
Agent-Enabling Transformation of E-Commerce Portals with Web
Services

Dr. David B. Ulmer

CTO
Sotheby’s

New York, NY 10021, USA

Dr. Lixin Tao
Professor

Pace University
Pleasantville, NY 10570, USA

Abstract: - Web services and middleware technologies are adopted to provide bi-directional communication
channels between network-blind generic transaction agents and existing e-commerce portals with no
modification to their existing functions. An action-word-based translation system is used to bridge the semantic
gap between the agents and the e-business portals.

Key-Words: - E-commerce portals, transaction software agent, Web service, middleware, transaction
automation

1 Introduction
Given the ubiquitous nature of electronic
marketplaces on the Internet, buyers have an
enormous variety of items available to them,
effectively overwhelming them with choices. A new
e-commerce paradigm is in high demand in which
software agents can play an important role in
automating many transactional activities like the
discovery, comparison, selection, purchase and
shipping of products. But so far, the Web-based
marketplaces have been mainly designed for human
interaction and do not support efficient interaction
with software agents.
 This paper studies the special needs of transaction
agents, enhances the current e-commerce software
architecture for transaction agent support, and
designs the corresponding interfaces and supporting
systems. The interface design and supporting
systems will accommodate the format and interface
needs of the human users, while enhancing the
transactional capabilities of software agents through
an adaptable and robust interface. Transaction agents
can operate in either a pull or push manner, which
require different supporting systems and architecture.
Web services are utilized that facilitate an
Agent-Enabling Interface (AEI) API for exposing the
business logic of an e-commerce portal by leveraging
existing Internet protocols. The client-side support
system features a Generic Middleware between
Agents and Portals (GMAP) that encapsulates the
transaction agent and minimizes its modification to
enable e-commerce portal interoperability.

2 Problem Statement

Several assumptions are made in the research to limit
the scope of the problem and solution. The main
assumptions are:
• A transaction agent is a standalone application

running on the client side. Its internal design and
implementation are hidden from its environment
(i.e., a black-box). An agent communicates with its
environment through tables of columns of data, and
the meaning of each such column is described by a
sequence of keywords.

• The transaction agent is generic in nature, meaning
they are designed to work with a broad range of
portals and are not specifically designed for a
particular portal.

• Using the input criteria and internal logical
reasoning capability, a transaction agent can
generate the sub-transactions (steps that can be
mechanically translated and executed by its
supporting system) incrementally based on
feedbacks from the portals or service registries
through the client-side support system.

• A transaction agent specifies portal operations in a
set of standardized action words based on the
Consumer Buying Behavior (CBB) model [2],
which comprises the actions and decisions involved
in buying goods and services online.

• The solution is based on the Java 2 Enterprise
Edition™ Platform Specification although the
concepts can apply to other application frameworks
as well.

 The design objectives for this research include:
1. Providing efficient e-commerce portal interfaces

for both browser-based human clients and
client-side software applications including
transaction agents or their support systems.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp312-317)

2. Supporting generic transaction agent and portal
interoperability through compatible client and
server-side support systems.

3. Supporting both pull and push modes of
agent-portal interactions to facilitate a dynamic
and event-driven business transaction
environment.

4. Utilizing open standards and technologies to
accommodate a broad range of e-commerce
portals, transaction agents, and client platforms.

5. Minimizing changes to the software agent design,
but more importantly avoiding changes to the
back-end business logics and database structure of
the e-commerce portals.

6. Adopting component-based system design and
maximizing reuse through generic functions.

7. Avoiding software installation for an agent to
interact with a particular e-commerce portal.

3 Remote System Integration with
 Web services

To achieve our design objectives, we must first
choose an appropriate technology to support robust
platform-independent system integration between
client-side transaction agents, which are usually
network-blind, and the e-commerce portals.
 Web services are a new approach for integrating
systems on distributed heterogeneous platforms. It is
based on open standards for XML, XML Schema,
SOAP, WSDL, and UDDI [3]. It has the following
advantages over the traditional technologies for
system integration, including CORBA and COM+:
• It supports client/server interaction with HTTP, a

widely accepted Web protocol. Invocation on
remote methods is through the standard HTTP
GET/POST requests on port 80, thus avoiding the
firewall configuration problem for system security.
This is a very desirable feature for agent-portal
communications.

