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1 Introduction
Fuzziness plays an essential role in the real world.
Fuzzy set theory has been developed very fast since
it was introduced by Zadeh (1965) [1]. A fuzzy set
was characterized with its membership function by
Zadeh. The term fuzzy variable was fist introduced
by Kaufmann (1975) [2], and then appeared in Zadeh
(1978) [3] and Nahmias (1978) [4] as a fuzzy set of
real numbers. In order to establish the mathematics of
fuzzy set theory, Nahmias (1978) [4] introduced three
axioms to define possibility spaces. A fuzzy variable
may be defined as a function from a possibility space
to the set of real numbers. In order to define a self-
dual measure, Liu and Liu (2002) [5] gave the concept
of credibility measure. And Liu (2004) [6] presented
an axiomatic foundation of credibility theory dealing
with fuzzy variables based on credibility measure.

Fuzzy variable was generalized by bifuzzzy vari-
able, random fuzzy variable, and so on. Bifuzzy
variable was introduced by Liu (2002) [7] as a func-
tion from a possibility space to the set of fuzzy vari-
ables. And random fuzzy variable was defined by Liu
(2002) [8] as a function from a possibility space to the
set of random variables.

Based on the chance measure and expected value
operator in Liu (2002) [8] and Liu and Liu (2003) [9],
some mathematical properties of random fuzzy vari-
ables were derived by Zhu and Liu (2004) [10] [11].
The concept of chance distribution for random fuzzy
variables was introduced and several properties of
chance distributions were studied in Zhu and Liu
(2004) [10]. For random fuzzy sequences, there are
several concepts of convergence, for example, con-
vergence almost surely, convergence in chance, con-

vergence in mean and convergence in distribution. It
is useful to deal with the criteria of convergence in
distribution for random fuzzy sequences.

In the following, we first recall some useful con-
cepts such as possibility spaces, random fuzzy vari-
ables and chance distributions. Then we investigate
some sufficient and necessary conditions of conver-
gence in distribution for random fuzzy sequences.

2 Some Concepts
In convenience, we give some useful concepts at first.
Let Θ be a nonempty set, and �(Θ) the power set of
Θ. The triplet (Θ,�(Θ),Pos) is said to be a pos-
sibility space if Pos, called possibility measure, is
a nonnegative set function defined on �(Θ) satisfy-
ing that (i) Pos{∅} = 0, (ii) Pos{Θ} = 1, (iii)
Pos{∪kAk} = supk Pos{Ak} for Ak ∈ �(Θ). An-
other measure Cr, called credibility measure [5], is
defined by Cr{A} = (Pos{A}+1−Pos{Ac})/2 for
any A ∈ �(Θ), where Ac is the complementary set of
A. A fuzzy variable is defined as a function from a
possibility space to the set of real numbers.

Definition 1. (Liu [8]) A random fuzzy variable is a
function from a possibility space (Θ,�(Θ), Pos) to
the set of random variables.

Definition 2. (Liu [8]) Let ξ be a random fuzzy vari-
able, and B a Borel set of R. Then the chance of ran-
dom fuzzy event {ξ ∈ B} is a function from (0, 1] to
[0, 1], defined as

Ch{ξ ∈ B}(α) = sup
Cr{A}≥α

inf
θ∈A

Pr{ξ(θ) ∈ B}. (1)
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Definition 3. (Liu [8]) The chance distribution Φ :
(−∞,+∞) × (0, 1] → [0, 1] of a random fuzzy vari-
able ξ is defined by Φ(x, α) = Ch{ξ ≤ x}(α).

It follows from Zhu and Liu (2004) [10] that the
chance distribution Φ(x, α) of a random fuzzy vari-
able is increasing in x for any α, and decreasing and
left-continuous in α for any x.

Definition 4. Suppose that Φ,Φ1,Φ2, . . . are the
chance distributions of random fuzzy variables
ξ, ξ1, ξ2, . . ., respectively. We say that {ξi} converges
in distribution to ξ if Φi(x, α) → Φ(x;α) for all con-
tinuity points (x, α) of Φ.

