
 1

Modeling a fault tolerant multiagent system for the control of a mobile robot
using MaSE methodology

MARÍA GUADALUPE ALEXANDRES GARCÍA1 RAFAEL ORS CAROT2 LUCERO JANNETH

CASTRO VALENCIA3

1, 2 Computer science and Systems of Computers Department (DISCA)
Universidad Politécnica de Valencia
Camino de Vera s/n. 46022 Valencia

SPAIN

 http://www.disca.upv.es/rors

3 Posgrado Department

Instituto Tecnológico de Hermosillo
Av. Tecnológico s/n 83240 Hermosillo Sonora

MEXICO

Abstract. - A multiagent system that tolerates failure in a hardware and software level in the distributed control system of
a mobile robot is shown; it’s made to guarantee the availability of the robot in the most efficient way. The multiagent

system is modeled thru the formal MaSE methodology supported by its development tool, AgentTool; in such a way that

a greater reliability is guaranteed. The multiagent system tolerates system failures in the robot’s control systems through

three types of agents that cooperate so that the mechanisms that detect failures in the input, output, processing and

network control devices are activated; as well as the tasks that constitute the robot’s control system, these agents also

activate the failure-isolation mechanisms and reconfigure the system by means of interactions between the agents that are

supported in the design of the physical architecture of the robot’s control system, In our system, the agents are designed

such that if they recover from the failure, the agents reconfigure the control system to the state prior to the failure, if they

are not able to recover the failure, the robot’s control system continues working due to the double connection and to the

duplicity of the tasks and devices, because the implemented design in the physical architecture of the system allows it.

Key Words: - Model, Multiagent, MaSE, System of distributed control, mobile robot, AgentTool, Failure tolerant .

1 Introduction
Current mobile robotic systems have had a great

development and have been built with efficiency and are

being used in different areas such as: agriculture,

manufacture industry, oil industry, nuclear waste

treatment, volcano exploration, medic laboratories, high-

risk material management, automotive industry,

recovery of victims of catastrophes, cardio surgeon

assistants, surveillance, planetary exploration, bomb

detectors. The work done by these machines is precise,

exact, and laborious, must work 24 hours a day, that’s

why it is very important to designed them in a way they

can tolerate the failures.
Nowadays in a robotics system the failure-tolerance to

the hardware level is based mainly in repetition that

allows offering a service according to the specifications,

regardless of the failures, which allows us to guarantee

the availability of the computational system with no

interruption, as long as it is required to be maintained

working. By duplicating the critical software and

hardware systems we assure that we have a failure-

tolerant system, to best guarantee the availability of the

system it’s been thought to include in the robot’s control

system a layer of distributed intelligent agents, failure-

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 2

tolerant, in such a way that with the communication

capabilities offered by the paradigm of agents, effects

over the hardware and software is giving a better

liability to the robot. This layer it is implemented using a

set of agents that can be climb easily due to the fact that

every agent it’s associate to a node or a task that

integrates the system. The goal is a new focusing into

the failure-tolerant systems in distributed robotic

systems with the implementation of intelligent agents.

Inside the context of artificial intelligence, the

multiagent systems have been characterized by their

offering of a possible solution to the development of

complex problems with distributed characteristics. When

approaching the development of multiagent systems it’s

doubtless a noticeable increase in the complexity as well

as the necessity to adapt existent techniques, or

occasionally, the development of new techniques and

tools. It is evident that the development of any kind of

software needs the existence of methods and tools that

make easier the acquirement of liable final products. In

that line, in the last years have appeared different papers

that try to propose multiagent systems’ development

processes. In the last years a great advance in the design

of applications has been observed, getting as a result

intelligent applications, capable of working in an

autonomous way and to take their own decisions. The

development of these applications is based in the agent

technology, and takes the software-engineering concepts

at the time of structuring the development process, and

the artificial intelligence, when it is required to give the

programs response capabilities when facing certain

events. From the point of view of this technology, the

distributed systems change to multiagent systems. The

multiagent technologies represent something new and

exciting to the analysis, design and development of

complex software. Now, all the conceptualization of the

agents and the multiagent systems land in the appliance

in a system that solves a certain problem. In order to do

this, it is required to develop it, creating a model doing

an analysis and design in such a way that its

implementation is relatively easy and liable.

