Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

Modeling a fault tolerant multiagent system for the control of a mobile robot
using MaSE methodology

MARIA GUADALUPE ALEXANDRES GARCIiA' RAFAEL ORS CAROT? LUCERO JANNETH
CASTRO VALENCIA®

1.2 Computer science and Systems of Computers Department (DISCA)
Universidad Politécnica de Valencia
Camino de Vera s/n. 46022 Valencia
SPAIN

http://www.disca.upv.es/rors

3 Posgrado Department
Instituto Tecnologico de Hermosillo
Av. Tecnologico s/n 83240 Hermosillo Sonora
MEXICO

Abstract. - A multiagent system that tolerates failure in a hardware and software level in the distributed control system of
a mobile robot is shown; it’s made to guarantee the availability of the robot in the most efficient way. The multiagent
system is modeled thru the formal MaSE methodology supported by its development tool, AgentTool; in such a way that
a greater reliability is guaranteed. The multiagent system tolerates system failures in the robot’s control systems through
three types of agents that cooperate so that the mechanisms that detect failures in the input, output, processing and
network control devices are activated; as well as the tasks that constitute the robot’s control system, these agents also
activate the failure-isolation mechanisms and reconfigure the system by means of interactions between the agents that are
supported in the design of the physical architecture of the robot’s control system, In our system, the agents are designed
such that if they recover from the failure, the agents reconfigure the control system to the state prior to the failure, if they
are not able to recover the failure, the robot’s control system continues working due to the double connection and to the
duplicity of the tasks and devices, because the implemented design in the physical architecture of the system allows it.

Key Words: - Model, Multiagent, MaSE, System of distributed control, mobile robot, AgentTool, Failure tolerant .

why it is very important to designed them in a way they
can tolerate the failures.

Nowadays in a robotics system the failure-tolerance to
the hardware level is based mainly in repetition that
allows offering a service according to the specifications,
regardless of the failures, which allows us to guarantee
the availability of the computational system with no

1 Introduction

Current mobile robotic systems have had a great
development and have been built with efficiency and are
being used in different areas such as: agriculture,
manufacture industry, oil industry, nuclear waste
treatment, volcano exploration, medic laboratories, high-
risk material management, automotive industry,

recovery of victims of catastrophes, cardio surgeon
assistants, surveillance, planetary exploration, bomb
detectors. The work done by these machines is precise,
exact, and laborious, must work 24 hours a day, that’s

interruption, as long as it is required to be maintained
working. By duplicating the critical software and
hardware systems we assure that we have a failure-
tolerant system, to best guarantee the availability of the
system it’s been thought to include in the robot’s control
system a layer of distributed intelligent agents, failure-

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

tolerant, in such a way that with the communication
capabilities offered by the paradigm of agents, effects
over the hardware and software is giving a better
liability to the robot. This layer it is implemented using a
set of agents that can be climb easily due to the fact that
every agent it’s associate to a node or a task that
integrates the system. The goal is a new focusing into
the failure-tolerant systems in distributed robotic
systems with the implementation of intelligent agents.
Inside the context of artificial intelligence, the
multiagent systems have been characterized by their
offering of a possible solution to the development of
complex problems with distributed characteristics. When
approaching the development of multiagent systems it’s
doubtless a noticeable increase in the complexity as well
as the necessity to adapt existent techniques, or
occasionally, the development of new techniques and
tools. It is evident that the development of any kind of
software needs the existence of methods and tools that
make easier the acquirement of liable final products. In
that line, in the last years have appeared different papers
that try to propose multiagent systems’ development
processes. In the last years a great advance in the design
of applications has been observed, getting as a result
intelligent applications, capable of working in an
autonomous way and to take their own decisions. The
development of these applications is based in the agent
technology, and takes the software-engineering concepts
at the time of structuring the development process, and
the artificial intelligence, when it is required to give the
programs response capabilities when facing certain
events. From the point of view of this technology, the
distributed systems change to multiagent systems. The
multiagent technologies represent something new and
exciting to the analysis, design and development of
complex software. Now, all the conceptualization of the
agents and the multiagent systems land in the appliance
in a system that solves a certain problem. In order to do
this, it is required to develop it, creating a model doing
an analysis and design in such a way that its
implementation is relatively easy and liable.

2 Formal definition of the multiagent

system’s failure tolerance

In the last years, the technology of agents has received
way more attention due to the advantages that the
multiagent systems have in complex and distributed
environments. A multiagent system must provide
efficiency, must be trustful, robust and secure.

