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Abstract: - Minimizing energy consumption in communication is a crucial problem in wireless ad hoc 
networks, as in most cases the nodes are powered by battery only. The minimum-energy broadcast problem is 
studied in this paper, for which it is well known that the broadcast nature of the radio transmission can be 
exploited to optimize energy consumption. This problem has been studied in a lot of literature on different 
models. In this paper a symmetric network is considered. First we propose an approximation algorithm, which 
takes ( ( ,O mn m n))α  time, where m is the number of links, n is the number of nodes and α  is the inverse of 
Ackerman's function. The algorithm delivers a broadcast tree with energy consumption being at most 12 nH −  

times of the optimal solution, where  is the 1nH − ( 1)stn − harmonic number. Since it has been proved that the 
minimum energy broadcast problem in general graph case (including symmetric case) cannot be approximated 
within a sub-logarithmic factor (unless P=NP), so the algorithm is almost optimal. For a special case where 
each node is equipped with the same type of battery it improves the known -approximation 
algorithm. Moreover for some asymmetric but nearly symmetric network, the algorithm can also be applied 
with performance guarantee. Finally a special case is studied, where the degree of network is bounded 
by a constant and the ratio of the maximum transmission energy to the minimum transmission energy is 
bounded by another constant C. For the case we devise a 

3(log )O n

(ln )O n
∆

12( )C H∆−+ -approximation algorithm. 
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1 Introduction 
In recent years, wireless ad hoc networks have 
received significant attention due to their potential 
applications in battlefield, emergency disaster relief, 
large sporting events or congresses [1,2,3,4]. Unlike 
wired networks or cellular networks, no wired 
backbone infrastructure is installed in wireless ad 
hoc networks. A communication is achieved either 
through a single-hop transmission if the 
communication parties are close enough, or through 
relaying by intermediate nodes otherwise. Each node 
in such a network has a limited energy resource 
(battery), and each node operates unattended. 
Consequently, energy efficiency is an important 
design consideration for these networks. The 
problem of minimizing the energy consumption has 
been studied intensively in [5, 6, 7, 8, 9, 10, 11, 12, 
13, 14]. 
 
The wireless ad hoc network is a distributed system 
intrinsically, so broadcast is an important 
communication primitive. In addition, many routing 

protocols for such networks need a broadcast 
mechanism to update their states and maintain the 
routes between nodes [15]. In this paper, we focus 
on source-initiated broadcasting of data. Data are 
distributed from a source node to each node in a 
network. The main objective is to construct a 
minimum-energy broadcast tree rooted at the source 
node. Nodes belonging to a broadcast tree can be 
divided into two categories: relay nodes and leaf 
nodes. The relay nodes are those that relay data by 
transmitting it to other nodes (relaying or leaf), 
while leaf nodes only receive data. The total energy 
consumption of a broadcast tree is the sum of the 
transmission energy on all the relay nodes (including 
the source node). Due to the broadcast nature of the 
wireless channel, each node can transmit at different 
power levels and thus reach a different number of 
neighboring nodes. So a crucial issue is to trade off 
between reaching more nodes in a single hop using 
higher power and reaching fewer nodes using lower 
power. 
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The minimum-energy broadcast problem was 
introduced by Wieselthier et al. in [16] and has been 
studied in many other literatures [17, 18, 19, 20, 21, 
22]. In [16] Wieselthier et al. proposed three 
heuristics: BLiMST(Broadcast Link-based MST), 
BLU(Broadcast Least-Unicast-cost) and 
BIP(Broadcast Incremental Power), and evaluated 
them through simulations. In [22] Wan et al. gave 
the first analytical results. For the geometric plane 
case, by exploring geometric structures of an 
Euclidean minimum spanning tree, they proved that 
the approximation ratio of BLiMST is between 6 
and 12, and the approximation ratio of BIP is 

between 
13
3

 and 12. For the general graph case, 

Wan et al. also proved that the problem is NP-hard, 
and even more, inapproximable within a factor of 
(1 ) logε− ∆ , where  is the maximal degree and ∆
ε  is any arbitrary small positive constant unless 

