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Abstract: - In the context of spectrum surveillance, a new method to recover the code of spread spectrum 
signal is presented, while the receiver has no knowledge of the transmitter’s spreading sequence. As previous 
work, a conventional Genetic algorithm (GA) was used to recover spreading code. Although genetic 
algorithms (GAs) are well known for their robustness in solving complex optimization problems, but 
nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence 
speed. To solve this problem we introduce Time Variant Genetic Algorithm (TV-GA) into code estimation in 
spread spectrum communication system. In searching process for code estimation, the TV-GA algorithm has 
the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good 
robustness to noise. In this paper we describe how to implement TV-GA as a component of a searching 
algorithm in code estimation. TV-GA boasts a number of advantages due to the use of mobile agents. Some of 
them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These 
properties make TV-GA very attractive for spread spectrum code estimation. They also make TV-GA suitable 
for a variety of other kinds of channels. Our results compare between Time Variant Genetic algorithm (TV-
GA) and conventional Genetic algorithms (GA), and also show time variant Genetic algorithm performance in 
code estimation process. 
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1   Introduction 
Although spread spectrum communications were 
initially developed for military applications, they are 
now widely used for commercial ones, especially for 
code division multiple access (CDMA), or global 
positioning systems (GPS) [1]. They are mainly 
used to transmit at low power without being 
interfered by jamming, to other users or to multi 
path propagation. The spread spectrum techniques 
are useful for secure transmitter, because the 
receiver has to know the sequence used by the 
transmitter to recover the transmitter data [2]–[3].  
Our purpose is to determine the spreading sequence 
automatically, whenever the receiver has no 
knowledge of the transmitter’s code. As previous 
work [4], we used conventional Genetic Algorithm 
(GA), to recover spreading code. GAs have been 
used to learn complex behaviors characterized by 
sets of sequential decision rules and we used them 
for their robustness in solving complex optimization 
problem,  nonetheless, by increasing the length of 
the code, we will often lead to an unacceptable slow 
convergence speed. Hence, we have introduced a 
new method, which is Time Variant Genetic 
Algorithm (TV-GA), into code estimation in spread 
spectrum communication system. In searching 

process for code estimation, the TV-GA algorithm 
has the merits of rapid convergence to the global 
optimum results, and good robustness to noise. In 
this paper, we describe how to implement TV-GA as 
a component of a searching algorithm in code 
estimation. TV-GA boasts a number of advantages 
due to the use of mobile agents. Some of them are: 
Scalability, Fault tolerance, Adaptation, Speed, 
Modularity, Autonomy, and parallelism. These 
properties make TV-GA very attractive for spread 
spectrum code estimation. They also make TV-GA 
suitable for a variety of other kinds of channels. 
The code estimation performance of the proposed 
algorithm is examined by computer simulations. The 
performance measure of interest in this paper is the 
mean-squared error (MSE) for the code estimation. 
The paper is organized as follows. Section two 
describes the technique of direct sequence spread 
spectrum (DS-SS) and explains the difficulty to 
recover the data in an unfriendly context. Section 
three describes the system model used in this paper. 
Sections four and five describe the TV-GA used to 
implement our proposed code estimator. Our 
simulation results are presented in section six. 
Section seven concludes the paper. 
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2   DS-SS Technique 
In order to spread the signal power over a broadband 
channel, the direct sequence spread spectrum (DS-
SS) technique consists in multiplying the 
information signal with a periodic pseudo-noise 
sequence. 
Let us consider )(tb  the information signal 

)()( b
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+∞
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                                       (1) 

Where 1±=nb  with equal probability and )(tp  is a 
rectangular pulse of duration bT . 
Let us note y , the PN sequence of length k , 

110 ,,, −= kyyyy Λ                                                 (2) 
The transmitter signal nŷ  is the product of both 
waveforms. If we consider a direct sequence spread 
spectrum system without noise, 

yby nn =ˆ                                                                 (3) 
We assume the receiver knows this sequence and 
can dispread the signal using a correlator 

kbyybyybyy nnnn === ,,,ˆ                       (4) 
According to the properties of PN sequences [5], the 
data information is then recovered. 
However it becomes more challenging when the 
receiver doesn’t know exactly the code used by the 
transmitter. 
Let us note y~  a sequence similar to y , but not 
exactly the same. Then using a correlator with y~ , 
we get 

yybyybyy nnn
~,~,~,ˆ ==                                 (5) 

According to the properties of PN sequence,  yy ~,  
is low [5] and then we can not recover the data 
information. 
 