Nevertheless, developing multiagent systems is a
complicated process and there is no guarantee that the
systems that results from the initial requirements will
work properly according to the desired behavior. In
order to produce big and complex systems that work in
an efficient and trustful way, as well as having extension
capabilities and keep their functionality and security, it’s
needed to be able to have a methodology that guides us
in the different stages of the system’s development and
allows us to make the model properly. Without this, it is
impossible to develop complex software, even more if
the problem’s solving is implemented with a multiagent
system.

Due to the complexity of the problem to solve, it has
been required to select a multiagent systems-oriented
methodology that helps us to model the proposed
system. This methodology was selected based on certain
characteristics that must have according to our
necessities, this methodology is MaSE (Multiagent
System Software Engineering)

2.1 Formal propose

The failure-tolerant-agents that work in the distributed
robotics systems are:

The Agent Node (AN) whose mission is the Node-mode
failure tolerance and belongs to a determinate Node (N)
of the distributed system (SD), a Node is a hardware
device that is made of Z devices that may be: sensors,
actuators, microcontrollers, memories, etc.

The Agent task that belongs to one of the many tasks that
completes the system is the one related to the failure-
tolerance in a system level, which is found in every
system node. (Such as recovery of task, reconfigure the
system if the node or the failed task accomplishes to
recover).

The Agent System (AS) that belongs to the distributed
system which mission is the one related with the failure-
tolerance to in a system level, its found in every system
nodes (it terminates to the nodes or tasks that contains a
failure, reconfigure the system in order to keep working
with the nodes or tasks that are still active or, makes a
safe stop in case the system cant be recover, carries a
failure register of all the nodes and on the tasks,
reconfigures the system if the node or the failure task
achieve to recover).

Be SD, a composed distributed system by a set of nodes
N = {N;}, where each N; can be composed by many
devices /D ; /. On the other hand, a set of tasks is
executed over SD, 7= {T}}.

Definition 1: Be N = {N;}, where i is the number of
nodes of the distributed system.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

Definition 2: Be T= {T;}, where j is the number of tasks
that are executed in the system.
Definition 3: Be [D; .], where z is the number of devices
that N; will have.
From these definitions, the next thing can be made:
Definition 4: Be a distributed system SD, formed by the
double: SD = {N, T}, to this SD it is tried to equip to
him with certain tolerance-failure characteristics. For
this issue it’s proponed the usage of the distributed
artificial intelligence paradigm, with which it is possible
to speak of a new focus of the FTS in SD failure-tolerant
systems with the implementation of intelligent agents.
AITF = {AN;,, AT;, AS}
Now, will be defined the agents tolerant to failure, that
will work in SD.
The Agent Node (AN;) € N;, whose task is the one
related with the failure tolerance in a node level. (That
works inside the node).

The Agent Task (AT;) € Tj, whose task is the one

related with the failure tolerance in a task level. (How to
recover the possible tasks of the errors that they can
suffer)
The Agent System (AS) € SD, whose task is the one
related with the failure-tolerance in a level system (wich
task’s should be complete in the system and on what
nodes)
With this, a SD tolerance to failure it is defined like:
Definition 5: A tolerance to failure distributed system
TFDS it is defined as the double.

TFDS = {SD, AITF}

3 The model of the multiagent system
with MaSE

MaSE methodology consists in seven steps represented
on the figure 1 [1]. The first three steps represents the
phase of analysis, the last four represent the phase of
design.

Capturando Metas.

Aplicando Casos
de Meta

Redefiniendo Roles

Ensamblando
Clases de Agentes

Disefando el
Sistema

Fig. 1

3.1 Goals capture for modeling the failure-
tolerant multiagent in the mobile robot
distributed control system (SMA TF SCDRM)
The first step on MaSE is the goal capture, that takes the
initial specifications of the system and it transforms
them in a structured set of goals that the system must
accomplished in order to properly work according to the
problem that he must solve. This stage is based on the
goals because they are a high stable structure for build
the system model. The tolerant to failure multiagent
system requirements for the distributed control of a
mobile robot witch is our model problem; lead us to
deduce the general goal: tolerate the failure in the
distributed control system of a mobile robot in a
hardware and software level. In order to determine its
intention each scenario listed the requirements that
identify the goals. As an example of methodology use in
our model is shown in figure 2:

Tolerar os fallos e ol sistema de control distribardo del robot mdvila vl Hardware y Software,
v Detectar fallos enlos ecfuadores que integran el sistema de control en el robot mivl

v Detectar fallos enlos sensores ue integran el sistema de contro] en el oot mvil,

v Detectarfallos en s tarens del sstemma de conteol

v Detectar fellos enlos nodos que integran o sistema distribusdo de control el sobot mowil,

v hislar los sensores, achuadores o bareas g gresentan n fillo,

v Recuperar ol dispositivo, tarea o nodo aque huvieronun fallo

Y Reconfigurat of sistema del fallo ocurido enun dispositive, barea 0 nodo,

Fig .2
The final step on this phase is to structure the goal,
making an analysis by importance and building a goals
hierarchy diagram. Figure 3 shows the hierarchy
diagram.