 by an approximation-

preserving reduction from the connected dominating 
set problem. In [19], Clementi et al. studied the 
minimum-energy broadcast problem on linear 
networks and proved it can be solved in polynomial 
time. The problem on higher dimensions was 
studied in [18] where the problem was proved to be 
NP-hard. In [17], Cagalj et al. also proved that for 
the graph case the problem is NP-hard and cannot be 
approximated better than . The proof was 
done by a reduction from the set cover problem. 
Moreover Cagalj et al. proved the problem in two-
dimensional Euclidean metric space is NP-
Complete. A similar proof was given by Egecioglu 
et al. in [20]. In [21], Liang studied the general 
graph case. Liang proved the minimum-energy 
broadcast problem on general graphs is NP-
complete by reduction from 3SAT. For any 
asymmetric network, Liang proposed an 
approximation algorithm. The main idea behind 
Liang’s algorithm is to reduce the minimum-energy 
broadcast problem to the directed steiner tree 
problem on an auxiliary weighted graph. The 
approximation ratio of his algorithm is

(log log )O nNP DTIME n⎡⊆ ⎣ ⎤⎦

(log )O ∆

( )O nε , 
where ε  is constant with 0 1ε< ≤ . For a special 
case where each node is equipped with the same 
type of battery, Liang gave another approximation 
algorithm with better performance ratio, which 
is . 3(log )O n
 
In this paper we consider the minimum-energy 
broadcast problem on symmetric wireless ad hoc 
networks. The major contributions are as follows. 

We propose an approximation algorithm. The time 
complexity of it is ( ( ,O mn m n))α , where m is the 
number of links, n is the number of nodes and α  is 
the inverse of Ackerman's function. The energy 
consumption of the broadcast tree delivered by the 
algorithm is at most  times of the optimal 
solution, where 

12 nH −

1
1 1

1
n

i n
H

i−
≤ ≤ −

= ∑  is the ( 1)stn − harmonic number. 

Taking into consideration the known hard result on 
the approximability of the broadcast problem for the 
general graph case, our algorithm is almost optimal. 
Note that the special case studied in [21] where each 
node is equipped with the same type of battery is in 
fact a symmetric case. Our algorithm improves the 

-approximation algorithm in [21]. In 
addition, for some asymmetric but nearly symmetric 
network, if the symmetry is evaluated by a constant 
K, our algorithm can also be applied with 

3(log )O n

1( 1) nK H −+ performance guarantee. Finally a 
special case is studied, where the degree of the 
network is bounded by a constant  and the ratio of 
the maximum transmission energy to the minimum 
transmission energy is bounded by another constant 
C. For the case we devised a 

∆

12( )C H∆−+ -
approximation algorithm. Since C and ∆ are 
constant, the algorithm is constant approximation. 
 
The rest of the paper is organized as follows. In 
Section 2 we introduce the network model and 
define the minimum-energy broadcast problem on 
the model. In Section 3 we propose an algorithm for 
the symmetric case and analyze the performance of 
the algorithm. We also generalize the algorithm to 
the nearly symmetric case. Then we devise a 
constant approximation algorithm for a special case 
in Section 4. Finally the conclusion is given in 
Section 5. 
 
 
2   Preliminaries 
 
2.1 Network Model 
We first give a wireless ad hoc network model and 
then, based on it we develop a graph model, which 
will be used to define the minimum-energy 
broadcast problem formally. 
 
In our model of a wireless ad hoc network, nodes are 
stationary. We do not consider mobility in this 
paper. We assume the availability of a large number 
of bandwidth resources, i.e., communication 
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channels. This is so because, in this paper, we are 
focused only on minimum-energy broadcast 
communication and do not consider issues like 
contention for the channel, lack of bandwidth 
resources etc. We also assume that nodes in a 
network are equipped with omni directional 
antennas. Thus by a single transmission of a 
transmitting node, due to the broadcast nature of 
wireless channels, all nodes that fall in the 
transmission range of the transmitting node can 
receive its transmission. This property of wireless 
media is called Wireless Multicast Advantage. Each 
node can adjust its transmission energy to 
communicate with different nodes. If a network is 
symmetric, then for any two nodes u and v, if u falls 
in the transmission range of v when v is transmitting 
with energy w, then v must fall in the transmission 
range of u when u transmits with the same energy. 
 