• Web service is fundamentally a wrapper technique.
It can be used to wrap up an existing legacy
application rapidly and expose its business logics
on the Internet for remote clients to access.
Therefore it is the appropriate technology for
adding an agent API to an existing portal, no matter
what platform or software framework the portal is
based on, with minimal changes to the portal.

• Since XML supporting tools are publicly available
and have already been integrated into many client
platforms like Java, Microsoft Windows, and
Unix/Linux, Web service clients don’t need a
service-specific software installation for
communicating with a particular Web service

provider. A WSDL file describing a service
provider’s service will be downloaded and used to
create client-side proxies for accessing remote
services. Since a generic transaction agent is
supposed to interact with a large variety and
number of e-commerce portals, avoiding a
client-side software installation for each portal
service is critically important.

• As part of the core Web service technologies,
UDDI supports service registration and universal
discovery based on service descriptions. A UDDI
registry could function like a business yellow book
for an agent’s supporting system to browse and
search for suitable portals to fulfill a client’s
transaction need.

 To create a Web service provider, business logic
methods are first identified, and a tool is used to
generate a WSDL (XML) file describing the types
and method signatures of the Web services. Server
components are also generated including a servlet
(Agent Interface Servlet) as a service call entry point
and a service tie object that can call the local business
logic methods on behalf of remote clients. The
WSDL file is registered with a UDDI registry under
specific categories.
 For a client to obtain a service, it will first search a
UDDI registry to identify one of the potential Web
service providers and download its WSDL file. A
tool will be used to generate from the WSDL file the
native proxy source files for the portal’s Web
services. To call a server-side business logic method,
the client will call the same method on its local proxy
object, which will wrap the invocation in a SOAP
(XML) message and send it to the service provider’s
entry point with an HTTP request. The receiving
servlet forwards the SOAP message to the tie object
to generate the local invocation on the business logic
method. The response from the method is converted
by the tie object into a SOAP message and forwarded
to the servlet for returning back to the proxy as the
response to its HTTP request. The client-side proxy
will convert the response SOAP message into the
actual response data and forward it to the client as its
own method return value.
 In this research we use Web services as the
fundamental technology to integrate client-side
transaction agents with e-commerce portals.

4 Exposing the Portal’s Business
 Logics
Exposing the business API of the portal is essentially
a translation problem in which the protocol
understood by the transaction agent must be
converted to the protocol of the business API for the

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp312-317)

portal. This translation problem can be solved by
designing software to act as an in-between layer that
performs the protocol conversion between the two
entities. This is a well understood problem solvable
with a middleware architectural pattern (see Figure
1).
 Given the distributed nature of the problem, the
middleware layer must be split onto both the client
and server tiers and act in a plug compatible fashion
(able to interface to each other by design). For this
research, the middleware is represented by the client
and server-side generic Agent Interface Support
Systems (see Figure 2).
 As explained in the previous section, Web
services are beneficial and facilitate the
Agent-Enabling Interface (AEI) for exposing the
business logics of an e-commerce portal by
leveraging existing Internet protocols. We assume
that the e-commerce portals that adopt our approach
for supporting remote transaction interaction are
based on the tiered software architecture (a best and
now common practice). The presentation tier is
mainly a servlet container containing multiple
servlets or JSP pages for processing HTTP requests.
The business logics are encapsulated in the
application server tier consisting of an EJB container
with multiple EJBs providing a scalable business
logic implementation and database rows’ in-memory
caching. The database tier uses relational databases
to provide data persistency. The approach described
in this paper can also be easily adapted to support
portals based on Microsoft’s .NET platform.
 For such a portal to adopt our approach and
expose its selected business logics to the remote
transaction agents, the following major steps should
be taken:
1. The business logic methods to be exposed to the

public remote transaction agents should be
identified. Normally these are EJB methods
invoked from the presentation tier. If we expose
all the EJB methods used by the presentation
logics to the remote agents, the agents will have
access to the same business logics as the human
clients do through Web browsers.

