
A Static Model for Reverse Engineering of Software Threads and Their

Interactions

1
 M M KODABAGI

2
 B S ANAMI

3
G HEMANTHAKUMAR

1&2
Department of Computer Science and Engineering

Basaveshwar Engineering College

Bagalkot, Karnataka

INDIA
3

Department of Studies in Computer Science

University of Mysore, Mysore

INDIA

Abstract: - Reverse Engineering is a process of analyzing the subject system to identify its components, and

relationships so as to represent the system at higher levels of abstractions to help developers understand the system

for later maintenance and enhancement. Many software systems deployed in both military and industrial domains

are very complex and comprise of multiple threads of control. Such systems are expensive and time consuming to

build and must be evolved to meet new challenges. Hence, the challenge lies in discovering the information about

the threads and their interactions for later maintenance and enhancement activities.

In this paper, we have proposed a static model that analyses C++ multithreaded LINUX source code, extracts

information about threads, their interactions and record their understanding. The extracted information is used for

pictorial presentation and program comprehension. The details obtained from multithreaded source code is helpful

in clear understanding of architecture of threads and their interactions resulting into reduced effort in maintenance

and enhancement of software.

Key-Words:- Reverse Engineering, Program Comprehension, Program Maintenance, Program Enhancement.

1 Introduction
Software engineering has undergone a paradigm

shift as the sizes of the software systems

deployed increased dramatically and businesses

began to rely increasingly on computer systems

and information systems. A substantial portion

of the software development effort is spent on

maintenance and enhancement of the existing

systems rather than developing the newer

systems [1]. It is estimated that 50% to 80% of

the time and material involved in software

development is devoted to maintenance of

existing code [2]. Crucial to the maintenance of

existing systems is the task of program

comprehension, which is an emerging area of

research in software engineering. Around 47% of

the time is spent on enhancements to the existing

programs and 62% of that is spent on program

corrections, which involves program

comprehension tasks like reading the documents,

scanning the source codes, and understanding the

changes required [3]. These tasks are achieved

through reverse engineering.

 Reverse Engineering is a methodology that

greatly reduces the time, effort and complexity

involved in solving the program comprehension

problem [4][5]. The large multiprocess systems,

often found in major aerospace systems are very

costly to develop and must be designed for long

useful lives. Such systems cannot be easily

redeveloped; hence they must evolve to meet

new challenges. It is the well-known fact that

software evolution is extremely difficult even for

complex single process systems when their

developers knowledge is lost [6]. Hence, it is

necessary to record the system understanding to

help developers and beginners to understand new

concurrent systems when they are asked to

maintain and modify the existing systems. Some

of the related works on static and dynamic

reverse engineering are sited below.

The Shimba tool that automatically produces

sequence diagrams of java programs is given in

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp550-555)

[7]. With the Shimba tool trace information is

acquired while such programs are executed.

Paradyn, a parameter based performance

prediction tool is given in [8]. Paradyn

instruments the target system in order to find the

portions of code, which use most of the

resources, that help the programmer focus his

attention on optimization.

The reverse engineering of software threads

that uses traces of inter-pocess messages to

recover functional software design threads from

a large multiprocess system is given in [6]. A

prototype approach to help extraction of

architectural information in the re-engineering

process is presented in [9]. A work on

dynamically inferring program invariants is

given in [10], which focuses on the value

relationships among variables that are more

relevant to dataflow. The work given in [11]

presents two techniques one on static and other

on dynamic, for inferring sequencing models of

methods of a component, and built a dynamic

model checker to check if the code conforms to

the models discovered. The statistical techniques

to discover patterns of concurrent behaviour for

event traces is given in [12]. The techniques first

extract a thread model out of the event traces,

and then infer points of event traces, and then

infer points of synchronization and mutual

exclusion based on that model. A set of temporal

property patterns developed based on a case

study of hundreds of real time property

specifications is given in [13]. The runtime

analysis is used to pinpoint the problematic point

in the program such that the state space for large

program needs to be significantly pruned is

given in [14].

The literature survey on program comprehension

and design recovery is quite exhaustive. There

seems to be almost no much work carried out

that specifically addresses the problem of

recording understanding of threads and their

interactions to help developers to maintain and

evolve the existing systems. The existing reverse

engineering works on software threads use traces

of inter-process messages to recover functional

software design threads. Most of the works dealt

with execution traces to discover patterns of

interactions and temporal properties (sequence of

event traces) during program dynamics for

program evolution.
Our work focuses on development of a static

model that helps programmer record the

complete understanding of software threads and

their interactions. The new as well as

experienced developers can maintain and evolve

the concurrent systems.