1 Toerar Fallos
Sikmade

o

& Y

TTastton iearoe
Mg 1 Nt
!

Ay ;
11 Tolrc Pty 21 o ol e
) Wi s

., O
[T
‘f.'ﬂ& Dispostho|
i

Vs
1121
Ovict

Vsl (8 PR y) L W, ¢
(EKKERN (EXXF CEXEEN (KEECHN CEEEH LAKF#Y [RRF] (RRF TR (REFE
Dt |Locaan (Al | Recedpr | Recr| Lococn s | Recokqre | R

Fig. 3

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

3.2 Applying goal cases in the SMMTF SCDRM
Once all goals have been captured and explicitly
declared, you have the basis for modeled analysis model
[1]. The next thing to do is to clearly identify the
scenarios’ requirements, which are detailed in goal
cases. An easy translatable example in a goal cases is
shown in figure 4, which is an identified scenario to
accomplish failure tolerance of a multiple output/input
device that integrates the mobile robot’s control system;
this shall pass to be a goal case.

S desen saber como se folerardh los fallos en wr sewsor miliple, como es ¢l caso ds los sensores
infharrajos donde wy robot sempre fine varios para defectir obsticudos, @ este caso pueden fallar un
cierto mero di sensores y el vobot sgue frabajando, pero 3 legaa sudope el sensor pa es il para
el robo,

De tal mavera que el sistema folerante fallos debe ser capaz de buscar o 52 Howe wn sevsor de este
fipo replicady, i enste debe de. reconfigurario de fal forma que ¢l sistema sign frabaandy sin
degradarse, debe de ser cqpaz de aislar al sensor que Jalls, debe ser cqpaz de fratar de recuperarlo, s
o 32 rectpera, pongrlo como fallo permanente, i se vecuperaponerlo como respalds y segui operando
conlareplica, debe ser capas de actualizar su bitdeora de fallos

38 el sansor o fieve neplice, cobe fratar de activarlo enla doble congidn, de Jo contrario debe saber f
esfe sensor 1o a5 crifico pava que stga operand el robot 3 es cvifico debe realizar wn paro seguro.

S o s erifico o puede achivarsé en oo nodo debereconfigurar al sistama para que ¢l sobot prosiga
S operacion quraue sea de modo degradada

Fig. 4

The scenario in figure 4 gives many information
segments. First, it illustrates an action trajectory
throughout the system; second, introduces some new
concepts to the goal. For this particular case, the control
system is distributed thru Nodes (figure 5) that control
the robot, the tasks and devices are distributed to
different Nodes. The Goal cases are valuable inside
MaSE since they help plot communication trajectories
that will become conversations between the different
agents that constitute the system.

Bus de Comunicaciones

Actusdor C B Sensor & Actusdor B P Sensor A ActusdorB P Semsor D | Doble
Domudo | Domddo 4 Donmido Domuido Domuido Domaido ¥
F 3 iconexion de
| i | l 1 1 1dispositivos
vy L A ! (Dormida)
NODO 1 NODO 2 NODO 3
A |
| Conexién de
- ! "
4 1dispositivos
Sensor A ActuadorB ActuadorC SemsorUmizo D ActuadorB Sesorh | henivosy
Miltiple Unico Miltiple Activo Undco Miltiple | yeplicados
Activo Activo Activo Replicado Replicado
Fig. 5

3.3 Sequence diagrams in SMA TF SCDRM

Applying goal cases requires the previously identified
scenarios and restructures them to be able to make a
sequence diagram [1]. In MaSE, the different processes

are different agent roles. The events between roles are
called messages [2]. The sequence diagrams give a high
level view of how different roles work reciprocally to
accomplish their goals, and are useful while building
each role’s tasks.

| TFNNDM : TSA: TSP:

RegisirarNodolipo,nodo)
Registrado(Reqld)

Actualizar()

Fig. 6

Figure 6 shows the sequence diagram that represents a
series of events sent between the multiple device node
level failure tolerator (TFNNDM) and the active system
role tolerator (TSA) and passive system tolerator (TSP),
which are required for the multiple device failure
tolerator registries. These events ought to be contained
in their respective role conversation.

The next step on MaSE is to transform the hierarchically
structured goals in a more useful way to build the
multiagent system, these being the roles [1]. The roles
are the basic blocks of agent constructions and represent
the system’s goals during the design phase. When
associating each goal with a role, the goals will be
accomplished, because each role will be executed by a
type of agent.