2. With the signatures of these selected business
logic methods as input, a generic Web service tool
will be used to generate a WSDL (Web Services
Description Language) file describing the
connection entry point, types and method
signatures; a servlet functioning as the Web
service entry point; the tie source file for
converting between SOAP messages and business
logic method invocations; and other related
supporting resources.

3. The WSDL file will be registered with public
UDDI registries under proper industry categories.

4. A portal-specific mapping table is designed based
on our Action Word Mapping class, which allows
the portal designer to associate the action words,
standardized for transaction agents to specify
generic transaction operations based on the CBB
model [2], with business logic methods. The table
will also provide keyword descriptions for all
method signatures, including those for the
meaning of each of the parameters and the
meaning and getter method for each of the value
components of a returned object. This is critical to
resolving the semantic gap between the
transaction agent and the portal’s business logic
methods. A getter method for such an Action
Word Mapping object will also be exposed as one
of the Web service methods.

5. As soon as the entry point servlet is deployed in
the presentation tier servlet container, the portal
will have the selected business logic methods
exposed for transaction agents to access in pull
mode. We also added a Callback tier along with
the portal presentation tier to provide transaction
agents with push mode access to the portal
business logics [5].

 It can be observed that our approach of exposing
business logics to remote transaction agents in pull
mode requires no modification to the existing portal
design and deployment, and no software
development.

5 Generic Middleware between
 Agents and Portals
The client-side support system is the client-side half
of the middleware. It is responsible for enabling
network-blind transaction agents to interact with both
Web service registries to search for suitable
e-commerce portals and the business logic methods
of the portals.
 This research proposes a reusable generic
client-side agent support system called Generic
Middleware between Agents and Portals (GMAP).
GMAP provides the infrastructure and
implementation for the major generic service
functions including the Registry Query Manager, the
Portal Invocation Manager and the Callback Web
Service. This section only focuses on the GMAP
components necessary to support the pull-mode
access to remote portals (Figure 3).
 After a human client passes his/her transaction
specifications to a transaction agent through an input
table (establishing an unmet need as a business
transaction), the agent will start to issue

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp312-317)

sub-transactions consisting of action words and their
appropriate arguments to carry out the transaction.
These action words and arguments are passed to
GMAP through a Sub-transaction table. Further
sub-transactions may be generated incrementally
based on feedback from the UDDI registries or
e-commerce portals through GMAP.
 Typically an agent-assisted transaction will start
with searching for suitable e-commerce portals from
public UDDI registries. The Registry Query Manager
is responsible for this task. It will use keywords
derived from the transaction specification parsed by
the agent to download information for all suitable
portals, which include description keywords and
service description WSDL files, rank them according
to the degree that their own descriptions match that of
the specification keywords, and pass the result back
to the agent through a Service Definition table for
further selection. Upon retrieving the service
descriptions, the Registry Query Manager uses a
generic Web service tool to transform the portal’s
WSDL file into a client-platform-dependent proxy
source file for that portal’s Web services, compile it,
and generate a proxy instance inside GMAP exposing
exactly the same interface as the business logic
methods exposed on that portal.
 A Personal Information Manager will provide a
persistent cache through a database for personal
information of a human client, including his/her
authentication information for selected portals,
his/her shipping and billing addresses, his/her credit
card or bank account information, and the
information of his/her frequently adopted portal
services. This persistent cache supports the learning
capability of GMAP to better serve the needs of
individual human clients.
 Upon the selection of a particular e-commerce
portal for further exploration for a transaction, the
Portal Invocation Manager will first call a method,
the signature of which has been standardized by our
interface design, against the proxy object to
download from the portal its unique Action Word
Mapping object for closing the semantic gap between
the transaction agent and the portal. The Portal
Invocation Manager will maintain the proxy object
and the Action Word Mapping object for the duration
of the transaction. The information in both the WSDL
file and the downloaded Action Word Mapping
object will be used to fill up a Method Description
table for the Web service methods of that portal. In
this table, each method is mapped to one or more
action words standardized for the e-business domain,
and its signature is further described by keywords
carefully chosen by the portal designers. This table is
critical for the transaction agent to help select the