The rest of the paper is organized into three

sections. Section 2 presents the proposed work.

Results and discussions are provided in section

3. Finally, section 4 presents conclusions.

2 Proposed Model
The proposed model analyses multithreaded

Linux based applications and recovers threads

and their interaction details. The higher levels of

abstractions like threads interaction diagrams are

obtained. The proposed model consists of three

phases namely, analysis, discovery and

representation. The analysis phase scans

multithreaded applications and prepares a token

list, which is handled by the buffer manager. The

discovery phase reads streams of tokens from the

token list maintained by the buffer manager and

recovers threads details like name of a thread,

thread identification number, priority, attribute

name, and policy and its interaction with other

threads through mutex, semaphore and

conditional variables. This recovered

information is stored in tables, which acts as a

data structure, which has the specific

representation suitable for later diagrammatic

presentation and program comprehension. The

representation phase retrieves information from

the tables and obtains higher levels of

abstractions like threads inter-action diagrams

and textual report of tables for documentation.

The block schematic diagram of the proposed

model is given in Figure 1.

Fig. 1 Block diagram of the proposed model

Object

oriented

application

s Textual report &
Graphical ouput

Input
Analysis

Discovery Representation

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp550-555)

2.1 Analysis Phase

The analysis phase is designed to perform two

main tasks namely token recognition and buffer

management. The token recognition uses a buffer

divided into two portions, first and second halves

of equal size. The two pointers lexeme_beg and

forward_ptr are used to scan the buffer looking

for the next token. Initially the first half of buffer

is loaded with characters from the input file. This

avoids referring to the input file for every

character to be processed. Both the pointers

point to the first character. The forward_ptr

scans the buffer for the next token. Once the

token is recognised, it is stored into the global

array called lexeme, which is accessible to all

other phases. The foreign tasks access the global

array lexeme by using extern storage specifier or

storage class. After recognising the token, both

the pointers are set to a buffer position after the

last token. If the forward_ptr moves beyond the

first half of the buffer, then the second half of

buffer is loaded. The process of scanning the

buffer is repeated in Round Robin Fashion. The

buffer manager encompasses a list to store all the

tokens recognised and supplied by the token

recogniser, and supports interfaces to manipulate

the list. The design of buffer and its working

procedure is given in Figure 2.

class A { private: int a

…….

……………

………………

Fig. 2 Details of Buffer Management

2.2 Discovery Phase

The discovery phase comprises of algorithms to

extract details of threads like name of thread,

thread identification number, priority, attribute

name, and policy and its interaction with other

threads through mutex, semaphore and

conditional variables. The discovery phase

interacts with buffer manager to obtain stream of

tokens for recovery details of threads. The

recovered information is stored into tables

namely, threads information and threads

relationship tables. The advantage of this phase

is its adaptation to other languages with little

modification to these developed algorithms.

The methodology developed to extract threads

details and their interactions from multithreaded

applications are given in algorithm1 and

algorithm 2.

Algorithm 1: Extraction of Thread Details

Input: Token List maintained by buffer manager

Output: Thread Information Table

begin

Step 1. Set a pointer to the Token List.

Step2. Read next token from Token List.

2.1 if (token == “pthread_create”) then

begin

- Extract the thread id, attribute name, and

thread name.

- Store the information in Threads

Information Table.

endif

2.2

if (token

==”pthread_attr_setschedpolicy’’)

then

begin

- Extract the scheduling policy of

thread.

- Store the information in Threads

Information Table against the

corresponding thread attribute.

endif

2.3 if (token ==

pthread_attr_setschedparam” or token

== “setsched_priority”) then begin

- Extract the scheduling priority of

thread.

- Store the information in Threads

Information Table against the

corresponding thread attribute.

endif

buffer

lexeme_beg

forward_ptr

First Half Second Half

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp550-555)

Step 3.repeat steps 1 to 3 until token list is

empty

end // Algorithm for Extraction of Thread

Details

Algorithm 2: Extraction of Thread

Interaction Details

Input: Token List maintained by buffer manager

Output: Thread Interaction Table

begin

Step 1. Set a pointer to the Token List.