3 Sufficient and Necessary Condi-
tions of Convergence

Theorem 5. Let Φ,Φ1,Φ2, . . . be chance distribu-
tions of random fuzzy variables ξ, ξ1, ξ2, . . ., and ξi

converge to ξ in distribution. Assume that a and b are
two real numbers such that Φ is continuous at (a, 1)
and (b, 1). If g(α) is a nonnegative continuous func-
tion on [0, 1] and f(x) is a nonnegative continuous
function on [a, b], then

lim
i→∞

∫ b

a
f(x) d

∫ 1

0
g(α)Φi(x, α)dα

=
∫ b

a
f(x) d

∫ 1

0
g(α)Φ(x, α)dα. (2)

Conversely, if (2) holds for any nonnegative con-
tinuous functions g(α) and f(x), then

lim
δ↓0

lim
i→∞

[Φi(x, α − δ) − Φi(a, α − δ)]

= Φ(x, α) − Φ(a, α) (3)

for any continuity point (x, α) of Φ.

Proof. For any positive integer m,n, let 0 = α0 <
α1 < . . . < αm = 1 be a set of division points of
(0, 1], a = x0 < x1 < . . . < xn = b a set of divi-
sion points of [a, b], and let these points be continuity
points of all Φi(x, α),Φ(x, α), i = 1, 2, . . ..

Let IA be the indicator of a set A. Write

gm(x) =

⎧⎨
⎩

m−1∑
j=0

g(αj)I[αj ,αj+1)(α), 0 ≤ α < 1,

g(αm−1), α = 1,

fn(x) =

⎧⎨
⎩

n−1∑
ν=0

f(xν)I[xν ,xν+1)(x), a ≤ x < b,

f(xn−1), x = b.

Then gm(α) converges uniformly to g(α) as
maxj(αj+1 − αj) → 0, fn(x) converges uniformly
to f(x) as maxν(xν+1 − xν) → 0. Suppose that
the larger the numbers m and n, the smaller the par-
titions of the interval [0, 1] and the partitions of the
interval [a, b], that is, maxj(αj+1 − αj) → 0 as
m → ∞ and maxν(xν+1 − xν) → 0 as n → ∞.
For arbitrary ε > 0, choose m1 and n0 such that
|gm(α) − g(α)| < ε for all α ∈ [0, 1] when m ≥ m1

and |fn0(x) − f(x)| < ε for all x ∈ [a, b]. Denote
M = sup

α∈[0,1]
|g(α)| and L = sup

x∈[a,b]
|f(x)|. Then

∣∣∣∣
∫ b

a
(f(x) − fn0(x)) d

∫ 1

0
g(α)Φi(x, α)dα

∣∣∣∣ ≤ Mε

(4)
uniformly for i,∣∣∣∣
∫ b

a
fn0(x) d

∫ 1

0
(g(α) − gm(α))Φi(x, α)dα

∣∣∣∣ ≤ Lε

(5)
uniformly for i when m ≥ m1, and∣∣∣∣

∫ b

a
(f(x) − fn0(x)) d

∫ 1

0
g(α)Φ(x, α)dα

∣∣∣∣ ≤ Mε.

(6)
Choose a positive number m2 such that when m ≥
m2,∣∣∣∣∣∣

m−1∑
j=0

g(αj)Φ(xν , αj)(αj+1 − αj) −
∫ 1

0
g(α)Φ(xν , α)dα

∣∣∣∣ ≤ ε

Ln0
, (7)

∣∣∣∣∣∣
m−1∑
j=0

g(αj+1)Φ(xν , αj+1)(αj+1 − αj) −
∫ 1

0
g(α)Φ(xν , α)dα

∣∣∣∣ ≤ ε

Ln0
, (8)

for all ν = 0, 1, 2, . . . , n0. Choose a positive number
m3 such that when m ≥ m3,

|g(αj+1) − g(αj)| ≤ ε

Ln0
, (9)

for all j = 0, 1, 2, . . . ,m. Let m0 =
max{m1,m2,m3}. We have

Ji =
∫ b

a
fn0(x) d

∫ 1

0
gm0(α)Φi(x, α)dα

=
n0−1∑
ν=0

f(xν)
∫ xν+1

xν

d
∫ 1

0
gm0(α)Φi(x, α)dα
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=
n0−1∑
ν=0

f(xν)
∫ 1

0
gm0(α) [Φi(xν+1, α) −

Φi(xν , α)] dα

=
n0−1∑
ν=0

f(xν)
m0−1∑
j=0

g(αj)
∫ αj+1

αj

[Φi(xν+1, α)

− Φi(xν , α)] dα.

