--2269.

[5] Lin, S. and Kernighan, B.W., An effective
heuristic algorithm for the traveling salesman
problem. Operations Research, 21: pp. 498--516,
1973.

[6] Stewart Jr, W.R., Accelerated branch exchange
heuristics for symmetric travelling salesman
problems. Networks, 17: pp. 423--437, 1987.

[7] Reinelt, G., Fast Heuristics for Large Geometric
Traveling Salesman Problems. ORSA Journal on
Computing, 4(2): pp. 206--217, 1992.

[8] Bentley, J.J., Fast Algorithms for Geometric
Traveling Salesman Problems, ORSA Journal on
Computing, 4(4): pp. 387--411, 1993.

[9] Rego, C., Relaxed tours and path ejections for
the traveling salesman problem, European
Journal of operational research, 2: pp. 522--538,
1998.

[10]Gutin, G., Exponential neighbourhood local
search for the traveling salesman Problem.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

Brunel University of West London, Department
of Mathematics and Statistics, 1996.

[11]Reinelt, G., The traveling salesman:
Computational solutions for TSP applications.:
Springer Verlag, 1994.

[12]Johnson, D.S. Local optimization and the
traveling salesman problem. in ICALP '90.
Springer-Verlag, 1990.

[13]Johnson, D.S. and McGeoch, L.A., The
Traveling Salesman Problem: A Case Study in
Local Optimization. 1995.

[14]Martin, O., Otto, S.W., and Felten, E.W., Large-
step Markov chains for the Traveling Salesman
Problem. Complex Systems, 5: pp. 299--326,
1991.

[15]Martin, O., Otto, S.W., and Felten, E.W., Large-
step Markov chains for the TSP incorporating
local search heuristics, Operations Research
Letters, 11: pp. 219--224, 1992.

[16]Martin, O. and Otto, S.W., Combining
Simulated Annealing with local search
heuristics, Annals of Operations Research, 63:
pp. 57--75, 1996.

[17]Codenotti, B., Manzini, G., Margara, L., and
Resta, G. Global Strategies for Augmenting the
Efficiency of TSP heuristics. 1993.

[18]Codenotti, B., Manzini, G., Margara, L., and
Resta, G., Perturbation: An efficient Technique
for the solution of very large instances of the
Euclidean TSP. Informs Journal on Computing,
8(2): pp. 125--133, 1996.

[19]Fredman, M.L., Johnson, D.S., McGeoch, L.A.,
and Osteimer, G.O., Data Structures for
Travelling Salesmen, Journal of Algorithms, 18:
pp. 432--475, 1995.

[20]Jonker, R. and Volgenant, T., Nonoptimal edges
for the symmetric travelling salesman problem.
Operations Research, 32(4): p. 837--846, 1984.

[21]Mtenzi, F.J. and O'Connor, D.R., Heuristic
algorithms for the Sparse TSP, Business
Research Programme, Graduate School of
Business, University College Dublin, 1998.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp101-108)