2 Formal definition of the multiagent
system’s failure tolerance
In the last years, the technology of agents has received

way more attention due to the advantages that the

multiagent systems have in complex and distributed

environments. A multiagent system must provide

efficiency, must be trustful, robust and secure.

Nevertheless, developing multiagent systems is a

complicated process and there is no guarantee that the

systems that results from the initial requirements will

work properly according to the desired behavior. In

order to produce big and complex systems that work in

an efficient and trustful way, as well as having extension

capabilities and keep their functionality and security, it’s

needed to be able to have a methodology that guides us

in the different stages of the system’s development and

allows us to make the model properly. Without this, it is

impossible to develop complex software, even more if

the problem’s solving is implemented with a multiagent

system.

Due to the complexity of the problem to solve, it has

been required to select a multiagent systems-oriented

methodology that helps us to model the proposed

system. This methodology was selected based on certain

characteristics that must have according to our

necessities, this methodology is MaSE (Multiagent

System Software Engineering)

2.1 Formal propose
The failure-tolerant-agents that work in the distributed

robotics systems are:

The Agent Node (AN) whose mission is the Node-mode

failure tolerance and belongs to a determinate Node (N)

of the distributed system (SD), a Node is a hardware

device that is made of Z devices that may be: sensors,

actuators, microcontrollers, memories, etc.

The Agent task that belongs to one of the many tasks that

completes the system is the one related to the failure-

tolerance in a system level, which is found in every

system node. (Such as recovery of task, reconfigure the

system if the node or the failed task accomplishes to

recover).

The Agent System (AS) that belongs to the distributed

system which mission is the one related with the failure-

tolerance to in a system level, its found in every system

nodes (it terminates to the nodes or tasks that contains a

failure, reconfigure the system in order to keep working

with the nodes or tasks that are still active or, makes a

safe stop in case the system cant be recover, carries a

failure register of all the nodes and on the tasks,

reconfigures the system if the node or the failure task

achieve to recover).

Be SD, a composed distributed system by a set of nodes

N = {Ni}, where each Ni can be composed by many

devices [D i, z]. On the other hand, a set of tasks is

executed over SD, T= {Tj}.

Definition 1: Be N = {Ni}, where i is the number of

nodes of the distributed system.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 3

Definition 2: Be T= {Tj}, where j is the number of tasks

that are executed in the system.

Definition 3: Be [D i, z], where z is the number of devices

that Ni will have.

From these definitions, the next thing can be made:

Definition 4: Be a distributed system SD, formed by the

double: SD = {N, T}, to this SD it is tried to equip to

him with certain tolerance-failure characteristics. For

this issue it’s proponed the usage of the distributed

artificial intelligence paradigm, with which it is possible

to speak of a new focus of the FTS in SD failure-tolerant

systems with the implementation of intelligent agents.

 AITF = {ANi, ATj, AS}

Now, will be defined the agents tolerant to failure, that

will work in SD.

The Agent Node (ANi) ∈ Ni, whose task is the one

related with the failure tolerance in a node level. (That

works inside the node).

The Agent Task (ATj) ∈ Tj, whose task is the one

related with the failure tolerance in a task level. (How to

recover the possible tasks of the errors that they can

suffer)

The Agent System (AS) ∈ SD, whose task is the one

related with the failure-tolerance in a level system (wich

task’s should be complete in the system and on what

nodes)

With this, a SD tolerance to failure it is defined like:

Definition 5: A tolerance to failure distributed system

TFDS it is defined as the double.

 TFDS = {SD, AITF}

3 The model of the multiagent system
with MaSE
MaSE methodology consists in seven steps represented

on the figure 1 [1]. The first three steps represents the

phase of analysis, the last four represent the phase of

design.

