

Developing and Investigation of a New Technique Combining
Message Authentication and Encryption

Eyas El-Qawasmeh and Saleem Masadeh

Computer Science Dept.
Jordan University for Science and Technology

P.O. Box 3030, Irbid 22110, Jordan

Abstrac:- This paper describes a new method for authenticating and encrypting messages. Our method
employs any encryption algorithm as underlying block cipher. Proposed algorithm uses two key
values, first key for the underlying encryption algorithm, and the second key for the new mode. The
proven security describes the attacker inability to forge the new Encryption-Authentication algorithm,
in terms of his (presumed) inability to break the underlying random S-box, the second key, and the
underlying encryption function.

Keyword. Encryption, authentication, CBC, MAC.

1. Introduction
Encryption is used to insure privacy of data
that is to possess data secret from public
people other than its recipients. On the other
hand, message authentication allows two
participants sharing the key K to authenticate
any transmissions between them. Message
authentication is done by including a short
string called "Message Authentication Code"
(MAC) with every transmitted message.

The most dominant MAC is the "Cipher Block
Chaining Message Authentication Code" (CBC
MAC) which is stated in the International
Standard ISO 9797 [1] and the U.S. Standard
ANSI X9.9 [2]. In latest years, cryptographic
hash has appeared, and became dominant.

The aim of the current work is to introduce a
new technique, which has certain competence
and safety measures advantages. New scheme
is very simple that it is appear to believe one
can with no trouble become aware of how to
attack it. The success probability of the
attacker in the new mode of operation is
separate of the messages lengths. While the
attacks of [3, 4] show that the success
probability of the adversary in the CBC
scheme increases linearly with the message
length.

The organization of this paper will be as
follows: section 2 is the proposed algorithm.
Section 3 is performance analysis, and finally,
section 4 is conclusions.

2. Proposed algorithm
Suppose a message M to be sent from one node
of a network to another node. Proposed mode
uses symmetric key setting, which represents a
mapping from three-tuple input (message, key,
S-box) to a binary decision; message authentic
or not.

Following are some terms and concepts that
are needed in presenting proposed algorithm:

• Message length: message length in
bytes |M| should be greater than key
length |K|.

• Message formatting: we assume the
length of the message M is equal to |M|
bytes at proposed encryption-
authentication algorithm, and it should
be a multiple of 8 bits without padding.
A message is viewed as a sequence of
8-bit elements, M = M[1] M[2]…M
[n].

• Block size: proposed algorithm is
designed to work with variable block
size. It is equal to the key length. For
example, if the key K = 2549, then:

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp62-67)

o Key length = 4 bytes
o Key digits are 2, 5, 4, and 9
o Digit size = 8-bits
o Block size=4Bytes= 8-bit*4=32 bits

In the proposed algorithm, the mode will be
constructed from three components, which are
KS, MAC, and VF. We will denote the MAC
as MAC = (KS, MAC, VF) where:

 Key scheduling (KS). Key scheduling
algorithm schedules key value through
proposed algorithm execution to
generate new key for ciphering each
data block.

 MAC-generation (MAC). MAC-
generation inputs the message M є {0,
1}*, and the key K as inputs to MAC
function {MAC MACK(M)}. MAC
function will return a MAC є {0, 1}*.

 MAC-verification (VF). MAC-
verification inputs the shared key K,
received message M є {0, 1}*, and
shared secret S-box as inputs to MAC-
verification function {D VF (K, M,
MAC, S-box)}. Then, MAC-
verification will return either one for
acceptance, or zero for rejection.

The following section describes the sender role
that will be carried on the sender side using
proposed algorithm.

2.1 Sender procedure: When a sender needs
to transmit his message M to a receiver, he
must have all the requirements that enable him
preparing his message M for sending. These
requirements are:

1. Message M.
2. Shared symmetric key K, which is

secret and stored in a file at each
side.

3. Substitution box (S-box), which is
secret and stored in a file at each
side.

Proposed algorithm constructs S-box as 2-
dimensional array that consists of 255 different
values distributed over 15 columns and 17
rows according to one-byte variations.
Therefore, each cell in the S-box contains a
value between 1 and 255.

After retrieving any value, S-box values are
shifted left one time from index 0 to the index
of retrieved value. Changed S-box will be used
at next encryption operation. Figure 2 shows
an example of proposed S-box. The following
is a description of proposed mode at sender
side.

Following is a description of the proposed
Encryption-Authentication algorithm.