right business methods to invoke with the right
arguments.
 Each time the agent or GMAP needs to invoke a
remote business logic method of a portal, the Portal
Invocation Manager will call the same method
against the portal’s proxy object local to GMAP. The
conversion from a string form of method name and
arguments, provided by the agent, to the actual
method invocation is implemented by Java’s
reflection framework. This is a key feature that
makes our GMAP a truly generic reusable software
component since it has no hard-coded method calls to
any portal-specific Web services.
 Upon receiving a method call, the proxy object’s
method body will convert the invocation (method
name and arguments) into a SOAP message, and send
it to the corresponding portal’s Web service
entry-point servlet as the entity body of an HTTP
request. The HTTP response will return another
SOAP message representing the return object or
exception information of the portal’s business logic
method. The proxy’s method body will convert the
return SOAP message into a return object of a type
defined by and generated from the port’s WSDL file,
and return the object as its own. The Portal
Invocation Manager will use the information in the
Action Word Mapping object to identify the getter
methods of the returned object, and use the getters to
retrieve the returned value components, populate
them into a result table, and qualify each of these
value components with description keywords
contained in the Action Word Mapping object. When
all the return values for the current sub-transactions
have been populated into the result table, the table
will be passed to the transaction agent for further
processing [5].

References:
[1]Berners-Lee, T., Hendler, J., Lassila, O., “The

Semantic Web,” Scientific American, 284(5)
34-43, May 17, 2001.

[2]Guttman, R., Moukas, A., Maes, P.,
“Agent-mediated Electronic Commerce: A
Survey,” Knowledge Engineering Review, 13(2),
pp. 143-152, June 1998.

[3]Sun Microsystems, “The Java Web Services
Tutorial for JWSDP v1.6,” July 14, 2005, URL:
http://java.sun.com/Webservices/tutorial.html,
(valid by March 3, 2006).

[4]UDDI Spec TC Committee, “UDDI v2
Specifications”, http://www.oasis-open.org/
committees/uddi-spec/doc/tcspecs.htm#uddiv2,
(valid by March 3, 2006)

[5]Ulmer, D., “Architectural Solutions to
Agent-Enabling E-Commerce Portals with
Pull/Push Abilities,” doctoral dissertation, Pace
University, 2004.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp312-317)

Transaction
Agent

Human User

E-commerce
Portal

Client-side
Agent Support

System

Server-side
Agent Support

System
Web services

 Figure 1 – Middleware -- Agent Support Systems

Client Tier - PC Workstation

Presentation Tier - Web Server

Database Tier - Database Server

Business Logic Tier - Application Server

«datatype»
Relational Database

EJB / Application Container

JSP / Web Container

Transaction Agent

Human User

«uses»

«call»

«call»

Browser

UDDI

Agent Interface Support System

*

-WSDL

*

«uses»

Agent Interface Support System

«call»

«call»

«call»

«call»

Figure 2 – Deployment Diagram: Agent-Enabling Interface (high-level view)

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp312-317)

Client Tier

«datatype»
Results Table

Callback Web Service

SOAP Processor Client Interface Servlet

Callback Tier

Application/Business Tier

Callback Tier ObjectsCallback Proxy

SOAP Processor

Database Tier

«call»

«call»

Application/EJB Container

E-commerce Proxy

Presentation Tier

Agent Interface Servlets

SOAP Processor

«call»

SOAP Processor

«call»

Transaction Agent

Registry Query Manager

«datatype»
Service Definition

«datatype»
Input Criteria

Browser

UDDI

*

-WSDL

*

«call»

«call»

Portal Invocation Manager

«datatype»
Sub-Transactions

«datatype»
Method Description

«derived»

«call»«call»

«call»

«datatype»
Personal Information

Figure 3 – Component Diagram: Detailed View

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp312-317)

