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Abstract: - Output time prediction is a critical task to a wafer fab (fabrication plant). To further enhance the 
accuracy of wafer lot output time prediction, the concept of input classification is applied to Chen’s fuzzy back 
propagation network (FBPN) in this study by pre-classifying input examples with the self-organization map 
(SOM) classifier before they are fed into the FBPN. Examples belonging to different categories are then 
learned with the same FBPN but with different parameter values. Production simulation is also applied in this 
study to generate test examples. According to experimental results, the prediction accuracy of the proposed 
methodology was significantly better than those of two existing approaches, FBPN without example 
classification, and evolving fuzzy rules (EFR), in most cases by achieving a 15%~45% (and an average of 31%) 
reduction in the root-mean-squared-error (RMSE). 
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1 Introduction 
Predicting the output time for every lot in a wafer 
fab is a critical task not only to the fab itself, but 
also to its customers. After the output time of each 
lot in a wafer fab is accurately predicted, several 
managerial goals can be simultaneously achieved 
[5]. Predicting the output time of a wafer lot is 
equivalent to estimating the cycle (flow) time of the 
lot, because the former can be easily derived by 
adding the release time (a constant) to the latter. 
There are six major approaches commonly applied 
to predicting the output/cycle time of a wafer lot: 
multiple-factor linear combination (MFLC), 
production simulation (PS), back propagation 
networks (BPN), case based reasoning (CBR), fuzzy 
modelling methods, and hybrid approaches. Among 
the six approaches, MFLC is the easiest, quickest, 
and most prevalent in practical applications. The 
major disadvantage of MFLC is the lack of 
forecasting accuracy [5]. Conversely, huge amount 
of data and lengthy simulation time are two 
shortages of PS. Nevertheless, PS is the most 
accurate output time prediction approach if the 
related databases are continuingly updated to 
maintain enough validity, and often serves as a 
benchmark for evaluating the effectiveness of 
another method. PS also tends to be preferred 
because it allows for computational experiments and 
subsequent analyses without any actual execution 
[3]. Considering both effectiveness and efficiency, 

Chang et al. [4] and Chang and Hsieh [2] both 
forecasted the output/cycle time of a wafer lot with 
a BPN having a single hidden layer. Compared with 
MFLC approaches, the average prediction accuracy 
measured with the root mean squared error (RMSE) 
was considerably improved with these BPNs. For 
example, an improvement of about 40% in the 
RMSE was achieved in Chang et al. [4]. On the 
other hand, much less time and fewer data are 
required to generate an output time forecast with a 
BPN than with PS. More recently, Chang et al. [3] 
proposed a k-nearest-neighbours based case-based 
reasoning (CBR) approach which outperformed the 
BPN approach in forecasting accuracy. In one case, 
the advantage was up to 27%. Chang et al. [4] 
modified the first step (i.e. partitioning the range of 
each input variable into several fuzzy intervals) of 
the fuzzy modelling method proposed by Wang and 
Mendel [15], called the WM method, with a simple 
genetic algorithm (GA) and proposed the evolving 
fuzzy rule (EFR) approach to predict the cycle time 
of a wafer lot. Their EFR approach outperformed 
CBR and BPN in prediction accuracy. Chen [5] 
constructed a fuzzy BPN (FBPN) that incorporated 
expert opinions in forming inputs to the FBPN. 
Chen’s FBPN was a hybrid approach (fuzzy 
modelling and BPN) and surpassed the crisp BPN 
especially in the efficiency respect. 

According to these results, the concept of 
classifying inputs, which has been adopted in CBR 
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and EFR, can indeed improve the effectiveness 
(prediction accuracy) of wafer lot output time 
prediction. This fact motivates us to propose a 
similar hybrid approach – a self-organization map 
(SOM) classifier and then a FBPN regression for the 
same purpose. 

