
Developing Web Applications in a Mobile Computing Environment

JASON RAPP and JIANG B. LIU
Computer Science & Information Systems Department

Bradley University
Peoria, IL 61625, U.S.A.

Abstract: There are critical distributed computing processing issues in mobile computing systems due to
the characteristics of mobile devices. In this research, we have developed web applications using J2EE
technologies to address these mobile computing issues. The rapid development of wireless digital
communication technology has created capabilities that software systems can be developed for distributed
client/server computing. The falling cost of both communication and mobile computing devices (tablet
computers, pocket PC, etc.) is making wireless computing affordable to both business and consumers
users. Mobile computing is not just a `scaled-down' version of the established and well-studied field of
distributed computing. The nature of wireless communication media and the mobility of computers
combine to create fundamentally new problems in networking, operating systems, and information
systems. Furthermore, many of the applications envisioned for mobile computing place novel demands on
software systems. We have developed mobile distributed computing applications to study these challenge
issues.

Key-words: Mobile Computing, Web Application Design

1 Introduction
When developing web applications in a mobile
computing environment there are many different
decisions have to be made [1-3]. These decisions are
made based on the specific web application in how it
will be used, where it will be used, and who will be
using it; these along with many other variables go into
deciding the underlying framework and design of a
web application. In order to show the various
decisions that have to be made as well as the benefits
and detriments that these decisions can yield, we have
developed several web applications with different
underlying designs. Modern web applications are built
upon smaller components that accomplish different
tasks for the application as a whole. This creates a
situation in which a developer must not only develop
these multiple components but must also ensure that all
the pieces will interact with each other. This
communication allows the entire application to
function. In order to alleviate a developer from this
tedious task the Java 2 Enterprise Edition (J2EE)
provides a variety of components that can aid in the
design of a web application [4]. J2EE components are
made to aid web applications that are built using a
multitiered design model. Having standard multitiered
architecture allows the J2EE components to be reusable
for any conceived web application. A generic but
common web application in a mobile system would
have a multitiered structure similar to the figure below.

 The web applications created has the common task
of allowing a user to manipulate a database. From a
remote location a mobile user will be able to obtain the
client component. Through this client component the
mobile user will be presented with an interface in order
to connect to database found at different locations.
 After establishing a connection the mobile user will
be able to add, delete, and update data found on the
database via the interface. The first design uses a two-
tiered system, while the second and third designs
employ the three-tiered paradigm.

Fig 1. First design 2-tiered structure

 In the first design no web components were used
and thus no middle web tier is presented. In this
construct a mobile user directs a web browser to a
specific URL address. From this URL an applet is
downloaded directly to the user’s mobile device. This
applet will not only give the user an interface to

Web Browser

Java
Applet

Client Tier

Database

Information
System Tier

Request to Database

Response from Database

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp700-705)

interact with but will also make direct connections to
the database. In other words the client tier will connect
directly to the information system tier. From this
connection database manipulation requests are sent
directly from the client component to the database.
 The second design adds the middle web tier by
running a J2EE compliant server which contains web
components that will direct data flow. The client tier
will involve an applet again just as the first design.
However, this applet will be much “smaller” as it will
not directly deal with the database manipulation
requests. Instead the applet will simply send the
request to the web tier components. In this design web
components called servlets are used in the web tier.
The web components will then relay these requests to
the database located at the information system tier.
The database will then send information back to the
web component regarding the manipulations success or
failure. The web component then sends this
information back to the client tier’s applet.

Fig 2. 2nd design three-tiered structure using servlets

 In the third and final design the middle tier’s
servlets are replaced with JavaServer Pages (JSP).
These JSPs will also replace the applet used on the
client side. When a user directs a web browser to a
specific URL address they will enact the JSP on the
web tier’s J2EE server.
 This JSP will dynamically create HTML and send it
to the user. This dynamic HTML will act as the
interface for the user, thus acting as a client
component. The interactions with the HTML will be
sent back to the JSP on the web tier which will
compute the user’s requests and send them to the
database. As in the second design the database will
then send messages back to the JSP. Once the JSP
receives this message it is relayed back to the client tier
via HTML generated by the JSP.
 As these three designs show a web application in a
mobile computing environment can be built using
many different techniques and components. However,
the same functionality can still be carried out using the
different designs. Knowing that the same application
may be built several ways it becomes the developers

responsibility to use the correct design for the specific
application. Of course lots of factors go into deciding
what design is correct. The different components are
better suited for certain factors than others. This is
why the different components must be looked at
individually while comparing the advantages of the
component compared to the other components.
Knowing which components to use in specific
situations will allow a developer to create an efficient
and robust mobile computing application.