Encryption-Authentication (Input: Original message, S-Box, Key; Output: MAC-File, Encrypted-file)
 Begin

1) Read the secret key K, split it into digits, and stores each digit of it in key-array.
2) Order key-array digits in ascending order, and store them in key-Order array.
3) While (! Message.eof ())

{
For counter = 1 to key-length

 {
a) Read one byte of the message.
b) XOR read byte with the corresponding key digit at the key-array.
c) Store the result of the XOR operation in XOR-array.

} // End of "For counter = 1 to key-length" loop
Order XOR-array based on corresponding key-order array, and store it in ordered-array
// MAC generation
MAC generation:

For each stored value at ordered-array, compute the following:
• Number of its repetitions from the beginning of the message.
• Compute the following:

 P-MAC = Ordered[i] * Ordered [i+1] mod 255 + Number of repetition
• MAC = MAC + P-MAC

After finishing all ordered-array values, message tag will be the value of MAC

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp62-67)

 // Ciphertext generation
Encrypted message generation: use each stored value at ordered-array as an index to
retrieve the value stored in the corresponding S-box index as follow:

For each ordered-array[i] value, where i = 1, 2,…,|M|
- Encrypted-value = S-box [ordered-array [i]]
- Write the value of "Encrypted-value" on Encrypted file.
- Rotate stored S-box table values from index 0 to the index of the current

ordered-array[i] value.
Start key scheduling

For I = 1 to key-length -1
 {Key-array [i] = (Key-array [i] XOR Key-array [i+1]) + S-box [Key-array[i]]}

Key-array [|K|] = Key-array [0] XOR Key-array [|K|] + S-box [Key-array[i]]
 } // End “while (Message.eof)” loop

4) Key replacement: use the last scheduled key digits as indices to S-box table to replace the current
key-array values as follow.

For d = 1 to key-length
 Key-array[d] = S-box [Key-array[d]]

New key digits will be used for encrypting and authenticating next message using the
proposed algorithm.

5) Send original message with the corresponding MAC value to the receiver.
 END // End of encryption-authentication process

Example: Suppose the sender wants to send a message M = "Standard" to the receiver. The sender
will use a randomly key K ="14Sd7rgw” and random S-box that will be shown at figure 2:

234 106 200 162 93 138 148 13 203 134 105 232 130 116 19
12 75 221 141 118 253 230 157 136 182 77 37 108 96 20
29 227 85 60 109 35 226 1 220 8 212 165 196 100 186
68 242 66 64 150 187 176 252 72 45 222 71 195 26 49
61 51 97 70 159 191 207 167 44 89 217 205 171 122 248
17 90 33 14 181 56 114 209 149 161 121 194 190 42 192
155 202 163 128 154 241 126 4 119 244 110 58 83 125 185
30 137 144 102 78 231 46 139 63 143 184 22 215 81 91
69 55 80 5 67 9 214 129 18 120 246 151 198 208 21
32 73 3 183 39 140 28 50 92 31 112 76 174 10 101
201 180 247 235 107 147 74 41 224 206 82 245 98 34 158
104 15 175 86 251 36 43 233 249 164 24 123 146 11 79
179 103 38 23 170 7 25 124 160 216 142 193 238 189 255
153 62 223 88 135 53 95 254 199 219 48 239 59 173 236
228 52 168 40 87 204 240 117 243 6 229 57 132 84 169
210 127 250 113 218 2 211 115 145 94 225 111 188 197 47
131 27 237 16 54 178 99 166 172 177 156 213 152 65 133

Figure 1: Random generated S-box

The following explanation shows how the sender will encrypt and authenticate the message M.

Message M = "Standard" The key K = "14Sd7rgw"
First message block: "Standard" Key elements: 1 4 S d 7 r g w
First block in ASCII representation:
83 116 97 110 100 97 114 100

Key elements in ASCII representation:
49 52 83 100 55 114 103 119

XOR-ing plaintext bytes with the corresponding key elements:
83 XOR 49 = 98 116 XOR 52 = 64 97 XOR 83 = 50 110 XOR 100 = 10
100 XOR 55 = 83 97 XOR 114 = 19 114 XOR 103 = 21 100 XOR 119 = 19
XOR-array contents: 98 64 50 10 83 19 21 19 Key-Order: 49 52 55 83 100 103 114 119
Ordered array: 98 64 83 50 10 21 19 19
Generated ciphertext bytes:
Encrypted = S-box[98] = 119 Encrypted = S-box[64] = 191 Encrypted = S-box[83] = 161
Encrypted = S-box[50] = 72 Encrypted = S-box[10] = 19 Encrypted = S-box[21] = 77
Encrypted = S-box[19] = 182 Encrypted = S-box[19] = 148
MAC computation:
Compute = 98 * 64 mod 255 + 1 = 153 MAC = 0 + 153 = 153
Compute = 64 * 83 mod 255 + 1 = 213 MAC = 153 + 213= 366