Step 2. Scan the Token List looking for

the name of a function.

2.1 if (function name is the one of

threads name listed in Threads

Information Table) then begin

- Store name of thread into Thread

Interaction Table.

//repeat

2.2 read next token.

2.3 if (token == “pthread_cond_signal”)

then

begin

 - Extract the arguments.

- Store signaling conditional variable into

Thread Interaction Table against the

name of thread.

endif

2.4 if (token == “pthread_cond_wait”)

then begin

 - Extract the arguments.

- Store waiting conditional variable into

Thread Interaction Table against the

name of thread.

endif

2.5 if (token == “sem_post”) then

begin

 - Extract the arguments.

- Store signaling semaphore variable into

Thread Interaction Table against the

name of thread.

endif

2.6 if (token == “sem_wait”) then

begin

- Extract the arguments.

- Store waiting semaphore variable into

Thread Interaction Table against the

name of thread.

endif

2.7 if (token ==

“pthread_mutex_unlock”) then begin

- Extract the arguments.

- Store signaling mutex variable into

Thread Interaction Table against the

name of thread.

endif

2.8 if (token == “pthread_mutex_lock”)

then

begin

- Extract the arguments.

- Store waiting mutex variable into

Thread Interaction Table against the

name of thread.

endif

2.9 repeat steps 2.2 to 2.8 until end of

function.

Step 3. repeat steps 1 to 2 until token list is

empty.

end // Algorithm for Extraction of Thread

Interaction Details

2.3 Representation Phase

The representation phase is rendered language

independent. This phase is responsible for

retrieval of information from the tables, and

higher levels of abstractions like threads

interaction diagrams and textual reports for

documenting the system details are obtained.

3 Results and Discussions

The proposed methodology is tested on large

number of multithreaded applications of

reasonable sizes (5000 to 10,000 lines of code).

In addition to this the methodology is also

subjected to rigorous unit and integration level

tests with complex applications containing

multiple threads of control and all possible

synchronisation mechanisms like mutex,

conditional, and semaphore variables under

LINUX platform. The following example

illustrates the working of the developed method

with sample results.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp550-555)

3.1 Example
The sample code segment given in Figure 3 is

considered illustrating the results of the proposed

methodology. The sample code segment consists

of two threads of control. The producer1 and

consumer1 threads are synchronised with

conditional variable p1cond.

#include<stdio.h>

#include<pthread.h>

#include<unistd.h>

int queue1[100],front1=0,rear1=0;

void *producer1(void *p);

void *consumer1(void *p);

pthread_mutex_t c1mutex;

pthread_cond_t p1cond;

void *producer1(void *p)

{ while(1) {queue1[rear1++]=10;

 pthread_cond_signal(&p1cond);}

}

void *consumer1(void *p)

{ while(1){

pthread_cond_wait(&p1cond,&c1mutex)

; int item = queue1[front1];

 for(int I=0;I<rear1;++I)

 queue1[I] = queue1[I+1];

 --rear1;

 }}

main()

{

pthread_t tid1,tid2;

pthread_attr_t attr1,attr2;

struct sched_param set1,set2;

set1.sched_priority=1;set2.sched_priority=2;

pthread_attr_init(&attr1);pthread_attr_init(&att

r2);

pthread_mutex_init(&lock,NULL);

pthread_attr_setschedpolicy(&attr1,SCHED_F

IFO);

pthread_attr_setschedpolicy(&attr2,SCHED_R

R);

pthread_attr_setschedparam(&attr1,&set1);

pthread_attr_setschedparam(&attr2,&set2);

pthread_create(&tid1,&attr1,producer1,NULL)

;

pthread_create(&tid2,&attr2,consumer1,NULL

);

return 0;

}//end main

Fig. 3 Sample multithreaded code segment

The proposed model generates two tables

namely Threads Information Table and Threads

Interaction Table, as a result of reverse

engineering the sample multithreaded code

segment given in Figure 3. The table1 and table2

contains details of all threads and their

synchronisation information and helps to

comprehend any multithreaded real time

application. The developers use such information

for maintenance and enhancement activities.

Recovery and documentation of such

information is an advantage of the proposed

model, which helps to comprehend and reduce

the effort required in maintenance and

enhancement of complex applications. If such

information is not available then developers

needs to put effort to comprehend the system

architecture by reading each line of source code.