Fig 3. Third design three-tiered structure using JSPs.

2 Client Tier Design
The client component of a web application in a mobile
computing environment could be considered the most
import component. If the mobile user cannot interact
or even understand their end of the application the
backend design, no matter how well designed, will be
obsolete. The end mobile user must be able to easily
obtain the components he or she will interact with.
Once the client’s components are obtained the user
should not need to put a great deal of effort into
running the application on his or her mobile device.
When the user has the application up and running the
developer must make sure that the application’s
interface with the mobile user is clear and concise. The
best way to achieve this is to develop a graphical user
interface (GUI). The GUI must be easy for the user to
use with little or no directions given to operate it. Of
course the more advanced a GUI’s components are the
more tools the developer will have to create a rich
interface. The first two designs of the web applications
used Java Applets to create a GUI, while the third
design used JSPs.
 The first advantage applets have over client
applications using HTML is that they are not limited by
the form widgets included with HTML. With a richer
GUI, an application can become much easier for the
mobile user to control it, thus allowing the user to
operate the application as a whole more efficiently.
Another advantage gained from using Java Applets is
that they are downloaded and interpreted on the client
side which will cause less strain on the server that the

Web Browser

Web Page
(generated
by a JSP)

Client Tier

J2EE Server

 JSPs

Web Tier

Database

Information
System Tier

Database Request Request Relay

Database ResponseResponse Relay

Web Browser

Java
Applet

Client Tier

J2EE Server

 Servlets

Web Tier

Database

Information
System Tier

Database Request Request Relay

Database ResponseResponse Relay

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp700-705)

applet was downloaded from, since the client will
actually carry out the computations generated from the
applet.
 Using Java Applets however does bring some
disadvantages to the application. The major
disadvantage of using an applet in a mobile computing
environment is the download time needed for a client
to obtain the applet’s files. An applet must have all of
its files located on the client’s mobile device before it
can run. Depending on the applet there could be a
great deal of files to download. This download can
obviously be very time consuming for the mobile
client. Also, the rest of the page will load in the user’s
browser before the applet can be downloaded and ran.
This can lead to the mobile user thinking that the applet
is not working or will not load for them when in fact
the download is just taking longer than the rest of the
page. This download time is worsened by the fact that
the applet files are not always cached locally
depending on the browser. This means that each time
the applet is viewed in the mobile client’s browser, no
matter how frequently; the applet files must be
downloaded again. When a web application is being
designed for a mobile distribution there is no telling the
speed at which the client can download the applet.
Obviously, an applet becomes unacceptable if clients
need extensive time to obtain the applet. Another
down fall of Java Applets is the possible
unpredictability of the mobile client using the applet.
A developer cannot assume that all mobile users will
already have Java software installed or have the access
or know-how to install the software to run the applet

Fig 4. Screenshot of applet.

 The next design used the J2EE component
JavaServer Pages (JSP) to construct the client
component. JSPs provide presentation for the client tier
yet also provide logic for the web tier, which will be
explained more in depth when comparing the web
components.
 The first advantage seen with JSPs over applets is
the reduction in overhead needed to get the component

up and running for the client. Instead of sending
multiple files for an applet only a single HTML page
needs to be sent, thus the mobile client is not bogged
down by possible download times to start interacting
with the application. Another advantage lies in the
dynamic nature of JSPs. JSPs contain snippets of Java
code they are granted a degree of logic. This allows a
JSP to decide what HTML to generate under specific
conditions allowing the returned HTML to change
depending on the interactions made by the user, which
would not be possible under pure HTML. This ability
to create dynamic pages is extremely useful for a web
application as all possible interactions can be handled
under one dynamic HTML page as opposed to many
static HTML pages in which a new page is brought up
depending on the mobile user’s interactions.
 Of course as far as the GUI is concerned JSPs fall
short of applets due to HTML’s much to be desired
graphical widgets. Since JSPs do generate HTML the
only GUI components available to them are those
offered by HTML. Using more primitive graphics
leads to a more primitive GUI that will not be as robust
or not be able to maximize the physical mobile device
screen space. Without being able to make as rich of a
GUI user comprehension of the GUI will be decreased,
as the GUI becomes harder to navigate and use. Any
inefficiency in using the interface will adversely affect
the efficiency of the mobile user to use the web
application as a whole. JSPs also carry one small
disadvantage dealing with speed, when the JSP is
accessed for the first time. Before a JSP can generate
HTML to send to the client it must first be compiled as
Java code, which is not done until the first access of the
JSP. Thus, if a mobile user is the first to access the JSP
page then he or she must wait for compilation and
HTML generation, where only HTML generation
needs to be waited on in subsequent accesses of the
JSP. However, this is easy remedied as long as the
developer is sure to test all JSP pages before deploying
them to the public and thus causing them all to be
compiled before anybody else has access to them.