Fig. 1

3.1 Goals capture for modeling the failure-
tolerant multiagent in the mobile robot
distributed control system (SMA TF SCDRM)
The first step on MaSE is the goal capture, that takes the

initial specifications of the system and it transforms

them in a structured set of goals that the system must

accomplished in order to properly work according to the

problem that he must solve. This stage is based on the

goals because they are a high stable structure for build

the system model. The tolerant to failure multiagent

system requirements for the distributed control of a

mobile robot witch is our model problem; lead us to

deduce the general goal: tolerate the failure in the

distributed control system of a mobile robot in a

hardware and software level. In order to determine its

intention each scenario listed the requirements that

identify the goals. As an example of methodology use in

our model is shown in figure 2:

Fig .2

The final step on this phase is to structure the goal,

making an analysis by importance and building a goals

hierarchy diagram. Figure 3 shows the hierarchy

diagram.

Fig. 3

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 4

3.2 Applying goal cases in the SMMTF SCDRM
Once all goals have been captured and explicitly

declared, you have the basis for modeled analysis model

[1]. The next thing to do is to clearly identify the

scenarios’ requirements, which are detailed in goal

cases. An easy translatable example in a goal cases is

shown in figure 4, which is an identified scenario to

accomplish failure tolerance of a multiple output/input

device that integrates the mobile robot’s control system;

this shall pass to be a goal case.

Fig. 4

The scenario in figure 4 gives many information

segments. First, it illustrates an action trajectory

throughout the system; second, introduces some new

concepts to the goal. For this particular case, the control

system is distributed thru Nodes (figure 5) that control

the robot, the tasks and devices are distributed to

different Nodes. The Goal cases are valuable inside

MaSE since they help plot communication trajectories

that will become conversations between the different

agents that constitute the system.

Fig. 5

3.3 Sequence diagrams in SMA TF SCDRM
Applying goal cases requires the previously identified

scenarios and restructures them to be able to make a

sequence diagram [1]. In MaSE, the different processes

are different agent roles. The events between roles are

called messages [2]. The sequence diagrams give a high

level view of how different roles work reciprocally to

accomplish their goals, and are useful while building

each role’s tasks.

Fig. 6

Figure 6 shows the sequence diagram that represents a

series of events sent between the multiple device node

level failure tolerator (TFNNDM) and the active system

role tolerator (TSA) and passive system tolerator (TSP),

which are required for the multiple device failure

tolerator registries. These events ought to be contained

in their respective role conversation.

The next step on MaSE is to transform the hierarchically

structured goals in a more useful way to build the

multiagent system, these being the roles [1]. The roles

are the basic blocks of agent constructions and represent

the system’s goals during the design phase. When

associating each goal with a role, the goals will be

accomplished, because each role will be executed by a

type of agent.

3.4 Transform Goals in Roles in SMA TF SCDRM
The next step is to transform the structured goal in a

more useful way to build multiagent systems being the

roles [1]. When associating each goal with a role, goals

will be accomplished, because each role will be executed

by a type of agent. In this model the goal hierarchy was

taken in order to create the roles shown in figure 7. The

parentheses indicate the goals associated to each role.

Fig. 7

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 5

Figure 8 shows the role model of the proposed SMA. In

this way, we assure that each of the proposals of the goal

hierarchy diagram are designated to a goal [1]. Roles

may have one or more concurrent tasks associated to

them. The lines between the tasks denote the

communication protocols that occur between these. The

arrows indicate which task is the one that begins the

action and which one is the responder. The solid arrows

(red) indicate an external communication between the

two tasks from different roles or two tasks from different

instances of the same role. The external protocols

involve messages being sent between roles and will

become messages in a conversation between the types of

agents that do certain actions. The dotted arrows (blue)

denote communication between two tasks that belong to

the same instance of the role.