Next, we model a symmetric wireless ad hoc 
network as an undirected graph G=(V,E), V is the 
set of nodes. E is the set of single-hop links. If node 
u and v can communicate with each other in single 
hop, there is an edge . And a weight 
w(u,v) is assigned to (u,v), which corresponds the 
transmission energy for a unit transmission from u 
to v or from v to u. For any directed subgraph F of 
G, define the weight on node as 

and the 

weight of F as

( , )u v E∈

( )u V F∈
( ) max{ ( , ) : , ( )}Fw u w u v u v E F= < >∈

( )
( )F v V F

w w
∈

= F v∑ , which 

represents the energy consumption in F. 
 
2.2 The Minimum-Energy Broadcast 

Problem 
Given a symmetric wireless ad hoc network and a 
source node, the minimum-energy broadcast 
problem is to broadcast a unit message from the 
source node to all the other nodes such that the sum 
of transmission energy at all nodes is minimized. 
Based on the graph model in section 2.1, the 
problem can be defined formally as follows. 
 
Definition 1 (Minimum-Energy Broadcast Problem, 
MEBP) Given a connected undirected graph 
G=(V,E) with an edge weight function 

and a source node , construct a 
directed spanning tree(arborescence) T rooted at s 
and spanning all the other nodes such that  is 
minimized. 

:w E +→ℜ s V∈

Tw

 

Theorem 1 [22], [17] MEBP is NP-Complete and 
cannot be approximated better than (log )O ∆ unless 
P=NP, where ∆  is the degree of the network. 
 
 
3 Approximation Algorithm 

 
3.1 Symmetric Network  
In this section we devise an approximation 
algorithm for MEBP. The algorithm consists of two 
stages: firstly a weakly connected subgraph 
containing all the nodes is constructed. Then an 
arborescence rooted at s is constructed based on the 
subgraph. 
 
Given a symmetric wireless ad hoc network G(V,E), 
a greedy algorithm is proposed to construct a weakly 
connected subgraph G'=(V',E'), which is a directed 
graph satisfying V'=V and the undirected graph 
underlying G' is a subgraph of G. 
 
The algorithm starts with an empty set of edges and 
constructs the subgraph gradually. At each step, a 
node is selected and some directed edges away from 
it are added to G'. The algorithm ends after G' is 
weakly connected. 
 
A crucial issue of the algorithm is the rule to select 
nodes and edges. We use a greedy rule in the 
algorithm. Assume at some step, G' is not yet 
weakly connected, but contains some weakly 
connected components. For node , if we add 
some directed edges away from v to G', the weight 
of v will increase while the number of weakly 
connected components in G' will decrease. 
Normally, the more the weight of v increases, the 
more the number of components decreases. Define 
the cost of such an operation as the ratio of the 
increased weight to the decreased number of 
components. Obviously for each node v, a best 
operation on it with the minimal cost exists, which 
corresponds the most efficient growing of G' 
through v. The greedy rule is to select the node with 
the global minimum cost and add edges according to 
the cost. 

v V∈

 
The detail of the algorithm is described as follows. 
 

Algorithm 1 Greedy algorithm to construct a  
weakly connected graph 
Input: A symmetric wireless ad hoc network  

G(V,E) 
Output: A weakly connected subgraph  
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( , )G V E′ ′ ′  of G 
Begin  
1. Let . ( , )G V′ = ∅
2. while G  is not weakly connected do ′
3. for every node v V∈ do 
4.  compute the minimal cost of v vc
5. end for 
6. Select the node with global minimum  

cost . min min{ : }vc c v= ∈V
7. Add directed edges corresponding to  

minc to G . ′
8. end while 
End  

 
 
Theorem 2 The time complexity of Algorithm 1 is 

( ( ,O mn m n))α , where ,n V m E= =  and α  is 
the inverse of Ackerman's function. 