3 Web Tier Design
Web components reside in a J2EE server on the host,
when the server receives a request from a client, in this
case an applet or web browser; it directs it to the
appropriate web component. Once the web component
handles the request it generates a response, usually an
HTML page or pure data, and sends this to the J2EE
server. The server then passes the response to the
client that made the original request or passes on the
data to another tier in the architecture.
 The first design cut out web components
completely. This was achieved by packaging the
applet with the code that would connect and

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp700-705)

manipulate the database. With this architecture a
mobile user’s interaction with the applet results in a
direct connection both to and from the database. With
this design when a user downloads the applet they are
not only downloading the graphical interface but
downloading the business logic as well or the code that
the applet uses in order to communicate with the
database. This creates a “thick client” which will do all
processing on the client’s machine. The immediate
advantage of this design is the lowered overhead for
the server, after the applet has been downloaded. Once
downloaded the applet has no more need for the server
from which it came, since the applet can directly
correspond with the database all from the user’s mobile
device. The server will have more resources free as the
applet will not be continuously making requests to it,
Without the middle tier the user will see faster response
times as their requests will be directly sent to the
database, instead of being sent to the server then
redirected to the database, back to the server, and
finally back again to the applet.
 Although this design does have some performance
advantages it defeats the purpose of J2EE components.
The components need to be kept small and only
achieve one task, and build an entire system when put
together. This allows a logical separation between
components as well as the application’s programming
logic. However, when the web tier is skipped the client
tier not only supplies the presentation logic but the
business logic as well. With no separation the web
application becomes harder to maintain in the future
since the one component becomes too large and
complex. Also future upgrades in the system will
become complicated. Since any changes to the
business logic would require changes to the
presentation logic as well since the business and
presentation logic are connected to one component.
Another disadvantage would be the time strain suffered
by the mobile client when downloading the applet as
mentioned previously. With the applet containing the
business logic it becomes much larger in size than it
would if it only contained the presentation logic. With
this additional code and data the download time needed
becomes a greater burden for the mobile client. Thus,
the major disadvantage of Java Applets, their download
time, is made worse.
 The second design incorporated servlets in the web
tier. The goal is to allow mobile clients and servers to
communicate using the HTTP protocol, the same
protocol used for regular web browsing. The first
advantage of using servlets is that it makes it much
easier to separate business logic from presentation
logic by breaking it up into separate components.
There is a very logical separation as the presentation is
solely on the client side, while all the computations, or
database access, is done at the server, and the two

components: the servlet and the graphical applet are
located on two different tiers. Separating the business
logic from the presentation also provides the advantage
of “thin clients.” This means the client will only need
to download a lightweight interface. Of course this is
good for the mobile user as a smaller download is
needed when compared to the first design.
There are not many disadvantages in using servlets in a
three-tiered web application, as Java has become a very
popular programming language to use on the server
side of a mobile computing application. The only
problem that could deter a developer from using
servlets is the extra strain put on the server, as well as
the extra overhead applied to the actual web
application. Also, from a mobile user’s perspective
their requests must make three stops before they see the
results, in this particular web application. First the
user’s request is sent to the server which then sends the
request to the database which carries out the request
then sends the result back to the server, which finally
sends it back to the user.
 JavaServer Pages (JSPs) were mentioned earlier
from the perspective of the client; however, JSPs true
power is shown from the web tier’s standpoint. A JSP
allows a developer to combine snippets of Java code
that determines how the page constructs the dynamic
HTML content. The JSP engine compiles the JSP into
a regular Java servlet which is handed to the servlet
container, which deals with this JSP turned servlet just
as if it were originally a servlet. The container then
executes the servlet when the J2EE server directs
control to it. After the first time the JSP page has been
called it is kept in the servlet container as a servlet,
thus it only needs to be compiled by the JSP engine one
time. Unique to JSPs when compared to other similar
technologies, developers can create custom tags that
can be used on the JSP. Custom tags are used in an
HTML like syntax and execute Java code physically
located on another file when executed. In other words
Java code can be added to the JSP through a custom tag
as opposed to adding snippets of actual Java code. In
the final design a mobile user is presented with an
HTML interface that was generated from a JSP. Every
time a user wants to manipulate the database the
request is sent to the JSP, now a servlet, on the server.
Once the request is made it is handled in the exact
same way as the pure servlet did from the second
design.
 Since JSPs are compiled into servlets and placed
into the servlet container they share the same
advantages of servlets. However, their unique design
does create some new advantages. The biggest
advantages for JSPs are brought by the custom tags,
and how they help the developers. Custom tags
immensely help the separation of presentation and
business logic, which is always a goal when using