Fig. 8

The model is made of five roles, with their respective

tasks. The single device failure TOLERATOR TDFU is

responsible of tolerating failures in single devices (DU)

(a camera) of the SCDRM, for this it is necessary to

carry out certain tasks in order to accomplish the goal

defined objectives that integrate it. The role TSA and

TSP are responsible of reconfiguring the devices when a

failure in the DU occurs, besides, the TSA role registers

the node agents. The TFT roles (task level failure

TOLERATOR) and Tolerador_Dev (Device level failure

TOLERATOR) have the function to reconfigure the task

and the device respectively according to the actions sent

by the TSA and TSP roles. The interaction between the

different tasks that constitute the roles model is given by

the protocols shown in figure 8.

3.5 The concurrent tasks in the proposed model
After the roles have been created, the tasks can be

associated with each role. Each goal associated with a

role may have a task that details how the goal must be

accomplished [1]. By using concurrent tasks models,

you help define the inner behavior of the agents and

define the interactions with other agents related to these

inner processes.

Figure 9 shows the task Reconfigurar_Disp of the TSA

role, the tasks allows the active system active (ASA)

take the pertinent actions to reconfigure the device

(unique or multiple sensor or actuator) when it fails in a

node. The first thing it tries to do is to active the device

in its replica and to check the functionality of the double

connection.

Fig. 9

3.6 Creating agent types in SMA TF SCDRM
In the design phase, the first step is to create the types of

agents that will integrate the multiagent system, from the

roles. The product of this phase is an Agent Types

diagram, which shows the types and conversations

between them [1]. This diagram is the first design of the

MaSE agent that shows the complete multiagent system.

Each role must be executed by a type, but it is possible

that a role is carried out by two types of agents or one

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 6

type can represent various roles and change

dynamically.

Fig. 10

Figure 10 shows the agent types diagram:

1. The node type: Tolerates the failures in the

single and multiple devices, this type of agent

carries out three roles (TFDM, TFDU and

Tolerator_Dev).

2. The system type: Reconfigures the active

TOLERATOR, passive tolerator and

reconfigures the SCDRM when a failure occurs

in a device or node that integrates the robot’s

control system. This type contains three roles

(TSA, TSP and Reconfigure_Syst).

3. The task type: Tolerates the failures in existent

tasks in the SCDRM, contains the TFT role

(Task failure TOLERATOR).

The fact that an agent type contains more than one role

does not mean that it will carry them out at the same

time. The role that a type carries out can be changed in

execution time according to the actions in the system. To

our model, for example, the node type agent begins with

the role Tolerator_Dev, because the first task it must

carry out is to register with the active system tolerator

(TSA), and then it will carry out the single device failure

tolerator (TFDU) this type (that will become an agent) is

in charge of a single device. The TSA and TSP roles

cannot be carried out at the same time by the type,

according to the initial requisites of the system.

3.7 Building conversations SMA TF SCDRM
The agents that integrate this SMA are able to

communicate thru structured messages. The structured

sequence of messages is called Agent Conversation [1].

A conversation consists of two conversation diagrams,

one for the type that initiates the conversation and one

for the one who responds to the conversation. Figures 11

and 12 show the communication diagrams for the

ConRegister_Dev Conversation (Conversation Register

Device). The node type initiates the conversation

sending the registered message (parent.TFNTS,

parent.Type) to the system type, this one receives it,

registers the node agent, refreshes itself and refreshes the

rest of the agent systems replicated in each node of the

SCDRM, at the end it sends the identifier to the node

agent thru the registered message (regID), the node

agent receives it and refreshes itself.

Fig. 11

Fig. 12

The infinite cycles, deadlock and other errors in the

communication can cause trouble in the MAS, even

worse, the system can keep on working while there is a

catastrophic problem and that was not perceived by the

conversation designer. Because of this, it is necessary to

explore the trajectories so that the conversation can be

valid [3], it is required to be formally verified. Once the

conversations have been verified, one can be sure that

the agents will communicate as expected. The

AgentTool tool provides a module that assures the

validity and interoperability of the conversations, this

module accomplishes as well that the communication

protocol politic can be satisfied [4].