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp62-67)

Compute = 83 * 50 mod 255 + 1 = 71 MAC = 366 + 71 = 437
Compute = 50 * 10 mod 255 + 1 = 246 MAC = 437 + 246 = 683
Compute = 10 * 21 mod 255 + 1 =211 MAC = 683 + 211 = 894
Compute = 21 * 19 mod 255 + 1 = 145 MAC = 894 + 145 = 1039
Compute = 19 * 19 mod 255 + 1 = 107 MAC = 1039 + 107 = 1146
Compute = 19 * 98 mod 255 + 2 = 79 MAC = 1146 + 79 = 1225
Thus 1225 will be sent to the receiver as generated MAC value.
Scheduled key:
key[0] = (49 XOR 52 + S-box[49]) mod 255= 77
key[1] = (52 XOR 83 + S-box[52]) mod 255= 70
key[2] = (83 XOR 100 + S-box[83]) mod 255= 0
key[3] = (100 XOR 55 + S-box[100]) mod 255= 193
key[4] = (55 XOR 114 + S-box[55]) mod 255= 95
key[5] = (114 XOR 103 + S-box[114]) mod 255= 164
key[6] = (103 XOR 119 + S-box[103]) mod 255= 141
key[7] = (119 XOR 49 + S-box[119]) mod 255= 161
Key replacement:
Key-array[0]=S-box[77]=181 Key-array[1]= S-box[70] = 171 Key-array[2] = S-box[0]=203
Key-array[3]= S-box[193]=189 Key-array[4]= S-box[95]=126 Key-array[5]=S-box[164] =158

Key-array[6] = S-box[141] =28 Key-array[7]= S-box[161]=245
New key that will be used with next message M is: 181 171 203 189 126 158 28 245

The change that has happened to S-box indices
and to key elements presents a fuzzy situation.
The key elements that were used for encrypting
the first plaintext block are not used for
encrypting the second plaintext block. Key
scheduling removes any pattern in the message
that is to be encrypted.

2.2 Receiver procedure

In case of sending plaintext message,
the procedure followed by the sender will be
followed by receiver with comparing received
and computed MAC value. Depending on
application, receiver may have to decrypt the
received message. Therefore, the receiver
procedure will be as follow:

Verify (Input: Message, MAC; Output:
“Verifiable” or “Not Verifiable”)

Begin
For I = 0 to |M|

1. Search S-box values that are found
at the receiver side to get the index
of 8-bit of the received ciphertext
block.

2. Rotate S-box values from index 0
to the retrieved index.

3. Reorder retrieved indices
corresponding to the key digits
order.

4. XOR each key digit with the
corresponding retrieved index
value message.

Next I
End

3. Performance analysis
A comparison between CBC-MAC (with DES
and Triple DES (TDES) as underlying
encryption algorithms) and the proposed
algorithm that focuses on MAC value
generation will be presented. The points that
we will investigate are:

3.1 MAC generation, (before or after
encryption)
There were deep deliberations whether it is
better to MAC the plaintext or the ciphertext.
Krawczyk and Bellare Namprempre suggested
applying encryption, followed by
authenticating the ciphertext, which is called
“Encrypt Then Authenticate (ETA)” [8, 9]; it
was secure all the time. However,
authentication before encryption of the
plaintext might not be secure, even if the
encryption and authentication algorithms were
independently secure [8, 9]. In the CBC-DES,
CBC-TDES, and the proposed algorithm, the
use of encryption followed by message

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp62-67)

integrity function will keep the previous
mentioned advantages.

3.2 Execution time experiment
The first experiment will be execution time
measure of CBC-DES, CBC-TDES, and the
proposed algorithm to generate MAC value
and ciphertext. CBC-DES, CBC-TDES, and
the proposed algorithm will be tested under
windows 98 operating system. Performance
test will be performed on a personal computer
(PC), which is equipped with Pentium III CPU
(550 MHZ) and 256 MB of RAM. Visual C++
was used to implement these three algorithms.
MAC generation will be executed on 1MB text
file. In DES, key and IV size (Initialization
Vector) are 64-bit each. TDES will use three
keys with 64-bit size each. The proposed
algorithm will use a key of 64-bit size.