3.4 Transform Goals in Roles in SMA TF SCDRM

The next step is to transform the structured goal in a
more useful way to build multiagent systems being the
roles [1]. When associating each goal with a role, goals
will be accomplished, because each role will be executed
by a type of agent. In this model the goal hierarchy was
taken in order to create the roles shown in figure 7. The
parentheses indicate the goals associated to each role.

' TulemFa]]usDispnsitivnﬂrﬂco (LLLLLLLLL LLLIZ 1LY,
LLLLY)

v Tolerar Fallos Dispositivo Miltgle (1102 L1121 11122,
LLIZ3 LLLZY

v Tolerar Fallos Nivel Tazea (FARMARRMANADARRPANS
1219

v Tolerar Fallos Sistema Pasivo (1224, 1220012212122 3)
(1.222,12221,1.2222,12223,
12224

(1111411129

(12222,12223)

v Tolerar Fallos Sstema Activo

v Tolerador Dispositivo

v Reonfigaador distema

Fig. 7

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

Figure 8 shows the role model of the proposed SMA. In
this way, we assure that each of the proposals of the goal
hierarchy diagram are designated to a goal [1]. Roles
may have one or more concurrent tasks associated to
them. The Ilines between the tasks denote the
communication protocols that occur between these. The
arrows indicate which task is the one that begins the
action and which one is the responder. The solid arrows
(red) indicate an external communication between the
two tasks from different roles or two tasks from different
instances of the same role. The external protocols
involve messages being sent between roles and will
become messages in a conversation between the types of
agents that do certain actions. The dotted arrows (blue)
denote communication between two tasks that belong to
the same instance of the role.

s Tolerador_Disp =
1221 ~14.1004 (Registrar_Disp)
12214 T Registrar_Disp
122412 (Reconfig_Disp)

12243 TN, ..
ReconfigBisp Ky -ﬂ?egislralr‘)
L PidbarDisp 1T
1}§ecunﬂgura_?_§_ Reoonfppble W —Recuperar_Disp TsA
T ————Reconfigura D e S FE 7]
T T) < 12221
% ki iy % i
\ R,E.@-mj (Reconfigurar_Disp> {1222.2
Disp_dislado™,__—" < [12223
~Rats 4 12224
" Rectnlg_Tarea - 22.2.
(Recuperar_DU) Y P
e g LN L
A \I\nf_Ed/qLDisp
v {pislar DU} N
fages sd e
Nl s S___
| /fade3 Ve T, TFTarea
AL A oL Tory =T
WU | Lol 1241
/(Localizar_DU) % A
TEET it ; il
14140 [7 “Wage? - 1213
11112 |7 o 1214
14143 ——{Detestar_ DU 1215
11:0:4:5 e
Fig. 8

The model is made of five roles, with their respective
tasks. The single device failure TOLERATOR TDFU is
responsible of tolerating failures in single devices (DU)
(a camera) of the SCDRM, for this it is necessary to
carry out certain tasks in order to accomplish the goal
defined objectives that integrate it. The role TSA and
TSP are responsible of reconfiguring the devices when a
failure in the DU occurs, besides, the TSA role registers
the node agents. The TFT roles (task level failure
TOLERATOR) and Tolerador Dev (Device level failure
TOLERATOR) have the function to reconfigure the task
and the device respectively according to the actions sent
by the TSA and TSP roles. The interaction between the

different tasks that constitute the roles model is given by
the protocols shown in figure 8.

3.5 The concurrent tasks in the proposed model
After the roles have been created, the tasks can be
associated with each role. Each goal associated with a
role may have a task that details how the goal must be
accomplished [1]. By using concurrent tasks models,
you help define the inner behavior of the agents and
define the interactions with other agents related to these
inner processes.

Figure 9 shows the task Reconfigurar Disp of the TSA
role, the tasks allows the active system active (ASA)
take the pertinent actions to reconfigure the device
(unique or multiple sensor or actuator) when it fails in a
node. The first thing it tries to do is to active the device
in its replica and to check the functionality of the double
connection.

recenve(activado,TSPYACIUalizar_Pasvos

Task: Reconfigurar_Disp ._m_
IV ‘ -
="

recelve(Actualizar(Edo_Nodo Edo_Disp), TD)Guafdar(Edo_Nodo,Eda_Disp)Actualizar_Pasivos()

[TSP2CI=0]"send(probar_funcion_disp,TSP2C) Lotalizar_conexion

recepe(funcionalidad, TSP2C)eda_disp=funcionalidad

TSP2C=huscar_2_con_disp(disp) SPRIOVTEPTSPR
| T8PR=buscar_replica_disp(disp) bt (K
Espera_2_Con e
-

[edo_disp=="T'&TBPR==0TSP=TSP2C -

-

T8P2C==08TSPR==0 jlo_disp=="F"4TSPR=0] | T

% -
send(activar_dispidisp), TSP

e

Esperar_Activacion

Buscar_3C

*send(probar_fungion_disp,TSP3C)