To further enhance the effectiveness of wafer lot 
output time prediction, the concept of input 
classification is applied to Chen’s FBPN by pre-
classifying input examples into different categories 
before they are fed into the network. The 
classification mechanism is SOM. SOM can serve 
as a clustering tool for high dimensional data (e.g. 
production data in a wafer fab), which constructs a 
topology that the high-dimensional space is mapped 
onto the lattice of neurons in such a way that 
relative topology distances between input vectors 
are preserved [10]. In this way, similar examples are 
clustered in the same category. Examples of 
different categories are then learned with the same 
FBPN but with different parameter values. PS is 
also applied in this study to generate test examples. 
Using simulated data, the effectiveness of the 
proposed methodology is shown and compared with 
those of two existing approaches, EFR, and FBPN 
without example classification. 
 
 
2 Methodology 
2.1 Example Classification with SOM 
In this study, a hybrid SOM-FBPN approach is 
proposed to predict the output time of a wafer lot. In 
other words, we use a SOM classifier and then a 
FBPN regression. The reasons for adopting a SOM 
classifier instead of the others include: 
(1) SOM has been proven useful in many 
applications including clustering, classification, 
monitoring, data visualization, etc., and is one of the 
most popular neural networks used in unsupervised 
learning. 
(2) SOM can serve as a clustering tool for high 
dimensional data (e.g. production data in a wafer 
fab). 
(3) There is potential for combination between SOM 
and another artificial neural network. 

Every lot fed into the FBPN is called an 
example. Examples are pre-classified into different 
categories before they are fed into the FBPN with 
SOM. Let X={x1, x2, . . . , xn} denote the set of 
feature vectors corresponding to the examples. Each 
item xi is a six-dimensional feature vector whose 
elements are the Un, Qn, BQn, FQn, WIPn, and )(i

nD  
of the corresponding example. These feature vectors 
are fed into an SOM network. After the training is 

accomplished, input vectors that are topologically 
close are mapped to the same category, which 
means the input space is divided into k categories, 
and each example is associated with a certain 
category. Then, the classification result is post-
processed, including eliminating isolated examples, 
merging small blocks, etc. Finally, the classification 
is finished. 

After classification, examples of different 
categories are then learned with the same FBPN but 
with different parameter values. 

 
 

2.2 FBPN for Output Time Prediction 
within Each Category 
The configuration of the FBPN is established as 
follows: 
(1) Inputs: six parameters associated with the n-th 
example/lot including the average fab utilization 
(Un), the total queue length on the lot’s processing 
route (Qn) or before bottlenecks (BQn) or in the 
whole fab (FQn), the fab WIP (WIPn), and the 
latenesses ( )(i

nD ) of the i-th recently completed lots. 
These parameters have to be normalized so that their 
values fall within [0, 1]. Then some production 
execution/control experts are requested to express 
their beliefs (in linguistic terms) about the 
importance of each input parameter in predicting the 
cycle (output) time of a wafer lot. Linguistic 
assessments for an input parameter are converted 
into several pre-specified fuzzy numbers. The 
subjective importance of an input parameter is then 
obtained by averaging the corresponding fuzzy 
numbers of the linguistic replies for the input 
parameter by all experts. The subjective importance 
obtained for an input parameter is multiplied to the 
normalized value of the input parameter. After such 
a treatment, all inputs to the FBPN become 
triangular fuzzy numbers, and the fuzzy arithmetic 
for triangular fuzzy numbers is applied to deal with 
all calculations involved in training the FBPN. 
(2) Single hidden layer: Generally one or two 
hidden layers are more beneficial for the 
convergence property of the network. 
(3) Number of neurons in the hidden layer: the same 
as that in the input layer. Such a treatment has been 
adopted by many studies (e.g. [3]). 
(4) Output: the (normalized) cycle time forecast of 
the example. 
(5) Network learning rule: Delta rule. 
(6) Transformation function: Sigmoid function, 

.
1

1)( xe
xf −+
=  (1) 

