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Abstrac:- The paper explores an alternative algorithm for line distance protection based on the combined use 
of Kalman filter and recursive minimum mean-square estimation. The main advantages of the proposed 
method consist of great robustness and ultra-high-speed in the fault localization in both 50 Hz and 60 Hz 
systems. The involved parameters, i.e. the resistance and inductance of the portion of the power line between 
the relay and fault location, is calculated by processing the acquired sampled signals received at the 
terminations of the relay as given from the voltage and current measurement transformers. A description on 
how to use the proposed techniques to estimate the fault parameters is properly described.  
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1 Introduction 
 
On the basis of well known consolidated approaches 
[1], [2], [3], [4], [5], [7], a new procedure to evaluate 
distance protection in sub-transmission lines is 
investigated. In this context, the identification theory 
was usefully applied to estimate the line parameters 
of a power line during a fault condition. As a matter 
of fact, these procedures can supply quantitative 
information from measured data coming directly 
from the observed dynamic system. In general, 
acquired data can be used to either improve the 
knowledge of the mathematical model or reconstruct 
signals not directly measurable but useful to describe 
the system dynamics. The main two problems that 
can be solved with the identification theory are 
parameter identification and state estimation, both 
performed by processing experimental data coming 
from the monitored system. The parameter 
identification can be either deterministic or 
stochastic. The former is used when the 
measurement errors can be neglected, which means 
the experiments can be considered ideal. The latter is 
adopted when the acquired information is very noisy. 
Depending on the type of identification (deterministc 

or stochastic), the approaches towards state 
reconstruction are called state observation and 
filtering theory, respectively.  
 
 
2  System modeling 
 
A power line model usually used in distance relaying 
is shown in Fig. 1, [3], [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Simplified model used to schematize a power line. 
 
 
With reference to Fig. 1, the phenomenon under 
study is described by the following first-order 
differential equation: 
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while the input and state of the system can be 
respectively defined as: 
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The dynamic of the system is described by the 
following equation:  
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By assuming as the system z output the current i(t), 
which is sampled at ∆ time-intervals and affected by 
the kw measurement noise, the following relations 
can be written:  
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Once all the involved quantities are discretized, the 
solution of the system (3) can be obtained by 
applying the recursive minimum mean-square 
method. The discretization procedure can be 
performed as explained in the following. The ν(t) 
input signal, which is the system forcing function, is 
sampled at equal ∆ time-intervals:  
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As shown in Fig. 2, the ν(t) input signal is linearized 
between two consecutive time instants. 

Fig. 2. Feature of the ν(t) input signal. 
 

The ν(t)  input  can be also written as:  
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The general solution of the equation (2), which 
describes the dynamics of the system, is:   
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By imposing ∆= kt0 , ∆+= )1(kt , the following 
relation can be obtained: 
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Relation (5) can be rewritten in simpler form as:  
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where it is assumed ϑ=τ-k∆. 
 
By solving the integral equation (6) and writing the 

)( ∆kx state at the ∆k instant simply as )(kx , the 
following time discrete system can be obtained: 
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where kε  takes the signal noise into account. The 
coefficients α, β, and γ are better defined in Section 
4. 
 
 
3. Recursive Minimum Mean-Square 
Estimation applied through the 
Kalman filter 
 
Let’s suppose a ϑ vector (deterministic and 
unknown) must be assessed starting from m 
independent measurements. Each iy  measurement is 

ν(t) 

t ∆K ∆(K+1

ν(∆K ν ((∆(K+1)) 
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supposedly affected by an added in  noise, 
representable with a Gaussian distribution with zero 
mean and known 2

niσ variance [11]: 
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If the iy measurements and in noises are reported in 
two different vectors, respectively named Y and N , 
equation (8) can be written in a matrix form as 
follows:  
 

NAY +⋅= ϑ                   where: 
 
• A  is the coefficient matrix. 
 

• N  is a random Gussian vector with zero mean 
and 2

Nσ variance.  
 
• ϑ  is a deterministic and unknown vector. 

 

• Y  is a random Gussian vector with zero mean 
and ϑ⋅= AmY  variance. 

 
With regards to the above described notations (in 
particular to relation 7), the observed X random 
variable can be written as follows: 
 

NAX +⋅= ϑ    where: 
 

• [ ])1()()( += kukukxA  is the 
coefficient matrix, with )(kx , )(ku  and 

)1( +ku  known quantities at the k  instant.  
 
• N  is a random Gussian vector with zero 

mean. 
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The problem to be solved involves an assessment of 
the maximum verisimilitude for ϑ parameters 
starting from the x measured values.  