TSP3C=huscar_3_con_disp(disp)

Esperar_3_con

receive(funcionglidad TSP3C)

Funcionalidad [edo_digp3=="TJTSP=TSP3C

[edo_disp3=="F")

edo_tisp3=funcionalidad
Fig. 9

3.6 Creating agent types in SMA TF SCDRM

In the design phase, the first step is to create the types of
agents that will integrate the multiagent system, from the
roles. The product of this phase is an Agent Types
diagram, which shows the types and conversations
between them [1]. This diagram is the first design of the
MaSE agent that shows the complete multiagent system.
Each role must be executed by a type, but it is possible
that a role is carried out by two types of agents or one

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

type can represent various roles and change
dynamically.

COWREC)M T

[
O Disp_{ Tarea
ConvinEdoDisp_{
TorRegETamTT L4 ConRemnighaT” TFTarea 4—
T —
Coeraigtiea ! r‘-/ P LI
o / s \ 1/
sy / \
ComLJi&fia ! CominEad 1
ff / - ConvTReeerifig_1
{0 y
(.. .
Sisterna vk
L ConvActualizar_1 /7! f‘/}]
TFOM FTeA
Ty onDispld 1 Conste_ CunvMsé\fA_‘W b /&mﬁ VP2
Tol.Disp 7 Reconfy_Sist k\ ComTDormida_{
ComProbarfunt 2 oo i W A ConvDormirT.f
ConvProbarFunc_{ ConvinEdeT 1
ComvDormirDisp_1 ConvActivarT_1
ConvActivarDisp_1 ComvTActivada_1
ConvRegistrarNT_2

Fig. 10
Figure 10 shows the agent types diagram:

1. The node type: Tolerates the failures in the
single and multiple devices, this type of agent
carries out three roles (TFDM, TFDU and
Tolerator Dev).

2. The system type: Reconfigures the active
TOLERATOR, passive tolerator and
reconfigures the SCDRM when a failure occurs
in a device or node that integrates the robot’s
control system. This type contains three roles
(TSA, TSP and Reconfigure Syst).

3. The task type: Tolerates the failures in existent
tasks in the SCDRM, contains the TFT role
(Task failure TOLERATOR).

The fact that an agent type contains more than one role
does not mean that it will carry them out at the same
time. The role that a type carries out can be changed in
execution time according to the actions in the system. To
our model, for example, the node type agent begins with
the role Tolerator Dev, because the first task it must
carry out is to register with the active system tolerator
(TSA), and then it will carry out the single device failure
tolerator (TFDU) this type (that will become an agent) is
in charge of a single device. The TSA and TSP roles
cannot be carried out at the same time by the type,
according to the initial requisites of the system.

3.7 Building conversations SMA TF SCDRM

The agents that integrate this SMA are able to
communicate thru structured messages. The structured
sequence of messages is called Agent Conversation [1].
A conversation consists of two conversation diagrams,
one for the type that initiates the conversation and one

for the one who responds to the conversation. Figures 11
and 12 show the communication diagrams for the
ConRegister Dev Conversation (Conversation Register
Device). The node type initiates the conversation
sending the registered message (parent. TFNTS,
parent. Type) to the system type, this one receives it,
registers the node agent, refreshes itself and refreshes the
rest of the agent systems replicated in each node of the
SCDRM, at the end it sends the identifier to the node
agent thru the registered message (reglD), the node
agent receives it and refreshes itself.

{ Conversation Initiator : ConvRegistrar_Disp |

'."registrar(parent.TFNTS, parentTipo) _ | Esperar-ID] registradofreglDy Regletr

Actualizar_Reg(reglD)

Fig. 11

| conversation Responder : ComRegistrar_Disp |

Registrar
registrar(TFNTS, Tipo) regID = obteneriD(TENTS) “registrado(reqiD) ,e’“‘.‘
RegistarTN(TENTS, Tipo, reqiD) =
| Actualizar_Pasivos(
Fig. 12

The infinite cycles, deadlock and other errors in the
communication can cause trouble in the MAS, even
worse, the system can keep on working while there is a
catastrophic problem and that was not perceived by the
conversation designer. Because of this, it is necessary to
explore the trajectories so that the conversation can be
valid [3], it is required to be formally verified. Once the
conversations have been verified, one can be sure that
the agents will communicate as expected. The
AgentTool tool provides a module that assures the
validity and interoperability of the conversations, this
module accomplishes as well that the communication
protocol politic can be satisfied [4].