(7) Learning rate (η): 0.01~1.0. 
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(8) Batch learning. 
The procedure for determining the parameter 

values is now described. After pre-classification, a 
portion of the adopted examples in each category is 
fed as “training examples” into the FBPN to 
determine the parameter values for the category. 
Two phases are involved at the training stage. At 
first, in the forward phase, inputs are multiplied with 
weights, summated, and transferred to the hidden 
layer. Then activated signals are outputted from the 
hidden layer as: 
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and )(−  and )(×  denote fuzzy subtraction and 
multiplication, respectively; jh~ ’s are also 
transferred to the output layer with the same 
procedure. Finally, the output of the FBPN is 
generated as: 
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To improve the practical applicability of the FBPN 
and to facilitate the comparisons with conventional 
techniques, the fuzzy-valued output o~ is defuzzified 
according to the centroid-of-area (COA) formula: 

4
2)~(COA 321 ooooo ++

==  (8) 

Then the defuzzified output o is applied to predict 
the actual cycle time a, for which the RMSE is 
calculated: 
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Subsequently in the backward phase, the deviation 
between o and a is propagated backward, and the 
error terms of neurons in the output and hidden 
layers can be calculated, respectively, as 

))(1( oaooo −−=δ  (10) 
),,(~

321
h
j

h
j

h
j

h
j δδδδ = oo

jjj whh δ~))(~1)((~
×−×=  

,))1(,)1((min(min( 113131
oo

jjj
o
jjj whhwhh δ−−≅  

),))1(,)1(max( 331313
oo

jjj
o
jjj whhwhh δ−−  

,)1(max(min(,)1( 131222
o
jjj

oo
jjj whhwhh −− δ  

,)1(max(,))1( 313113
o
jjj

oo
jjj whhwhh −− δ  

))))1( 331
oo

jjj whh δ−  (11) 
Based on them, adjustments that should be made to 
the connection weights and thresholds can be 
obtained as 
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Theoretically, network-learning stops when the 
RMSE falls below a pre-specified level, or the 
improvement in the RMSE becomes negligible with 
more epochs, or a large number of epochs have 
already been run. Then test examples are fed into 
the FBPN to evaluate the accuracy of the network 
that is also measured with the RMSE. However, the 
accumulation of fuzziness during the training 
process continuously increases the lower bound, the 
upper bound, and the spread of the fuzzy-valued 
output o~  (and those of many other fuzzy 
parameters), and might prevent the RMSE 
(calculated with the defuzzified output o) from 
converging to its minimal value. Conversely, the 
centers of some fuzzy parameters are becoming 
smaller and smaller because of network learning. It 
is possible that a fuzzy parameter becomes invalid 
in the sense that the lower bound higher than the 
center. To deal with this problem, the lower and 
upper bounds of all fuzzy numbers in the FBPN will 
no longer be modified if the following index 
converges to a minimal value 

)1(
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Finally, the FBPN can be applied to predicting the 

cycle time of a new lot. When a new lot is released 
into the fab, the six parameters associated with the 
new lot are recorded and compared with those of 
each category center. Then the FBPN with the 
parameters of the nearest category center is applied 
to forecasting the cycle time of the new lot. In this 
study, the SOM was implemented on the software 
“NeuroSolutions 4.0”, while a VB.NET program has 
been constructed to implement the FBPN. 

 
 