3.8 Transformation from analysis phase to
design phase
The transformation process that MaSE provides is

correct and robust for the generation of models of the

design without the loss of information from the analysis

phase. The formal transformation systems reduce

mistakes that happen during the design, in figure 13 you

can see the transformation of the analysis phase from the

error model and the tasks to the design phase in the type

Agent model, inner components and conversations.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 7

Fig. 13

In MaSE it is assured that the only way of modeling

the agent’s structure organization, by the means of

components[5] and conversations in the design

phase, is by capturing all the data present in the

analysis models and they preserve the basic idea of

a conversation. Figure 14 shows the architecture of the
Node and System types, in figures 15 and 16 it is shown

the architecture of the tasks type. This architecture is

obtained from Roles Model (figure 8)

Fig. 14

Fig.15

Fig.16

The second stage is focused in the components and the

state diagram shows where it starts and where it ends,

this phase also equals the external events in the different

components that become the initial messages of a

conversation. The state diagram for the Reconfig_Dev

component is shown in figure 17. Letter S represents

where the conversation [6]begins and letter L at the end

of a transition represents the end of conversation.

Fig. 17

The state diagram of the Locate_DU component is

shown in figure 18.

Fig. 18

There is a new null state added during the transformation

stage. This state is the result of dividing the transition in

the inner (isolate and recover) and external (send

(refresh (Edo_Nodo, Edo_Disp), TSA)), that allowed a

clear limiting of where the conversation start and end. At

the end of the three stages of the transformation process,

the inner components of the agent’s architecture are

shown in figures 19, 20 and 21 of the node, system and

task agents. The superior part of each of the inner

component represents the name of the component, the

second division contains the attributes contained in the

component’s state diagram and the third division

represents the functions that are found in the component.
The transformation process creates a process for each

conversation related to each component; this is because

each conversation, just like the tasks, is executed in a

control string. The methods and attributes can be

eliminated, modified and even added.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 8

Fig. 19

Fig. 20

Fig. 21

3.9 The unfold diagram
The final stage of the MaSE takes the types of agents

and directs them as true agents. It uses the unfold

diagram to show the numbers, types and locations of the

agents inside the system. This is the simplest stage

because most of the work has been done in the previous

stages.

A system must be analyzed in an unfold diagram before

it can be coded. This is because of the differences

between the agents and the agent types. An agent

requires the information like a hostname and an address

to participate in any communication out of the system in

which it resides.

An unfold diagram also offers the designer other

opportunities to adjust the system. The agents can be

sorted by different machines configurations, to use in a

better way the processing power or bandwidth.

Figure 22 shows an example of an unfold diagram for

the SMA TF SCDRM (it can have multiple

configurations), in it, it is shown three nodes; in node 1

it contains the node agent for single device (ANDU1)

and the task agent 1 (AT1) that must work with a single

device, besides it contains the node agent for multiple

device 1 (ANDM1), the task agent 2 (AT2) that works

with a multiple device and lastly contains the passive

system agent 1 (ASP1) in charge of that node; node 2

contains ANDU2, AT3, ANDM2, AT4 and the active

system agent (ASA); node 3 contains inactive ANDU1,

in charge of the single device (copy of node 1 content)

and the corresponding AT1 copies from node 1’s AT1.

Evenly, the ANDM2 and AT4 are found replicated,

corresponding to ANDM2 and AT4 from node 2; lastly,

it contains the ASP2 in charge of that node. The figure

shows the required conversation in case the single

device from node 1 fails (monitored by ANDU1). In this

diagram, all conversation of the agent type diagram must

be included. For effects of visibility, only a few

conversations are shown. The 3D boxes are agents and

the lines connecting them represent conversation

between agents. Any conversation between agent types

appears between those types’ agents. Besides, a dotted

box indicates that the agents are contained in the same

physical platform. In some cases, the system

requirements can specify a certain number of

components or machines in which they reside.