3.8 Transformation from analysis phase to
design phase

The transformation process that MaSE provides is
correct and robust for the generation of models of the
design without the loss of information from the analysis
phase. The formal transformation systems reduce
mistakes that happen during the design, in figure 13 you
can see the transformation of the analysis phase from the
error model and the tasks to the design phase in the type
Agent model, inner components and conversations.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

In MaSE it is assured that the only way of modeling
the agent’s structure organization, by the means of
components[5] and conversations in the design
phase, is by capturing all the data present in the
analysis models and they preserve the basic idea of
a conversation. Figure 14 shows the architecture of the
Node and System types, in figures 15 and 16 it is shown
the architecture of the tasks type. This architecture is
obtained from Roles Model (figure 8)

Arehtclure fr Agenl: Ndo

Det. 0 Locl DU (Ao 0 | Reper D0 [Regska D | Fenky, Do

Fig. 14
|| Architecture for Agent: Sisterna I

Reconfigurar_Disp | | Registrar || Recuperar_Disp |[Reconfigurar

Fig.15
Architecture for Agent : Tarea

Reconfig_Tarea

Fig.16

The second stage is focused in the components and the
state diagram shows where it starts and where it ends,
this phase also equals the external events in the different
components that become the initial messages of a
conversation. The state diagram for the Reconfig Dev
component is shown in figure 17. Letter S represents

where the conversation [6]begins and letter L at the end
of a transition represents the end of conversation.

Component: Recanfig_Disp

Tratar activar disp Asendifuncionalidad TSA)

|[uncmna\idad= probar_funcién_disp() ///
o~

-

ot

|
receive(prabar_funcion_disp, TSA) e

B -
e [W
z = Activar dispositiva
._______ Esperar }‘_E receive(activar_disp,TSP) "

é}gﬁ—: — Activar_disp()
"x__“ _‘“"-\—\.__“____ = =
receiveldormit_disp.TSP) N T send(disp_gctivado, TSP)
Y = B2

Agend(disp_Hormido, TSF)
Dormir dispositivo

Dormir_disp(

"

Fig. 17

The state diagram of the Locate DU component is
shown in figure 18.

Recuperada |

Edo_Modo = Recuperado
Actualizar)

i

[Test=Pasa]*Monitorear

[component: Localizar_pu |

Y
Inactivo Localizar (Efectuar Test]

|Test:Tesi_Corroboracion_DU() J

12
[Test=No_Fasa]
rsendiactualizarEdo_Rlodo, Edo_Disp), TSA) Y
E

CambiarEstado

Mulld “hislar(y, Recuperard)]
Edo_Disp = FallaTemporal J

Edo_Nodo = Degradado

Fig. 18

There is a new null state added during the transformation
stage. This state is the result of dividing the transition in
the inner (isolate and recover) and external (send
(refresh (Edo_Nodo, Edo Disp), TSA)), that allowed a
clear limiting of where the conversation start and end. At
the end of the three stages of the transformation process,
the inner components of the agent’s architecture are
shown in figures 19, 20 and 21 of the node, system and
task agents. The superior part of each of the inner
component represents the name of the component, the
second division contains the attributes contained in the
component’s state diagram and the third division
represents the functions that are found in the component.
The transformation process creates a process for each
conversation related to each component; this is because
each conversation, just like the tasks, is executed in a
control string. The methods and attributes can be
eliminated, modified and even added.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

Architecture for Agent: Nodo
Detectar DU Aislar DU Localizar_DU
Entrada-Emoriype zhipe Testhpe
Edo_Nododype TSP hype Edo_Dispiype
#ulonitorear_Disp_Unico():Object disphype Edo_Nodotype
#hctualizar()vold #Aislar_dispositiva(zObject void T8Atpe
#Conversation29_1(TSP:Object, disp:Objechvoid | [#Test_Comoboracion_DU():Object
#Actualizan()void
Recuperar_DU Reconfig_Disp FComersationdd_{(TEA Objec) oid
Tecuperafype TeAtype - -
dispe ToP e Registrar_Disp
Edo_Dispiype #Conversationd1-(TSA Objechvoid TENTS 1ype
Taktpe #Conversation38_1(TSP.bjectvold Thotye
#Recuperar(disp Objech Object #Conversation39_1 (TSP Objechvaid TSAtpe -
#Conversalion33_1(TsAObjectvoid | [#probar_funcin_disp():Object #Outener_Tiao_OM_DU) Object
#Domir_disp)void #Conversation37_1(TSAObjectvold
#hctivar_disp()void #Aclualizar_Reg(regiD Objechvoid
Fig. 19
I Tor Agent |
Reagistrar
TFNTStype
Tipotype
TENTS_Tipo:type
TF type
#FConversation37_1(TF:Objecthvoid
#FobteneriD(TFNTS:Objecth:Object
#FRegistrarTN(TFNTS Object, Tipo:Object, regiD:Objectvoid
#FActualizar_Pasivos{) void
Recuperar_Disp
TSP2C type
disptype
TSPiype
TD:type
nodoitype
rep]ics:::we
Shu';‘:sr_ﬁel:_zc(disﬁ.‘ObiacQ:Ob]al:t
#Conversation34_1(TSP2C:Object:void
FC 35_2(TSP:OI i
#Conversation33_1(TD:Object, nodo:Object, replicado:Object, activo:Objectivoid
#FConversation44_1(TSP2C: Objech:void
#C _2(TSP:OI
#buscar_TSP(TD:Objech:Object
#FTipo_Reconfig{disp:Object, nodo:Objecth:Object
#Buscar_Def_Disp{disp:Object, nodo:Objecth:Object
#FRealizar_Paro_Seguro() void
#FReconfigurar_Sist{ }:void
#FGuardar_Cambios{)void
#Actualiza_Pasivos():void
FActualizar_Pasivos{) void
Reconfigurar " T Bi
Jisphpe econfigurar_Disp
TDHype TSP2C e
TSAtype disp:type
tareastype TSPRitype
TFT-vpe TSP3C type
#Obt_T_Dep_Ind(disp:0bject):Object Hehhpe B
#Obtener_TD(disp:Objecti:Object Eda_blodole
Edo_Dispitype