 
3   System Description 
Typically direct sequence spread spectrum systems 
use binary or quadrature phase shift keying (BPSK 
or QPSK) data modulation. Usually the PN 
sequence is a binary maximal length sequence or a 
Gold sequence [3].  
Although in this method, we can estimate different 
PN sequences, but here we consider a BPSK data 
modulation, spread by a Gold sequence. The 
baseband noise is assumed to be additive, white, 
Gaussian, and centered. 
An interesting method to estimate spreading code is 
illustrated in [6]. It takes profit of blind 
identification techniques available for multiple FIR 
channels. Also In [4], a conventional Genetic 

algorithm (GA) was used to estimate PN sequence. 
In this method which is based on Time Variant 
Genetic algorithm (TV-GA), we improve the speed 
of convergence to the global optimum. 
 
 
4   Time Variant GA overview 
Time variant Genetic algorithm has its roots in two 
main component methodologies. Perhaps more 
obvious are its ties to artificial life (A-life) in 
general, and to bird flocking, fish schooling, and 
swarming theory in particular. It is also related, 
however, to evolutionary computation, and has ties 
to both genetic algorithms and evolution strategies 
[7]. Time variant Genetic algorithm comprises a 
very simple concept, and paradigms are 
implemented in a few lines of computer code. It 
requires only primitive mathematical operators, and 
is computationally inexpensive in terms of both 
memory requirements and speed [8]. 
Time variant Genetic algorithm comprise can be 
used to solve many of the same kind of problems as 
genetic algorithms (GAs) [8]. This optimization 
technique does not suffer, however, from some of 
GA’s difficulties; interaction in the group enhances 
rather than detracts from progress toward the 
solution. Further, a time variant GA system has a 
memory, which the genetic algorithm does not have. 
Change in genetic populations results in destruction 
of previous knowledge of the problem, except when 
elitism is employed, in which case usually one or a 
small number of individuals retain their “identities”. 
In TV-GA, individuals who fly past optima are 
tugged to return toward them; knowledge of good 
solutions is retained by all particles [9]. 
Time variant GA is also similar to Swarm 
intelligence which appears in biological swarms of 
certain insect species. It gives rise to complex and 
often intelligent behavior through complex 
interaction of thousands of autonomous swarm 
members [10]. The main principle behind these 
interactions is called stigmergy, or communication 
through the environment. An example is pheromone 
laying on trails followed by ants. Pheromone is a 
potent form of hormone that can be sensed by ants 
as they travel along trails. It attracts ants and 
therefore ants tend to follow trials that have high 
pheromone concentrations. This causes an 
autocatalytic reaction, i.e., one that is accelerated by 
itself. Ants attracted by the pheromone will lay more 
of the same on the same trail, causing even more 
ants to be attracted [10]. 
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Time variant Genetic algorithm boasts a number of 
advantages due to the use of mobile agents and 
stigmergy. These are: 
1. Scalability: Population of the agents can be 

adapted according to spreading code size. 
2. Fault tolerance: TV-GA processes do not rely on 

a centralized control mechanism. Therefore the 
loss of a few bits or frames does not result in 
catastrophic failure, but rather leads to graceful, 
scalable degradation. 

3. Adaptation: Agents can change, die or reproduce, 
according to the length of the code changes. But 
here, we supposed the length of the code is 
constant. 

4. Speed: Changes in the systems can be modified 
very fast. 

5. Modularity: Agents act independently of other 
codes of users. It can be used for multiuser 
systems. 

6. Autonomy: Little or no human supervision is 
required. 

7. Parallelism: Agent operations are inherently 
parallel. 

These properties make time variant Genetic 
algorithm very attractive for spread spectrum code 
estimation. 
 