 
Proof: To implement Algorithm 1, we use the data 
structure for disjoint sets [23] to compute the 
number of connected components. Using the path 
compression and union-by-rank heuristic for t 
Union-Find-Operations on s elements one obtains a 
running time of ( ( , ))O t t sα . 
 
In Algorithm 1, the while iteration will run at most 

 times. Let be the number of edges incident 
to node v. For node v, step 4 can be carried out by 

Union-Find-Operations on the set of the 
weakly connected components, whose cardinality is 
no more than n. So in each while iteration, the total 
time of step 3 to 5 is 

( )O n vm

( )vO m

( ( , )) ( ( , )v v vv V v V
O m m n O m n mα α

∈ ∈
⊆∑ )∑

m

)

. 

 and step 3 to 5 are the dominating 

steps. So the work in each while iteration can be 
bounded by

2vv V
m

∈
=∑

( ( , )O m m nα . The time complexity of 
the algorithm is ( ( , )O m m n )α . 
 
Now we show the relationship between G′ and the 
optimal solution of MEBP. 
 
Lemma 1 The weight of the weakly connected graph 
G' is at most  times of the optimal solution of 
MEBP. 

1nH −

 
Proof: Assume there are g while iterations in 
Algorithm 1. Let and be the cost and the 

decreased number of weakly connected components 
corresponding to the iteration respectively. Then 

cos it in

thi
cosi iw n ti= is the increased weight of G' after the 

iteration. From the algorithm, it is easy to see 
that: 

thi

1
1i

i g
n n

≤ ≤

= −∑    (1)

     
 and at the end of the algorithm, the weight of G' is: 

1 1
cosG i i

i g i g
w w n′

≤ ≤ ≤ ≤

= = it∑ ∑  (2) 

 
Let be the optimal arborescence,  be the 

weight of . Without loss of generality, let 
be the internal nodes of  and 

OPTT
OPTTw

OPTT

1 2, , , kv v v… OPTT

1 2
, , ,

kv v vn n n… be the number of children of 

respectively. Define 1 2, , , kv v v…
cos ( ) /

i iv OPT it w v nv= be the cost of . Assume iv

1 2
cos cos cos

kv vt t vt≤ ≤ ≤  (3) 
 
Since 

1
1 1 1

( ) cos cos
OPT OPT i i iT T i v v v

i k i k i k
w w v n t n

≤ ≤ ≤ ≤ ≤ ≤

= = ≥ vt∑ ∑ ∑
and 

1
1

iv
i k

n n
≤ ≤

= −∑  

so we get 

1
cos /( 1)

OPTv Tt w n≤ −  
From the greedy rule of Algorithm 1, it is easy to 
see that 

11cos cos /( 1)
OPTv Tt t w n≤ ≤ − . 

 
After the first iteration, there are components 
in G'. By a similar analysis, we can get that: 

1n n−

2 1cos /( 1),
OPTTt w n n≤ − −  

and more for 1 i g≤ ≤  

1 1
cos /( 1 ).

OPTi T j
j i

t w n n
≤ ≤ −

≤ − − ∑  

Thus 
Gw ′

1
cosi i

i g
n t

≤ ≤

= ∑  

 
1 1

/( 1 )
OPTT i

i g j i
w n n n

≤ ≤ ≤ ≤ −

≤ − −
1

j∑ ∑  

 
1 2

1
1 1

( )
1 1OPT

g
T

j
j g

nn nw
n n n n n

≤ ≤ −

= + + +
1− − − − −∑
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 1 1( )
1 2OPTTw

n n
≤ + +

− −
1
1

+  

 
1,OPTT nw H −  

 
which means that the weight of G' delivered by 
Algorithm 1 is at most 1nH −  times of the optimal 
solution of MEBP. 