3 PS for Generating Test Data 
In practical situations, the history data of each lot is 
only partially available in the factory. Further, some 
information of the previous lots such as Qn, BQn, 
and FQn is not easy to collect on the shop floor. 
Therefore, a simulation model is often built to 
simulate the manufacturing process of a real wafer 
fabrication factory [1-5, 8, 11]. Then, such 
information can be derived from the shop floor 
status collected from the simulation model [3]. To 
generate test data, a simulation program coded using 
Microsoft Visual Basic .NET is constructed to 
simulate a wafer fabrication environment with the 
following assumptions: 
(1) The distributions of the interarrival times of 
orders are exponential. 
(2) The distributions of the interarrival times of 
machine downs are exponential. 
(3) The distribution of the time required to repair a 
machine is deterministic. 
(4) The percentages of lots with different product 
types in the fab are predetermined. As a result, this 
study is only focused on fixed-product-mix cases. 
However, the product mix in the simulated fab does 
fluctuate and is only approximately fixed in the long 
term. 
(5) The percentages of lots with different priorities 
released into the fab are controlled. 
(6) The priority of a lot cannot be changed during 
fabrication. 
(7) Lots are sequenced on each machine first by 
their priorities, then by the first-in-first-out (FIFO) 
policy. Such a sequencing policy is a common 
practice in many foundry fabs. 
(8) A lot has equal chances to be processed on each 
alternative machine/head available at a step. 
(9) A lot cannot proceed to the next step until the 
fabrication on its every wafer has been finished. 
(10) No preemption is allowed. 

The basic configuration of the simulated wafer 
fab is the same as a real-world wafer fabrication 
factory which is located in the Science Park of Hsin-
Chu, Taiwan, R.O.C. A trace report was generated 
every simulation run for verifying the simulation 
model. The simulated average cycle times have also 
been compared with the actual values to validate the 
simulation model, and the deviations were 
considered small. Assumptions (1)~(3), and (7)~(9) 
are commonly adopted in related researches (e.g. [2-
5]), while assumptions (4)~(6) are made to simplify 
the situation. There are five products (labeled as 
A~E) in the simulated fab. A fixed product mix is 
assumed. The percentages of these products in the 
fab’s product mix are assumed to be 35%, 24%, 
17%, 15%, and 9%, respectively. The simulated fab 
has a monthly capacity of 20,000 pieces of wafers 
and is expected to be fully utilized (utilization = 
100%). POs with normally distributed sizes (mean = 
300 wafers; standard deviation = 50 wafers) arrive 
according to a Poisson process, and then the 
corresponding MOs are released for these POs a 
fixed time after. Based on these assumptions, the 
mean inter-release time of MOs into the fab can be 
obtained as (30.5 * 24) / (20000 / 300) = 11 hours. 
An MO is split into lots of a standard size of 24 
wafers per lot. Lots of the same MO are released 
one by one every 11 / (300/24) = 0.85 hours. Three 
types of priorities (normal lot, hot lot, and super hot 
lot) are randomly assigned to lots. The percentages 
of lots with these priorities released into the fab are 
restricted to be approximately 60%, 30%, and 10%, 
respectively. Each product has 150~200 steps and 
6~9 reentrances to the most bottleneck machine. 
The singular production characteristic “reentry” of 
the semiconductor industry is clearly reflected in the 
example. It also shows the difficulty for the 
production planning and scheduling people to 
provide an accurate due-date for the product with 
such a complicated routing. Totally 102 machines 
(including alternative machines) are provided to 
process single-wafer or batch operations in the fab. 
Thirty replicates of the simulation are successively 
run. The time required for each simulation replicate 
is about 12 minute on a PC with 512MB RAM and 
Athlon™ 64 Processor 3000+ CPU. A horizon of 
twenty-four months is simulated. The maximal 
cycle time is less than three months. Therefore, four 
months and an initial WIP status (obtained from a 
pilot simulation run) seemed to be sufficient to drive 
the simulation into a steady state. The statistical data 
were collected starting at the end of the fourth 
month. For each replicate, data of 30 lots are 
collected and classified by their product types and 
priorities. Totally, data of 900 lots can be collected 
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as training and testing examples. Among them, 2/3 
(600 lots, including all product types and priorities) 
are used to train the network, and the other 1/3 (300 
lots) are reserved for testing. 

The time series plot of 100 simulated cycle time 
data is shown in Fig. 1. As we can observe here, the 
pattern of the cycle time is not stable and very non-
stationary. The traditional approach by human 
decision is very inaccurate and very prone to failure 
when the shop status is totally different even for the 
same product. 
 