Since Φi(x, α) is decreasing in α, we have

Φi(xν , αj+1)(αj+1 − αj) ≤
∫ αj+1

αj

Φi(xν , α)dα

≤ Φi(xν , αj)(αj+1 − αj), (10)

for all ν = 0, 1, 2, . . . , n0. Thus

Ji ≤ J1i
�
=

n0−1∑
ν=0

f(xν)
m0−1∑
j=0

g(αj) [Φi(xν+1, αj) −

Φi(xν , αj+1)] (αj+1 − αj), (11)

and

Ji ≥ J2i
�
=

n0−1∑
ν=0

f(xν)
m0−1∑
j=0

g(αj) [Φi(xν+1, αj+1)

−Φi(xν , αj)] (αj+1 − αj). (12)

Letting i → ∞, we get

lim
i→∞

J1i =
n0−1∑
ν=0

f(xν)
m0−1∑
j=0

g(αj) [Φ(xν+1, αj) −

Φ(xν , αj+1)] (αj+1 − αj)

=
n0−1∑
ν=0

f(xν)

[(
m0−1∑
j=0

g(αj)Φ(xν+1, αj)(αj+1 −

αj) −
∫ 1

0
g(α)Φ(xν+1, α)dα

)

+
(∫ 1

0
g(α)Φ(xν , α)dα −

m0−1∑
j=0

g(αj+1)

Φ(xν , αj+1)(αj+1 − αj)
)

+
m0−1∑
j=0

(g(αj+1) − g(αj))Φ(xν , αj+1)(αj+1

−αj)
]

+
n0−1∑
ν=0

f(xν)
[∫ 1

0
g(α)Φ(xν+1, α)dα−

∫ 1

0
g(α)Φ(xν , α)dα

]

≤ 3ε +
n0−1∑
ν=0

f(xν)
[∫ 1

0
g(α)Φ(xν+1, α)dα −

∫ 1

0
g(α)Φ(xν , α)dα

]

=
∫ b

a
fn0(x) d

∫ 1

0
g(α)Φ(x, α)dα + 3ε

by (7), (8) and (9). Similarly, we can get

lim
i→∞

J2i ≥
∫ b

a
fn0(x) d

∫ 1

0
g(α)Φ(x, α)dα − 3ε.

Hence

lim sup
i→∞

∣∣∣∣Ji −
∫ b

a
fn0(x) d

∫ 1

0
g(α)Φ(x, α)dα

∣∣∣∣
≤ 3ε. (13)

We have

I =
∫ b

a
f(x) d

∫ 1

0
g(α)Φi(x, α)dα−

∫ b

a
f(x) d

∫ 1

0
g(α)Φ(x, α)dα

=
∫ b

a
[f(x) − fn0(x)] d

∫ 1

0
g(α)Φi(x, α)dα+

∫ b

a
fn0(x) d

∫ 1

0
(g(α) − gm0(α)Φi(x, α)dα

+
∫ b

a
fn0(x) d

∫ 1

0
gm0(α)Φi(x, α)dα−

∫ b

a
fn0(x) d

∫ 1

0
g(α)Φ(x, α)dα

+
∫ b

a
[fn0(x) − f(x)] d

∫ 1

0
g(α)Φ(x, α)dα

It follows from (4), (5) and (6) that

|I| ≤ (2M + L)ε + |Ji −∫ b

a
fn0(x) d

∫ 1

0
g(α)Φ(x, α)dα

∣∣∣∣ . (14)

Letting i → ∞, we get

lim sup
i→∞

|I| ≤ (2M + L + 3)ε

by (13). This proves the first part of the theorem.
Conversely, suppose that (2) holds for any non-

negative continuous functions g(α) and f(x). Let
(x0, α0) be a continuity point of Φ(x, α), a < x0 <
b, 0 < α0 ≤ 1. Choose ε > 0 such that x0 + ε <
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b, α0 − ε > 0. Let g(α) and f(x) be two nonnegative
continuous functions defined by

g(α) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n + 1)ε−1(α − α0 + ε),
α0 − ε ≤ α
≤ α0 − n

n+1ε,

1,
α0 − n

n+1ε ≤ α

≤ α0 − 1
n+1ε,

−(n + 1)ε−1(α − α0),
α0 − 1

n+1ε ≤ α

≤ α0,

0,
0 ≤ α ≤ α0 − ε
or α0 ≤ α ≤ 1,

where n is a positive integer, and

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, a ≤ x ≤ x0,

ε−1(−x + x0 + ε), x0 ≤ x ≤ x0 + ε,

0, x0 + ε ≤ x ≤ b.