The model also generates threads interaction

diagram as an alternative representation at higher

levels of abstractions. The results of each phase

of the proposed methodology are discussed in

the following paragraphs.

 The discovery phase extracts threads details and

their interactions. The recovered information

will be stored into Threads Information Table

and Threads Interaction Table. The contents of

Threads Information Table and Threads

Interaction Table for the sample code segment

are given in Tables 1 and 2 respectively.

Table 1: Text output of multithreaded code

segment (Threads Information Table)

Thread

Name

Ident

ificat

ion

Attr

Nam

e

Policy Priorit

y

Produce

r1

Ti

d1

Attr

1

SCHED_F

IFO

1

Consum

er1

Ti

d2

Attr

2

SCHED_

RR

2

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp550-555)

Table 2: Threads Interaction Table

Thread

Name

Signaling

Variable

Waiting

Variable

Producer1 P1cond -

Consumer1 - P1cond

The representation phase retrieves information

from the tables and obtains higher levels of

abstractions like threads interaction diagrams

and textual report for documenting the system

details. The textual report format is same as

given in Table1 and Table2.

4 Conclusion
In this paper, we have proposed a static model

for the analysis of multithreaded source code,

information extraction about threads, their

interactions and record their understanding. The

recovery of complete system details and their

documentation is an added advantage of this

tool, which helps developers to comprehend,

maintain and enhance complex multithreaded

real time applications.

References

[1] Spencer Rugaber, “Program Comprehension

for Reverse Engineering”,

http://www.cc.gatech.edu/reverse/papers.html,

College of Computing Georgia Institute of

Technology, March 1994.

[2] Barry W Boehm, Software Engineering

Economics, Prentice Hall 1981.

[3] R. K. Fieldstad and W. T.

Hamlen,“Application Program Maintenance

Study: Report to our Respondents”,

Proceedings Guide 48, Philadelphia, PA, 1979.

Tutorial on software maintenance, G Parokh and

N Zvegintozov, editors, IEEE Computer Society,

April 1983.

[4] Elliot J Chikofsky and James H Cross II,

“Reverse Engineering and Design Recovery: A

Texonomy”, IEEE Software, vol 7, no 1, January

1990.

[5] Jinlin Yang, David Evans, “Automatically

inferring temporal properties for program

evolution”, 15
th

 IEEE International Smposium

on Software Reliability Engineering (ISSRE

2004)”, 2-5 Nov 2004, Saint, France.

[6] Joe Vandeville, Gary Trio, Dick Hotz,

“Reverse Engineering of Software Threads: A

Design Recovery Technique for Large Multi-

Process Systems”, SERC-TR-82-F, Software

Engineering Research Center, Computer Science

Department, Purdue University, West Lafayette,

IN 47907, February, 1997.

[7] Tarja Systa, “Understanding the behaviour of

Java Programs”, Proceedings of 7
th

 Working

Conference on Reverse Engineering, pp.214,

2000.

[8] Miller, B. P. Callaghan, M. D. Cargille, J. M.

Hollingsworth, J. K. Irvin, R. B. Karavanic, et

al., “The paradyn Parallel Performance

Measurement Tool”, IEEE Computer,

Novemeber 1995, pp.37-46.

[9] Sander Tichelaar, Stephane Ducasse, and

Theo Dirk Meijler, “rchitectural Extraction in

Reverse Engineering by Prototyping:an

Experiment”, www.iam.unibe.ch/~scg/Archive/

papers/Tich97bArchExtraction.pdf.

[10] M. Ernst, J. Cockrell, W.Griswold, and

D.Notkin, “Dynamically Discovering likely

program invariants to support program

evolution”, IEEE Transactions on Software

Engineering, February 2001.

[11] J. Whaley, M. C. Martin, and M. S. Lam,

“Automatic Extraction of object-oriented

component interfaces”, International Symposium

on Software Testing and Analysis”, July 2002.

[12] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf,

“Discovering Models of Behaviour for

Concurrent Workflows”, Computers in Industry,

pp.217-319, Vol.53, No.3, April 2004.

[13] M. Dwyer, G.Avrunin, and J. Corbett,

“Patterns in property specifications for finite

state verification”, 21
st
 International Conference

on Software Engineering, May 1999.

[14] K. Havelund, “Using runtime analysis to

guide Model Checking of Java Programs”, 7
th

International SPIN Workshop on Model

Checking of Software”, August/September 2000.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp550-555)