 
After Algorithm 1, G' is a weakly connected 
subgraph of G. Now we compute an arborescence T 
rooted at s and spanning V from G'. First a weakly 
connected spanning tree T' is generated in G' 
arbitrarily. Obviously the weight of T' is no more 
than G', i.e., . Then we convert T' to an 
arborescence T rooted at s by changing the direction 

Tw w′ ≤ G′

)

∪

Tv children u≠ ( )Tchildren v

))

)

T

)

G′

of some edges in T'. 
 
Lemma 2  2T Tw w ′≤
Proof: Let . By changing the 
direction of <u,v>, we get a new tree T''. From the 
definition of the weight on nodes, there are 

, (u v E T ′< >∈

( ) ( )T Tw u w u′′ ′≤    (4) 
and 

( )Tw v′′  max{ ( ), ( . )}Tw v w u v′=  
 max{ ( ), ( )}T Tw v w u′ ′≤  

(5) 

 
Define be the set of children of v in T. 
Since T is an arborescence, the direction of every 
edge is away from s. So from the equations (4) and 
(5), we get 

( )Tchildren v

( )Tw v  max{ ( ) : ( ) { }T Tw u u children v u′≤ ∈
 

( ) { }
( )

T

T
u children v v

w u′
∈ ∪

≤ ∑  

For any u and are 
disjoint, which means any node appears in at most 
one of the children sets. So 

, ( )

Tw  ( )T
v V

w v
∈

=∑  

 
( ) { }

( (
T

T
v V u children v v

w u′
∈ ∈ ∪

≤∑ ∑  

 
( )

( ( ) ( )
T

T T
v V u children v

w v w u′ ′
∈ ∈

= +∑ ∑  

 
( )

( ) ( ( ))
T

T
v V v V u children v

w v w u′ ′
∈ ∈ ∈

= +∑ ∑ ∑  

 2 (T
v V

w v′
∈

≤ ∑  

 2 Tw ′=  
 

The lemma is yielded. 
 
 

From Lemma 1, Lemma 2 and , we get the 
following theorem. 

Tw w′ ≤

 
Theorem 3 Given any MEBP instance with n nodes, 
the above algorithm is -approximation. 12 nH −

 
Since ln 1 for 1nH n n≤ + ≥ , so we can get the 
following corollary: 
 
Corollary 1 Given any MEBP instance with n 
nodes, the above algorithm is 2 ln( 1) 2n − + -
approximation. 
 
Note that in the second stage of the algorithm, the 
construction of T' can be done through a depth 
search, which can be carried out in  time. And 
To get the arborescence T from T', at most n edges 
will be changed direction. So the time of the second 
stage is O(n). The time complexity of the algorithm 
is 

( )O n

( ( , )) ( ) ( ( ,O mn m n O n O mn m n))α α+ = . 
 
For general cases, from Theorem 1, we know MEBP 
cannot be approximated better than . So 
our algorithm is almost optimal. In [21] Liang 
investigated a special but practical case of 
broadcasting in wireless ad hoc networks, where 
each node is equipped with the same type of battery. 
As indicated in [21], in this case, the network has 
the symmetric property, i.e., the case is a special 
case of symmetric networks studied above. For the 
case [21] proposed an approximation algorithm 
which is -approximation. Undoubtedly, 
our algorithm can be applied in the case and 
improve the known result. 

(log )O n

3(log )O n

 
3.2 Nearly Symmetric Network 
The above algorithm can be generalized to solve the 
minimum-energy broadcasting problem in 
asymmetric but nearly symmetric wireless ad hoc 
networks. In an asymmetric network, define 

,w u v< > be the energy consumption of u for unit 
transmission from u to v. For any 

, ,  if , / ,u v V w u v w v u∈ < > < > is bounded by a 
constant K, the network is referred to as a nearly 
symmetric network with constant K. Our algorithm 
can be applied to this case without any modification. 
But the performance analysis is a little different. For 
the first stage, Algorithm 1, Lemma 1 still holds. 
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But for the second stage, when we compute T from 
T', Lemma 2 should be modified as follows. 
 
Lemma 3  ( 1)T Tw K w ′≤ +
 
Proof: The proof is similar to in Lemma 2. The 
equation (5) is replaced by the following equation. 