Then∫ 1

0
g(α)[Φi(x0, α) − Φi(a, α)]dα

=
∫ x0

a
d

∫ 1

0
g(α)Φi(x, α)dα

≤
∫ b

a
f(x) d

∫ 1

0
g(α)Φi(x, α)dα. (15)

Letting i → ∞, from (2), we get

lim sup
i→∞

∫ 1

0
g(α)[Φi(x0, α) − Φi(a, α)]dα

≤
∫ b

a
f(x) d

∫ 1

0
g(α)Φ(x, α)dα

≤
∫ x0+ε

a
d

∫ 1

0
g(α)Φ(x, α)dα

=
∫ 1

0
g(α)Φ(x0 + ε, α)dα −

∫ 1

0
g(α)Φ(a, α)dα

=
∫ α0

α0−ε
g(α)[Φ(x0 + ε, α) − Φ(a, α)]dα

≤
∫ α0

α0−ε
[Φ(x0 + ε, α) − Φ(a, α)]dα

= [Φ(x0 + ε, α′) − Φ(a, α′)]ε,

where α0 − ε < α′ < α0. Since∫ 1

0
g(α)[Φi(x0, α) − Φi(a, α)]dα

≥
∫ α0−ε/(n+1)

α0−εn/(n+1)
[Φi(x0, α) − Φi(a, α)]dα

= [Φi(x0, α
′′) − Φi(a, α′′)]

n − 1
n + 1

ε,

where α0 − εn/(n + 1) < α′′ < α0 − ε/(n + 1).
Therefore,

lim sup
i→∞

[Φi(x0, α
′′) − Φi(a, α′′)]

n − 1
n + 1

≤ Φ(x0 + ε, α′) − Φ(a, α′).

Since α′, α′′ ↑ α0 as ε → 0, letting ε → 0 yields that

lim sup
ε→0

lim sup
i→∞

[Φi(x0, α
′′) − Φi(a, α′′)]

n − 1
n + 1

≤ Φ(x0, α0) − Φ(a, α0).

Letting n → ∞, we have

lim sup
ε→0

lim sup
i→∞

[Φi(x0, α
′′) − Φi(a, α′′)]

≤ Φ(x0, α0) − Φ(a, α0). (16)

Similarly, let a + ε < x0, and

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, a ≤ x < x0 − ε,

ε−1(−x + x0), x0 − ε ≤ x ≤ x0,

0, x0 ≤ x.

We can get

lim inf
ε→0

lim inf
i→∞

[Φi(x0, α
′′) − Φi(a, α′′)]

≥ [Φ(x0, α0) − Φ(a, α0)]
n − 1
n + 1

.

Letting n → ∞ and combining with (16), we proved

lim
δ↓0

lim
i→∞

[Φi(x0, α0 − δ) − Φi(a, α0 − δ)]

= Φ(x0, α0) − Φ(a, α0).

If x0 = a or x0 = b, it is easily seen that the above
equation holds. Therefore the second part of the theo-
rem is proved.

Theorem 6. Let Φ,Φ1,Φ2, . . . be chance distribu-
tions of random fuzzy variables ξ, ξ1, ξ2, . . ., and ξi

converge to ξ in distribution. Assume that a and b are
two real numbers such that Φ is continuous at (a, 1)
and (b, 1). If g(α) is a nonnegative continuous func-
tion on [0, 1] and f(x) is a nonnegative continuous
function on [a, b], then

lim
i→∞

∫ 1

0
g(α)dα

∫ b

a
f(x)dxΦi(x, α)

=
∫ 1

0
g(α)dα

∫ b

a
f(x)dxΦ(x, α), (17)
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where
∫ b
a f(x)dxΦ(x, α) denotes a Riemann-Stieltjes

integral for given α.
Conversely, if (17) holds for any nonnegative

continuous functions g(α) and f(x), then

lim
δ↓0

lim
i→∞

[Φi(x, α − δ) − Φi(a, α − δ)]

= Φ(x, α) − Φ(a, α) (18)

for any continuity point (x, α) of Φ.