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp700-705)

J2EE components. Since the JSP essentially combines
the client and web tiers as HTML is generated while
server side processing takes place a clear separation is
needed. This separation is done when all the business
logic is done in Java code within the custom tag, and
all the presentation is accomplished in HTML on the
actual JSP page. The ultimate goal would be to have a
JSP page that contains only HTML and custom tags,
and all the Java code execute by the JSP is done
through the custom tags.
 Again it is hard to find disadvantages in the JSP
component from the web tier point of view, as the
technology enhances Java servlet technology. They do
however share the servlet disadvantage of adding extra
computation and communication strain to the server.
The other disadvantages of JSPs are not from the JSP
component itself but the language in which they are
written in, Java. All Java code is interpreted by the
JVM on the machine it is running on while many other
languages that have technology similar to JSPs
compiles code into a language that the specific
machines can understand. This means that Java runs
on software while other languages run on hardware
which is inherently faster. Thus JSPs may lose some
performance when executed as opposed to other similar
technologies written in other programming languages.

4 Web Application Security
With any program associated with the wireless network
security must never be an afterthought. This is the case
with any Java built mobile computing application
where security is always a concern for both the mobile
users and the developers. As a web application spans
over the wireless network the mobile users will be
suspicious of malicious programs from an unknown
source, while the developer must reassure the mobile
user that the application is safe to use. Security
concern is a major aspect that must be considered when
using applets. Applets have special security measures
to protect the end user since the actual applet runs on
the user’s mobile device. Thus, the developer must take
special steps before deploying the mobile computing
application to the public that would not need to be done
otherwise. When using Java Applets security can be
accomplished in two different manners. The user can
establish a security policy regarding applets for their
local machine, or a developer may digitally sign their
applet which essentially overrides the user’s security
policy.
Java security involving applets has evolved from two
different methodologies. One idea is that all applets
downloaded from a network are deemed untrustworthy
and thus should not have any access to the local
system’s resources unless the machine owner explicitly
grants certain access. The other school of thought is to

have a developer digitally sign the applet. Since the
digital signature uniquely identifies the developer the
receiver of the applet may decide from the digital
signature if they trust the developer or not.
 The security policy must be configured specifically
for the mobile computing applications. This is possible
as the security policy is designed to be highly
configurable to allow or disallow any type of action.
The major advantage of configuring the security policy
is that it allows the user to run the applet on their
machine under their terms and conditions. Not only
will it run but the mobile user can be assured that the
applet will not step over the bounds that the user has
set by the policy. Constructing the security policy
personally the user does not need to completely trust
the applet developer, since malicious code will be
stopped through the policy. In the hands of an
experienced user a security policy can be extremely
customizable. This customization assures the mobile
user that any applet downloaded from the wireless
network may safely run on the mobile device based on
his or her set policy.
 Although the security policy system allows for a
highly defined security system, it can be very difficult
for novice users to setup the policy appropriately. It is
very likely that the client will not have a good
understanding of the security or may not know how to
configure the policy correctly. Of course if the mobile
user cannot adjust the policy correctly the web
application will be not be able to run the way the
developer intended as the client’s mobile device will
refuse to run the prohibited code. A mobile user must
also know the specific privileges to grant the web
application. Thus, the developer must find a way to
inform the user exactly what privileges need to be
granted for the applet to run. The user cannot simply
trust the developer that the applet will not be malicious
once the user grants the applet the specific privileges it
needs. From the mobile users perspective configuring
the security policy becomes very inefficient. The user
now must go through a serious of tasks before the web
application’s applet will ever work, in commercial
applications an applet this user-unfriendly applet would
be unacceptable.
 Another way to allow an applet, which needs local
resources, to run on a client’s machine is to digitally
sign it. When a developer digitally signs an applet he
or she is implicitly vouching for the code, and leaves it
up to the end user to decide if the developer is
trustworthy enough to run the applet. In order to sign
the applet the developer creates a pair of keys one
which is public and another that is private. The private
key belongs solely to the developer and should not be
shared, this key is used to encrypt or sign the applet
code using the public-key encryption algorithm, while
the public key is distributed to all those attempting to