 
5   TV-GA Technique In The Code 
Estimation 
The TV-GA algorithm has proved to be very 
effective in solving global optimization for 
multidimensional problems in static, noisy, and 
continuously changing environments [11]. We 
introduced for the first time the GA technique into 
spread spectrum code estimation in our previous 
work [4], and now, we use time variant GA 
technique, which has some properties does not exist 
in conventional GA technique. 
In reality, TV-GA and GA techniques are too similar 
and by making some changes to conventional GA’s 
algorithm, you have your time variant Genetic 
algorithm. At the beginning, the time variant 
Genetic algorithm randomly initializes a population 
of individuals (called chromosomes). Each particle 
represents a single intersection of spreading code. 
The particles evaluate their position relative to a 
goal at every iteration. In each iteration, every 
particle of the code sequence adjusts its trajectory 
toward its own previous best position, and toward 
the previous best position attained by any member 
of its topological neighborhood. If any particle’s 
position is close enough to the goal function, it is 
considered as having found the global optimum and 

the recurrence is ended. Generally, there are two 
kinds of topological neighborhood structure, 
corresponding to the global version of time variant 
GA (GTV-GA), and local neighborhood structure, 
corresponding to the local version of time variant 
GA (LTV-GA). For the global neighborhood 
structure, the whole population is considered as the 
neighborhood, while for the local neighborhood 
structure, some smaller number of adjacent members 
in subpopulation is taken as the neighborhood [12]. 

 
Figure 1. Flowchart depicting the structure of the proposed time variant 
Genetic algorithm (TV-GA) used to code estimation. 
The detail of process for implementing the GTV-GA 
can be found in [12]. In the global neighborhood 
structure, each particle’s search is influenced by the 
best position found by any member of the entire 
population. 
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In contrast, each particle in the local neighborhood 
structure is influenced only by parts of the adjacent 
members. Therefore, the LTV-GA has fewer 
opportunities to be trapped in suboptimum than the 
GTV-GA. 
Generally, the larger the number of particles adopted 
in TV-GA, the fewer the opportunities to be trapped 
in suboptimum, but the greater the time spent 
searching for the global optimum. In our 
experiment, 40 particles are used in LTV-GA, which 
is a balance between the accuracy required in 
searching for the global optimum and time 
consumed. This procedure, whose flowchart is 
shown in Fig. 1, is iterated a predefined number of 
consecutive particles. 
 
 
5.1 Initialization 
Initialization of the TV-GA is performed at the so-
called ( 1y = )st generation for the first signaling 
interval, as seen in Fig. 1, by creating p  number of 
candidate solutions, or particles in TV-GA parlance. 
For the others iteration, we just use the population of 
previous iteration. The set of p  particles is known 
as a generation, and p  is known as the population 
size. These particles represent the unknown 
variables of interest, which in this case are the 
estimated PN sequence. Hence, each particle will 
contain k  elements corresponding to the length of 
the PN sequence. 
 
 
5.2 Evaluation 
Associated with the p th combination particle is a 
so-called figure of merit — more commonly known 
in TV-GA as the fitness value — which has to be 
evaluated, as seen in Fig. 1. The fitness value, 
denote by [ ]kn yyf ~,ˆ  for Kk ,,1Λ=  is computed by 
substituting the elements of both the transmitted 
string and the k th candidate solution into the 
objective function or crosscorrelation of (5). 
 
 
 

5.3 Selection 
The exploitative property of TV-GA (and also 
conventional GA) is derived from two operators 
referred to as selection and crossover [9]. The 
crossover operation will be explained in the next 
subsection. Let us refer to the elements that 
constitute the optimal solution as good particles. 
Any other elements are referred to as bad particles. 
For example, if the optimal solution constitutes a 
particle containing all 1+  elements, then any 1+  in 
a particle will be a good element while any 1−  in 
the particle will be a bad element.  
Intuitively, particles having a high fitness value in 
the sense of (5) will contain more good elements and 
hence should be exploited further. At the same time, 
particles having a low fitness value should be 
discarded. As shown in Fig. 1, following the 
evaluation, our population of particles is sorted 
according to their fitness value. Then, the particles 
which are located at the top level of sorted 
population will be memorized and used for 
subsequent exploitation and exploration of the 
solution space. 
 