Otherwise, the designer must consider the messages

traffic when putting agents in particular machines.

Obviously, the communication speed between agents

will depend on the net they’re communicating thru. In

some cases, the agents can be put in the same machine.

When putting many agents in one equipment the

advantages of the distribution obtained when using the

agent diagram are destroyed. Another consideration is

the processing power of one particular equipment and

the required by a specific agent. If an agent has a high

CPU requirement, it can be put in a machine only for

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

 9

himself. One of MaSE strength is that these

modifications can be done after having designed and

generate a variety of system configurations, altogether

with the reunion of the data from the operation. One

final consideration is the automatic code generation.

This methodology and AgentTool are basically used in

agent system engineering. All the steps work towards

that goal.

Fig. 22

4 Conclusion
In this paper a tolerant to failure distributed and

hierarchy intelligent agents of a multiagent system in the

control system of a mobile robot is modeled, trying to

give to the robot a better guarantee of functionality, the

system was modeled with the formal development

methodology MaSE.

Failure to tolerance it’s obtained thanks to the associate

part of an agent with each node or a task that integrates

the system mobile robot, when the agent is designed be a

node or a task, it makes independent from the rest

components of the system, besides the system agent is in

charge of supply the failure tolerance in a level system,

making with this a bigger trustworthiness.

The diagrams that represent the tasks and the diagrams

that represent the communication have been validated

thru the validation programs that are in the AgentTool

with out having too much trouble.

What is concern to the physics architecture of the robot

system control, the correct functionality have been

validated modeling the multiagent system thru the

behavior at the time of modeling and formal validated.

The principal characteristics of this tolerant to failure

model over a distributed control architecture whether if

is reactive, deliberative or hybrid, this can be resume in:

simplicity, scalability, transparency, sistemitdad of the

system and binnacle is achieve of the different type of

failure that where presented during the operability of the

system, witch one where capable of restoring and still

they continue.

 Besides, obtained a fundamental characteristics that is

the increase of trustworthiness of the system.

References:

[1] Scott A. DeLoach, Analysis and Design using MaSE

 and agentTool, 12th Midwest Artificial Intelligence

 and Cognitive Science Conference (MAICS 2001)

 Miami University, Oxford, Ohio, March 31-April 1,

 2001

[2] Mark F. Wood, Captain, USAF, Multiagent Systems

 Engineering: A Methodology for Analysis and

 Design of Multiagent Systems Thesis Degree of

 Master of Science in Computer Science, School of

 Engineering and Management Air Force Institute of

 Technology Air University, AFIT/GCS/ENG/00M-

 26, March 2000.

[3] Clint H. Sparkman, 1st Lieutenant, USAF,
 Transforming analysis models into design models for
 the multiagent systems engineering (MaSE)

 methodology Thesis Degree of Master of Science in

 Computer Science, School of Engineering and

 Management Air Force Institute of Technology Air

 University, AFIT/GCS/ENG/01M-12,March 2001.

[4] Timothy H. Lacey, Captain, USAF, A formal
 methodology and technique for verifying

 communication protocols in a multiagente

 environment, Thesis Degree of Master of Science in

 Computer Science, School of Engineering and

 Management Air Force Institute of Technology Air

 University, AFIT/GCS/ENG/00M-12.
[5] David J. Robinson, 1st Lieutenant, USAF, A

 component based approach to agent specification

 Thesis Degree of Master of Science in Computer

 Science, School of Engineering and Management Air

 Force Institute of Technology Air University,

 AFIT/GCS/ENG/00M-22, March 2000.

[6] Scott A. DeLoach & Mark Wood. Developing

 Multiagent Systems with agentTool, Intelligent

 Agents VII-Proceedings of the 7th International

 Workshop on Agent Theories, Architectures, and

 Languages (ATAL'2000). Springer Lecture Notes in

 AI, Springer Verlag, Berlin, 2001.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp736-744)