( )Tw v′′  max{ ( ), , }Tw v w v u′= < >

T ∪

)

)v

 
 max{ ( ), ( )}T Tw v Kw u′ ′≤  

(6) 

 
So we have 

( )Tw v max{ ( ) : ( )}
   { ( )}

T

T

Kw u u children v
w v

′

′

≤ ∈
 

 
( )

( ) ( )
T

T T
u children v

w v Kw u′ ′
∈

≤ + ∑  

 
and 

Tw  ( )T
v V

w v
∈

=∑  

 
( )

( ( ) ( )
T

T T
v V u children v

w v Kw u′ ′
∈ ∈

≤ +∑ ∑  

 
( )

( ) ( ( ))
T

T T
v V v V u children v

w v Kw u′ ′
∈ ∈ ∈

= +∑ ∑ ∑  

 ( 1) (T
v V

K w ′
∈

≤ + ∑  

 ( 1) TK w ′= + . 
 

So we get the following theorem. 
 
Theorem 4 Given any nearly symmetric network 
with constant K and n nodes, the minimum-energy 
broadcasting problem is 1( 1) nK H −+ -
approximated. 
 
 
4   Special Case with Constant 
Performance Guarantee 
In practice, as pointed out in many literature, the 
transmission energy at each node cannot be adjusted 
infinitely. There exist a maximum energy and a 
minimum energy. Denote the maximum edge weight 
in a symmetric network by  and the minimum 
by . Let and the degree of the 
network be . If C and are constant, we propose 
an algorithm with constant performance guarantee. 

maxw

minw max min/w w = C

)

∆ ∆

 
For this special case, a simple algorithm is as 
follows:  

step 1: Ignoring the edge weight, compute a 
connected dominating set of G.  
step 2: Based on the connected dominating set, 
construct an aborescence T. First, a spanning tree is 
constructed, in which all the interior nodes are in the 
dominating set. Then the edges in the tree are 
directed away from s. 
 
Using the approximation algorithms of [24] in step 
1, we get that the number of interior nodes in T is at 
most (O H∆ times of the optimal tree. So the 
weight of T is at most times of the optimal 
tree. In the following, we devise another algorithm, 
which is a little similar with Algorithm I of [24]. 
The performance of the algorithm is better than the 
above algorithm. 

(O CH∆ )

 
The idea is to grow a tree T, starting from the source 
node s by an iterative procedure. At each step a node 
u in T is picked and scanned. By scanning a node, 
some new nodes and edges are inserted into T. 
Finally we will get an arborescence T rooted at s and 
spanning all the other nodes. 
 

Fig. 1: Two ways to scan nodes 
 
There are two ways to scan a node, as shown in 
Figure 1. In the first way (Figure 1(a)), a node u in T 
is scanned. Some neighboring nodes of u are 
inserted into T. In the second way (Figure 1(b)), a 
node u in T and a neighboring node v of u are 
scanned. Node v and some neighboring nodes of u 
or v are inserted into T. Similarly to Section 3, 
define the cost of such an operation as the ratio of 
the increased weight of T to the number of nodes 
inserted into T. For any node u in T, there exists a 
minimal cost, denoted as . The rule in the 
algorithm is to pick the node with the global 
minimum cost and scan it according to the cost. 

cos ut

 
Initially, node s is black, while all the other nodes 
are white. At each iteration, for all black nodes, its 
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minimal cost is computed. Then the black node with 
global minimum cost is picked. Some white nodes 
are inserted into T and colored black. Those white 
nodes may be neighbors of or neighbors of a 
neighbor of the black node. The algorithm ends after 
there is no white node, i.e., all white nodes have 
been inserted into T. A formal description of the 
algorithm is given in Algorithm 2. 
 

Algorithm 2  
Input:  A symmetric network G(V,E) with  

Constants C and ∆  and source s V∈  
Output: An arborescence T rooted as s  
Begin  
1. Let . ({ }, )T s= ∅
2. while T  does not span V do 
3. for every node ( )v V T∈ do 
4.  compute the minimal cost of v vc
5. end for 
6. Select the node with global minimum  

cost  from min min{ : ( )}vc c v V= ∈ T
V(T). 