If the known quantities of the X vector are acquired 
at different, subsequent instants of time, the 
following dynamic formulation can be given: 
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The algorithm of the recursive minimum mean-
square estimation allows a computation of the 
optimum assessment of )1(ˆ +kϑ using the knowledge 
of the )(ˆ kϑ assessment of the previous time instant. 
In order to use the Kalman filter formulation [6], [8], 
the problem must be rewritten in a dynamic form. 
Since the ϑ vector parameters are constant, the state 
equation can be simply written as:  
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As concerns the dynamic problem (9), it can be 
useful to neglect the farther and emphasize the more 
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recent observations. This aim can be reached by 
introducing the following  f  forgetting factor: 
 

λ
1

=f      where  )1,0(∈λ . 

 
This parameter is responsible for the algorithm 
rapidity in forgetting past observations. More 
specifically, the closerλ  is to 1, the smaller the 
difference is between the weight of old and newly 
received data. 
 
The algorithm of the recursive minimum mean-
square estimation is the following:  
 
 
 

1. Initial conditions: 
 

• 0)0( SS =  

• 0
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2. Computation of the )1( +kK  gain matrix: 
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3. Computation of the )1(ˆ +kϑ  assessment: 
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4. Computation of the )1( +kS  matrix: 
 

                    fkSkakKIkS ⋅⋅⋅+−=+ )())()1(()1(  

 Increase of the k step: 
 

                   1+= kk  
 

5. GO TO 2. 
 
As in all recursive algorithms, also in this case the 
initialisation problem must be solved. Because the ϑ 
vector is not a random variable, there no expectation 
value and covariance exist to start the algorithm.  
In these conditions, an initial ϑ , usually available 
from prior information, is established. As a 
consequence, )0(S  is not a covariance matrix, even if 
in the algorithm the )(kS  quantity plays a role 
similar to a covariance matrix of the estimation error 
in the Kalman filter. This observation suggests to 

choose a )0(S  sufficiently great to model the 
uncertainty of the estimated starting value of ϑ .  
 
 
4   The fault parameters 
 
In order to perform a computation of the line 
parameters during a fault condition, i. e. the value of 
the resistance and inductance “seen” by a distance 
relay, it is necessary to know the coefficients α , β  
and γ  that are reported in the dynamic equation of 
the system (7): 
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By substituting relations (4) in equation (10) and 
after simple mathematical steps the following 
relations can be obtained: 
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Equations (11) represent a non linear system of three 
equations and two unknowns, R and L. The same 
equations (11) can be rewritten in the following 
form: 
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( ) ( ) 01122 =⋅∆−−⋅−+∆+⋅ LRR ααβ       (12b) 
 

( ) 012 =⋅∆⋅−+⋅∆−⋅ LRR αγ              (12c) 
 
After the summation of the equations (12b) and 
(12c), the following relation can be obtained: 
 

( ) ( )[ ] 01 =−−+⋅⋅ αγβRR    (13) 
 
One solution of the (13) equation is 0=R . In this 
case equation (13) can be rewritten, without losing 
generality, as: 
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Relations (14) and (12a) represent a linear system of 
two equations that can be solved to compute the R 
and L unknowns: 
 

⎩
⎨
⎧

−=+⋅
=∆⋅+⋅
αγβ

α
1)(

0ln
R

RL
       (15) 

 
System (15) can be written in a matrix form as: 
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and finally, in a more significant form, as : 
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5  Further considerations about the 
adopted line model 
 
For a complete analysis of the problem, it is useful to 
highlight some further considerations about the 
limits of the series R-L model adopted to represent a 
single power line. As already said in Section 1, this 
is a simplified model used to investigate the system 
during a fault condition. To better symbolize the 
fault circuit, the model shown in Fig. 3 can be used; 
where C(x) is the shunt capacitance of the line. 
Actually, the model shown in Fig. 4 involves the 
estimation of four fault parameters, which are: R, L, 
RC and LC. Of course, the consequence is a more 

complicate algorithm to be implemented to solve the 
problem.  
In real cases, this approach appears not justified 
because also the R-L-C model involves a simplified 
representation and its use do not reduce significantly 
the error made on the estimation of the line 
parameters [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Single-phase line model with the shunt 
capacitance. 
 
 
6  Conclusions 
  
The proposed algorithm represents a valid alternative 
to other algorithms now used in line distance digital 
protection. As a matter of fact, the algorithm is 
characterized by a very small response time, high 
robustness, and good precision on the fault parameter 
estimation, which are fundamental requirements for 
efficient distance protection. The presence of non 
linear loads does not significantly affect the 
algorithm behavior. 
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