 
5.4 Crossover and Mutation 
Crossover and mutation are two different operators which 
produce one or more new particles. Crossover applies to 
one or more parents and exchange particle elements 
(good or bad) with equal probability )( cp  between two 
different particles (offspring), will constitute the new 
population of the next generation. In Fig. 1, the mutation 
operation refers to the alteration of the value of each 
particle in the offspring with a probability denoted by mp . 
In the case of the data string, the mutation process simply 
inverts the bit value of the element concerned from 1+  to 

1−  or vice versa. Then these offspring are later made a 
new generation which can select as parents. 
The TV-GA algorithm is terminated if there is no 
improvement in the maximum fitness value of the 
population, in each iteration. Hence we terminate the 
algorithm of Fig. 1 after kn yy ~,ˆ  is coming upper than a 

threshold )(T . By adjusting the value of T , the bit error 
rate (BER) performance of the time variant GA-based 
code estimator can be controlled. In each iteration, as 

Figure 2. Flowchart depicting the 
structure of the iterations
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showed in Fig. 2, the TV-GA uses the previous best 
particles which were memorized in previous iteration. In 
this algorithm the rate of convergence and adaptation is 
increased. 
 
 
6   Simulation Results 
In this section, our simulation results are presented 
in order to demonstrate the performance of the 
proposed code estimator. A summary of the various 
parameters that are used in our simulations is shown 
in Table 1. The channel noise was assumed to be 
additive, white, Gaussian, centered and real. The 
data rate )( bR  and the number of chips per bit )( p  
were assumed to be known by the receiver. The PN 
sequence was used with a processing gain of 31=p . 

 
In order to give an impression of how the TV-GA 
manages to estimate the transmitted code over the 
course of iterations given a population of randomly 
generated possible solutions at the beginning, the 
best fitness value of particles in our population in 
some iterations is shown in Fig. 3 at db5N/ 0 −=ξ . 
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Fig. 3. Best fitness values of the proposed time variant GA-based 
estimator for three different try, over forty iterations, 100=p , 10=Y , 
and dBSNR 5−= , 2.0=cp , and 1.0=mp . 

As we have mentioned in section five, the time 
variant Genetic algorithm will efficiently identify 
the areas in the solution space, where the optimal 
solution might be located. Fig. 3 shows that the 
entire final searched fitness values in any code 
estimation process exceed 0.94 for LTV-GA used as 

the optimization algorithm. Furthermore, entire the 
fitness values reach 0.9 within about thirty iterations 
for LTV-GA. 

 
Fig. 4. BER performance of the proposed PSO-based 
code estimator in compare with GA-based, over 60 
iterations where, 100=p , 10=Y , 2.0=cp , and 1.0=mp . 

Fig. 4 characterizes the BER performance of 
proposed estimator in compare with a receiver 
which uses conventional genetic algorithm (GA) 
method to estimate the spreading code [4].  It can be 
seen that the bit error rate (BER) performance of 
time variant GA-based code estimator is better than 
conventional GA-based one. It is because in 
conventional GA-based code estimator, we try to 
find the spreading code which has the best fitness 
value, just in first iteration. Hence, it takes a lot of 
time [4]. In contrast, in time variant GA-based code 
estimator, step by step, we find the spreading code 
over the course of iterations. In fact, at each 
iteration, we try to find the code which has the best 
local fitness value. Hence, it is faster compared with 
conventional GA-based algorithm. 
 
 
7   Conclusion 
For the first time, we have introduced the time 
variant Genetic algorithm into spread spectrum code 
estimator, which showed the desirable features of 
rapid convergence to the global optimum without 
being trapped in local suboptimum and robustness to 
noise. Time variant Genetic algorithm is an 
extremely simple algorithm that seems to be 
effective for optimizing a wide range of functions. 
Much further research remains to be conducted on 
this new concept. The goal in developing it has been 
to use this system in fading channels. 
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TABLE 1 
SUMMARY OF VARIOUS PARAMETERS USED IN 

OUR SIMULATIONS  

Symbol Description 

Rb Data rate 
p Population size 
pc Crossover probability 
pm Mutation probability 

Y Number of generation per 
iteration 

k Number of Particles in each 
Population 
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