7. Insert the nodes and directed edges  
corresponding to to T. minc

8. end while 
End  

 
Theorem 5 Given any symmetric wireless ad hoc 
network with constants C and , Algorithm 2 yields 
a broadcasting tree whose energy consumption is at 
most times of the minimum energy 
broadcasting tree. 

∆

12( )C H∆−+

 
Proof: Let be the optimal tree. For any 
node , let be the set of children of 
v in . For v being a leaf, 

OPTT
v V∈ ( )children v

OPTT ( )children v = ∅ . 
Every node except for s belongs to one and only one 
of the children sets. 
 
The proof is based on a charging scheme. Each time 
we scan a black node; we insert some white nodes 
into T and color them black. We charge each of 
these inserted white nodes in this step. Since each 
node except for s is colored and inserted exactly 
once, it is charged exactly once. Node s will not be 
charged. For any node , denote \{ }v V s∈ vδ as its 
charge. If in the iteration v is colored and inserted, 
the global minimum cost is , then charge each 
newly colored node , i.e., 

minc

minc minv cδ = . Assume 

there are k iterations in the algorithm and is the 

set of newly colored nodes in the iteration. There 
is the following equation: 

iV
thi

Tw  
1 i

v
i v V

δ
= ∈

=∑∑  

 
\{ }

v
v V s

δ
∈

= ∑  

 
\{ } ( )

u
v V s u children v

δ
∈ ∈

= ∑ ∑  

(7) 

 
Now we prove the upper bound on the total charges 
to nodes belonging to a children set (for 

any 

( )children i
\{ }i V s∈ ). Denote 0 ( )  and ju children i u=  

be the number of white nodes in after 
the  iteration. Without loss of generality, assume 
that at each iteration some nodes of  are 
colored, so the number of white nodes in 

 decreases at each iteration. 

( )children i
thj

( )children i

( )children i
 
The number of colored nodes in  after 
the first iteration is

( )children i

0u u1− . There are two cases:  
case 1: Algorithm 2 scans node in the first way 
(Figure 1(a)). Then each newly colored node gets a 

charge of at most 
1

( )
OPTT

o

Cw i
u u−

; 

case 2: Algorithm 2 scans node in the second way 
(Figure 1(b)). Since there are two nodes being 
scanned, so each newly colored node gets a charge 

of at most 
1

2 (
OPTT

o

Cw i
u u−

)

j

.  

Once any node in  is colored black, 
node i becomes a candidate node to be scanned as a 
part of the two nodes in the second way, since it is 
adjacent to a black node. In the iteration, the 
number of nodes of  that are colored is 

( )children i

thj
( )children i

1ju u− − . The charge to each newly colored node in 

 is at most ( )children i
2 (

1
OPTT

j

Cw i
u −

)
, since a scan of i 

in the second way is eligible and the network is 
symmetric. We get 

( )
v

v children i
δ

∈
∑

0 1
0 1

1
2

2 ( )
( )

2 ( )
( )

1

OPT

OPT

T

k
T

j j
j j
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u u
w i

u u
u −
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≤ − +
−

−
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From (7) and (8), there is 

Tw  1
\{ }

2 ( )(
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v V s
w v C H∆−

∈
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12( )

OPTTC H w∆−= + . 
 

 
Since C and are constant, so the above theorem 
means that MEBP in the case can be constant 
approximated. 

∆

 
 
5   Summary and Conclusions 
In this paper we have studied the minimum-energy 
broadcast problem on symmetric wireless ad hoc 
networks. An almost optimal approximation 
algorithm has been proposed, which also improves 
the known result for a special case where each node 
is equipped with the same type of battery. In 
addition the algorithm has been generalized to some 
nearly symmetric network with constant K. Finally a 
constant approximation algorithm has been devised 
for a special case. 
 
In the future we intend to implement simulations of 
the algorithms proposed in this paper, explore how 
to implement our algorithm in distributed 
environment efficiently and study how to cope with 
the mobility of the nodes. 
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