Table 1 shows the results of execution time
experiment. This time represents the time that a
CPU spends completing necessary calculations
for the three algorithms, and I/O operation.
Encryption time for in the CBC-DES and
CBC-TDES does not include "Convert-To-
Binary" time. In addition, these results are
normalized to CBC-DES processing time.

Table 1: CPU execution time (seconds)

Encrypting and MAC Generation

File size CBC-
DES

CBC-
TDES

Proposed
Algorithm

0.5 MB 1 2.867 2.855
1 MB 1 2.897 2.878
2 MB 1 2.897 2.894

The results from the Table 1 show that the
proposed algorithm is faster than CBC-TDES,
and slower than CBC-DES. Because CBC-
TDES calls DES algorithm three times.
Moreover, these results show that the proposed
algorithm, CBC-DES, and CBC-TDES are
scalable. Besides algorithm structure,
execution time is affected by key length.

Key length effect happens when running the
same algorithm without any change to its
internal structure, using different key lengths.
In the proposed algorithm, there is a small
change in time needed to run the proposed

algorithm with an increase in a key length.
Figure 2 shows an increase in key length by
power of two with a little decrease in execution
time, because we process a large data size each
time rather than dealing with small block size.
This figure uses a 1MB file.

40

45

50

51225612864

Key length (bits)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 2: Key length effect

However, for CBC-DES algorithm and other
encryption algorithm algorithms, running the
same algorithm with different key lengths
means a change in the algorithm structure and
coding.

3.3 Key recovery attacks
Key recovery attack is based on trying all key
values on few Message/MAC pairs to generate
MAC values, then comparing all generated
MAC's with message/MAC pair until the
correct key is founded. In any message
authentication scheme that uses a specified key
length, this type of attack is theoretically
possible. Such schemes are CBC-DES and
CBC-TDES. However, if we take into account
the required time and memory space, we need
a lot of effort and highly equipped computers
for this approach. The proposed algorithm does
not limit key space and makes it application-
dependant. However, it is preferred to be equal
to the least message size used by the
application. Therefore, previous explanations
are theoretically valid for the proposed
algorithm. However, the following reasons
provide a resistance proof against key recovery
attack:

1. The use of rotated secret S-box.
2. The use of long one-time key: trying all

key space is not useful. Because after
generating MAC for a message, key is
changed to new one as lemma 2 explains.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp62-67)

Table 2 shows the needed key recovery time
for the three algorithms; CBC-DES, CBC-
TDES, and the proposed algorithm. All of them
are assumed to work with an application that
deals with messages of 1 MB long at least. Key
length at the proposed algorithm is assumed to
be 1KB long, 64-bit for CBC-DES, and 64-bit

for each key of the three keys used with CBC-
TDES. It shows that the time to recover the
proposed algorithm key is greater that other
algorithms. In addition, MAC size using the
proposed algorithm is 256 bits (in this
example).

Table 2: key recovery time

Algorithm Key space Worst attack Time MAC-size
264 264 * 16.5 Sec 64 bits CBC-DES 2128 2128 * 16.5 Sec 128 bits

3*264 3 * 264 * 47.8 Sec 64 bits CBC-TDES 3*2128 3 * 2128 * 47.8 Sec 128 bits
Proposed-algorithm 28192 28192 * 47.5 sec > 256 bits

4. Conclusion
The design of the proposed algorithm
considers speed improvements in the future;
therefore, we decided to use large and variable
key size. The result was the use of one-time
key and variable message-based MAC length.
This paper explains the differences between
new developed algorithm and CBC. Finally,
we listed some extracted properties for the
proposed algorithm.

References
[1] ISO / IEC 9797. Data cryptographic

techniques – Data integrity mechanisms
using a cryptographic check function
employing a block cipher algorithm, 1989.

[2] ANSI X9.9, American National Standard

for Financial Institution Message
Authentication (Wholesale), American
Bankers Association, 1981. Revised 1986.

[3] Krawczyk H. Personal Communication,

September 1994.

[4] Preneel B, and Van Oorschot P. A new

generic attack on message authentication
codes. Advances in Cryptology, Crypto 95
Proceedings, Lecture Notes in Computer
Science; D. Coppersmith ed; Springer-
Verlag; 1995; 963.

[5] Campbell, C. Design and specification of

cryptographic capabilities. In Computer
security and the data encryption standard,

NBS Special Publication 500-27; D.
Barnstad, Ed; National Bureau of
Standards, Washington, D.C., 1977; 54–66.

 [7] M. Luby and C. Rackoff. How to

Construct Pseudorandom Permutations
from Pseudorandom Functions; SIAM J.
Comput.; April 1988; 17(2).

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp62-67)