#FGuardar_Cambios{)void

#Actualizar)void Edo_Nodo_Edo_Disptype

#Conversation38_1(TD:Objec)vaid |_TD:type
#Conversation39_1(TD:Object):void #buscar_2_con_disp(disp:Object).Object
#Corversation44_1(TSAObject)void _replica_ :Objech):Object

#Conversation30_1{tareas Vactor) void Fouscar_3_con_disp(disp:Object):Object
#Cunversaﬁon-iﬁ-_(TBx Objectivoid FComversationd1_1{TSP2C:Object)void
FConversation31_1{dareasVectorvoid #Conversationd1_2(TSP3C: Ob;ecﬂ;vold
#Conversation34_1 (TSAObject void £oaiElon S I Chic ol
#Conversationa2_1(TFT:Objechvoid #Cornversalion46_1(TSP:Objech:void
#Cnnversaﬁnrmﬁ—_(TSA Objectvoid #FConversation36_1(TD:Objech)-void
#Conversation43_1(TFT:Objechvoid FActualizar_Pasivos():void _) :
#Conversation29_1(TD:Objectvoid _Modo:Object, Edo_Disp:Objech
#eliminar(TFT:Objech):Object

Fig. 20

|| Architecture for Agent : Tarea I

Reconfig_Tarea

TSP type
Fdormir_tarea jwoid
#activar_tareal Jvoid
FCorwersationd42_1({TSP.Objech)void
FConversationd3_1 (TSP Objech)woid
FComwersation31_1{TSP:Objec)woid
#Conversation30_1(TSP.Object) void

Fig. 21

3.9 The unfold diagram

The final stage of the MaSE takes the types of agents
and directs them as true agents. It uses the unfold
diagram to show the numbers, types and locations of the
agents inside the system. This is the simplest stage

because most of the work has been done in the previous
stages.

A system must be analyzed in an unfold diagram before
it can be coded. This is because of the differences
between the agents and the agent types. An agent
requires the information like a hostname and an address
to participate in any communication out of the system in
which it resides.

An unfold diagram also offers the designer other
opportunities to adjust the system. The agents can be
sorted by different machines configurations, to use in a
better way the processing power or bandwidth.

Figure 22 shows an example of an unfold diagram for
the SMA TF SCDRM (it can have multiple
configurations), in it, it is shown three nodes; in node 1
it contains the node agent for single device (ANDUI)
and the task agent 1 (AT1) that must work with a single
device, besides it contains the node agent for multiple
device 1 (ANDMI1), the task agent 2 (AT2) that works
with a multiple device and lastly contains the passive
system agent 1 (ASP1) in charge of that node; node 2
contains ANDU2, AT3, ANDM2, AT4 and the active
system agent (ASA); node 3 contains inactive ANDUI,
in charge of the single device (copy of node 1 content)
and the corresponding AT1 copies from node 1’s ATI.
Evenly, the ANDM2 and AT4 are found replicated,
corresponding to ANDM2 and AT4 from node 2; lastly,
it contains the ASP2 in charge of that node. The figure
shows the required conversation in case the single
device from node 1 fails (monitored by ANDU1). In this
diagram, all conversation of the agent type diagram must
be included. For effects of visibility, only a few
conversations are shown. The 3D boxes are agents and
the lines connecting them represent conversation
between agents. Any conversation between agent types
appears between those types’ agents. Besides, a dotted
box indicates that the agents are contained in the same
physical platform. In some cases, the system
requirements can specify a certain number of
components or machines in which they reside.
Otherwise, the designer must consider the messages
traffic when putting agents in particular machines.
Obviously, the communication speed between agents
will depend on the net they’re communicating thru. In
some cases, the agents can be put in the same machine.
When putting many agents in one equipment the
advantages of the distribution obtained when using the
agent diagram are destroyed. Another consideration is
the processing power of one particular equipment and
the required by a specific agent. If an agent has a high
CPU requirement, it can be put in a machine only for