 
4 Results and Discussions 
To evaluate the effectiveness and efficiency of the 
proposed methodology and to make some 
comparisons with two existing approaches – FBPN 
without example classification, and EFR, all the 
three methods were applied to five test cases 
containing the data of full-size (24 wafers per lot) 
lots with different product types and priorities. The 
minimal RMSEs achieved by applying the three 
approaches to different cases were recorded and 
compared in Table 1. The convergence condition 
was established as either the improvement in the 
RMSE becomes less than 0.001 with one more 
epoch, or 1000 epochs have already been run. 
According to experimental results, the following 
discussions are made: 
(1) From the effectiveness viewpoint, the prediction 
accuracy (measured with the RMSE) of the hybrid 
SOM-FBPN approach was significantly better than 
those of the other approaches in most cases by 
achieving a 15%~45% (and an average of 31%) 
reduction in the RMSE over the comparison basis – 
the FBPN. There is only one exception, A (super hot 
lots), in which the RMSE of the hybrid SOM-FBPN 
approach was 5% worse than that of EFR. Overall, 
the prediction accuracy of the hybrid SOM-FBPN 
approach was still better than that of EFR. The 
average advantage is 3%. 
(2) In the case that the lot priority was the highest 
(super hot lot), the hybrid approach has the greatest 
advantage over FBPN in forecasting accuracy. In 
fact, the cycle time variation of super hot lots is the 
smallest, which makes their cycle times easy to 
predict. Clustering such lots seems to provide the 
most significant effect on the performance of cycle 
time prediction. 
(3) As the lot priority increases, the superiority of 
the hybrid SOM-FBPN approach over FBPN 
becomes more evident. 
(4) The greatest superiority of the hybrid SOM-
FBPN approach over EFR happens when the lot 
priority is the smallest (normal lots). 

 
 
5 Conclusion 
To further enhance the effectiveness of wafer lot 
output time prediction, the concept of classifying 
inputs is applied to Chen’s FBPN by pre-classifying 
input examples into different categories before they 
are fed into the FBPN. The classification 
mechanism is SOM, which can serve as a clustering 
tool for high dimensional data (e.g. production data 
in a wafer fab). In this way, similar examples are 
clustered in the same category. Examples of 
different categories are then learned with the same 
FBPN but with different parameter values. For 
evaluating the effectiveness of the proposed hybrid 
SOM-FBPN approach and to make some 
comparisons with two existing approaches – FBPN 
without example classification, and EFR, production 
simulation is applied in this study to generate test 
data. Then all the three methods are applied to five 
cases elicited from the test data. According to 
experimental results, the prediction accuracy 
(measured with the RMSE) of the hybrid SOM-
FBPN approach was significantly better than those 
of the other approaches in most cases by achieving a 
15%~45% (and an average of 31%) reduction in the 
RMSE over the comparison basis – the FBPN. The 
average advantage of SOM-FBPN over EFR is 3%. 

However, to further evaluate the effectiveness 
and efficiency of the proposed methodology, it has 
to be applied to fab models of different scales, 
especially a full-scale actual wafer fab. In addition, 
the proposed methodology can also be applied to 
cases with changing product mixes or loosely 
controlled priority combinations, under which the 
cycle time variation is often very large. 
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Table 1. Comparisons of the RMSEs of various 
approaches 

RMSE FBPN EFR SOM-FBPN 

A(normal lots) 177.1 164.29(-7%) 151.34(-15%)

A(hot lots) 102.27 66.21(-35%) 63.66(-38%) 

A(super hot lots) 12.23 9.07(-26%) 9.72(-21%) 

B(normal lots) 286.93 208.28(-
27%) 188.55(-34%)

B(hot lots) 75.98 44.57(-41%) 41.43(-45%) 
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Fig. 1. Time series plot of cycle time (product A, 
normal lots) 
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