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp700-705)

run the applet. The public key is used to verify the
digital signature made by the developer. Now the user
can tell exactly who created the applet and based on
that can make a decision to either trust and run the
applet or not allow the applet to run on his or her
machine. The clear advantage of signing an applet is to
completely alleviate the mobile user from configuring
their system to run the one program. The only work
for the user to do now is check the signer’s credentials
and base their trust, their decision to run the applet with
full access, based on that. This alleviates the trouble of
informing the mobile user of exactly how to run the
applet, and allows the user to run it without needing to
know how to construct their security policy. A trusted
signed applet also benefits from the fact that it will run
the same on any given mobile device. Under the
security policy method a client’s mobile device will
allow the applet different privileges than another client
mobile device if the security policies on both devices
are different. However, if a signed applet is accepted
the developer specifies which privilege the applet will
need.
Unfortunately the mobile user bears most
disadvantages of a signed applet. Once the applet is
received and the signature is shown to the client they
must verify the developer’s credentials to be sure he or
she can safely run the applet. Normally the mobile
user will not trust an applet even if the developer
digitally signs it. A mobile user cannot always trust a
developer just because the developer told the user the
applet is safe to run. This is why the user must look
into the developer’s credentials. Of course this could
add a great deal of work and stress to the mobile user
as he or she must now research the developer and
decide if the applet is truly safe to run. If the developer
instead, simply told the user exactly what security
permissions the applet needed and the user adjusted the
security policy accordingly the user would not need to
trust the developer. The mobile user will also be weary
since once an applet is declared trusted it can have full
access to the systems resources. This is just another
variable that would cause a user not to trust a
developer, making another barrier for the web
application.

5 Conclusion
Wireless technologies are transforming the distributed
computing at organizations for their business
applications with the lightweight, ultra-mobile
technology and software system. These new
development enables users to be fully productive from
anywhere. In this research, we can clearly see a
developer must make many decisions on what
components to use when building mobile computing
applications. There is clearly no silver bullet as to

what architecture will provide the best results.
Different situations and needs for the mobile
computing application drive the decisions on what
components to utilize. Some applications will solely
be used in a wireless local area network while others
will be used worldwide over the Internet. Some
environments allow the developer to have access to the
client mobile device to be certain each device will be
able to run the application, and other times the
developer will not be able overview each mobile
device that will use the application. Under some
conditions many mobile users will be accessing the
application at the same time requiring a very powerful
server. While in other situations only a simple
computer is needed as user traffic is controlled so not
as many users may use the program simultaneously.
There are many different variables that play into
picking the design for a mobile computing application.
These design considerations will determine the
performance of the mobile computing systems.

References:
[1] Jiang B. Liu, Dairui Chen, and Srihari Muthyala,

“Web based Enterprise Computing Development
Strategies,” Proceedings of the 2004 International
Conference on Internet Computing, Las Vegas,
Nevada, June 2004, pp. 641-647.

[2] T.F. Abdelzaher, K.C. Shin and N. Bhatti,
“Performance Guarantees for Web Server End-
Systems: A Control-Theroretical Approach,” IEEE
Transactions on Parallel Distributed Systems, Vol.
13, NO. 1, 2002, pp 80-96.

[3] Karen Holtzblatt, “Designing for the Mobile
Device: Experiences, Challenges, and Methods,”
Communications of the ACM, Vol. 48, NO. 7, 2005,
pp 33-35.

[4] Jiang B. Liu, Web based Enterprise Computing
Development using J2EE, Industrial Information
Technology Handbook, Edited by Richard Zurawski,
CRC Press, 2005, pp. 1-30.

[5] Jiang B. Liu and Pavan Manemela, “Internet2 End-
to-End Performance Tuning for Distributed
Computing Applications,” Proceedings of IEEE
International Conference on Industrial Technology,
Hong Kong, December 2005, pp. 587-592.

[6] Srihari Muthyala and Jiang B. Liu, “Developing
Internet Computing Applications using Web
Services,” WSEAS Transactions on
Communications, Issue 1, Vol. 3, June 2004, pp.
116-121.

[7] Tim Hill and Jiang B. Liu, “Develop Web
Application with XML and Java,” Proceedings of the
18th International Conference on Computer and Their
Applications, Honolulu, Hawaii, March 2003, pp.
434-437.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp700-705)