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

himself. One of MaSE strength is that these
modifications can be done after having designed and
generate a variety of system configurations, altogether
with the reunion of the data from the operation. One
final consideration is the automatic code generation.
This methodology and AgentTool are basically used in
agent system engineering. All the steps work towards
that goal.

ANDUT R ANDM1 ANDU2 ANDM2
{Nodo) {Nodo} {Nodo) {Nodo}
e
{ComDommi Bigh Lo
P {Convingd_Edo_Disp} | |™——__ ASA
{ConrDouniz T, L ———_, [(Sistema)
e {Sistemna)
,
{Comjctivar Disp} AT4
ATI AT2 AT3 o
{Tarea)
{Tarea} (Tarea) (Tarea) Ve
¥ODO1 NODOZ
....... = T
)/ m—
|| Anput P (Cowacta Dig) ANDMZ

{Nodo} ~ rd {Nodo)
R

ASP2

Comvhdti =
{Convs mmxj_l'_a_:;:i_&!/ (Sisterna)
v

AT AT4
{Tarea) NODO 3 {Tarea}

Fig. 22

4 Conclusion

In this paper a tolerant to failure distributed and
hierarchy intelligent agents of a multiagent system in the
control system of a mobile robot is modeled, trying to
give to the robot a better guarantee of functionality, the
system was modeled with the formal development
methodology MaSE.

Failure to tolerance it’s obtained thanks to the associate
part of an agent with each node or a task that integrates
the system mobile robot, when the agent is designed be a
node or a task, it makes independent from the rest
components of the system, besides the system agent is in
charge of supply the failure tolerance in a level system,
making with this a bigger trustworthiness.

The diagrams that represent the tasks and the diagrams
that represent the communication have been validated
thru the validation programs that are in the AgentTool
with out having too much trouble.

What is concern to the physics architecture of the robot
system control, the correct functionality have been
validated modeling the multiagent system thru the
behavior at the time of modeling and formal validated.
The principal characteristics of this tolerant to failure
model over a distributed control architecture whether if
is reactive, deliberative or hybrid, this can be resume in:
simplicity, scalability, transparency, sistemitdad of the

system and binnacle is achieve of the different type of
failure that where presented during the operability of the
system, witch one where capable of restoring and still
they continue.

Besides, obtained a fundamental characteristics that is
the increase of trustworthiness of the system.

References:

[1] Scott A. Del.oach, Analysis and Design using MaSE
and agentTool, 12th Midwest Artificial Intelligence
and Cognitive Science Conference (MAICS 2001)
Miami University, Oxford, Ohio, March 31-April 1,
2001

[2] Mark F. Wood, Captain, USAF, Multiagent Systems
Engineering: A Methodology for Analysis and
Design of Multiagent Systems Thesis Degree of
Master of Science in Computer Science, School of
Engineering and Management Air Force Institute of
Technology Air University, AFIT/GCS/ENG/00M-
26, March 2000.

[3] Clint H. Sparkman, 1st Lieutenant, USAF,
Transforming analysis models into design models for
the multiagent systems engineering (MaSE)
methodology Thesis Degree of Master of Science in
Computer Science, School of Engineering and
Management Air Force Institute of Technology Air
University, AFIT/GCS/ENG/01M-12,March 2001.

[4] Timothy H. Lacey, Captain, USAF, A formal
methodology and technique for verifying
communication protocols in a multiagente
environment, Thesis Degree of Master of Science in
Computer Science, School of Engineering and
Management Air Force Institute of Technology Air
University, AFIT/GCS/ENG/00M-12.

[5] David J. Robinson, 1st Lieutenant, USAF, A
component based approach to agent specification

Thesis Degree of Master of Science in Computer
Science, School of Engineering and Management Air
Force Institute of Technology Air University,
AFIT/GCS/ENG/00M-22, March 2000.

[6] Scott A. DeLoach & Mark Wood. Developing
Multiagent Systems with agentTool, Intelligent
Agents VII-Proceedings of the 7th International
Workshop on Agent Theories, Architectures, and
Languages (ATAL"2000). Springer Lecture Notes in
Al Springer Verlag, Berlin, 2001.