Proof. The conclusion follows from Theorem 5.

Theorem 7. Let Φ,Φ1,Φ2, . . . be chance distribu-
tions of random fuzzy variables ξ, ξ1, ξ2, . . ., and ξi

converge to ξ in distribution. Let g(α) be nonnegative
continuous on (0, 1] and f(x) be nonnegative contin-
uous on R with lim

x→±∞ f(x) = 0. then

lim
i→∞

∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦi(x, α)

=
∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦ(x, α). (19)

Conversely, if (19) holds for any nonnegative
continuous function f(x) with lim

x→±∞ f(x) = 0, then

lim
δ↓0

lim
i→∞

[Φi(x, α − δ) − Φi(y, α − δ)]

= Φ(x, α) − Φ(y, α) (20)

for any continuity point (x, α), (y, α) of Φ.

Proof. For a given ε > 0, choose A > 0 such that
|f(x)| < ε for |x| ≥ A and (−A, 1), (A, 1) are conti-
nuity points of Φ. Then∣∣∣∣∣
∫
|x|≥A

f(x)dxΦi(x, α)

∣∣∣∣∣ ≤ ε

∫
|x|≥A

dxΦi(x, α) ≤ ε,

and∣∣∣∣∣
∫
|x|≥A

f(x)dxΦ(x, α)

∣∣∣∣∣ ≤ ε

∫
|x|≥A

dxΦ(x, α) ≤ ε.

Denote supα∈[0,1] |g(α)| = M . We have

∣∣∣∣∣
∫ 1

0
g(α)dα

∫
|x|≥A

f(x)dxΦi(x, α)

∣∣∣∣∣
≤ Mε

∫ 1

0
dα

∫
|x|≥A

dxΦi(x, α) ≤ Mε, (21)

and∣∣∣∣∣
∫ 1

0
g(α)dα

∫
|x|≥A

f(x)dxΦ(x, α)

∣∣∣∣∣
≤ Mε

∫ 1

0
dα

∫
|x|≥A

dxΦ(x, α) ≤ Mε. (22)

Thus∣∣∣∣
∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦi(x, α)

−
∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦ(x, α)

∣∣∣∣
≤

∣∣∣∣
∫ 1

0
g(α)dα

∫ A

−A
f(x)dxΦi(x, α)

−
∫ 1

0
g(α)dα

∫ A

−A
f(x)dxΦ(x, α)

∣∣∣∣
+

∣∣∣∣∣
∫ 1

0
g(α)dα

∫
|x|≥A

f(x)dxΦi(x, α)

−
∫ 1

0
g(α)dα

∫
|x|≥A

f(x)dxΦ(x, α)

∣∣∣∣∣
≤

∣∣∣∣
∫ 1

0
g(α)dα

∫ A

−A
f(x)dxΦi(x, α)

−
∫ 1

0
g(α)dα

∫ A

−A
f(x)dxΦ(x, α)

∣∣∣∣ + 2Mε

by (21) and (22). It follows from Theorem 6 that (19)
holds.

Conversely, suppose that (19) holds for
any nonnegative continuous function f(x) with
limx→±∞ f(x) = 0. By the similar procedure to the
proof of second part of Theorem 5, we can prove the
second part of the theorem.

Remark 8. If limx→±∞ f(x) 	= 0, the equation (19)
may not hold. For example, let

Θ = {θ1, θ2, . . .}, Pos{θi} = 1, i = 1, 2, . . . ,

Ω = {ω1, ω2, . . .}, Pr{ωi} = 1/2i, i = 1, 2, . . . .

Then (Θ,�(Θ),Pos) is a possibility space and
(Ω,�(Ω),Pr) is a probability space. Assume ξi are
random fuzzy variables defined by

ξi(θj) =

{
ηi, if j ≤ i

0, if j > i,

for i, j = 1, 2, . . ., where ηi are random variables de-
fined by

ηi(ω1) = 0, ηi(ωj) = i,
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for i = 1, 2, . . . , j = 2, 3, . . ., and ξ a random fuzzy
variable as ξ(θi) = ζi, where ζi are random variables
as

ζ1(ωj) = 0, ζi(ωj) =

{
0, if j = 1

i, if j > 1,

for i = 2, 3, . . . ; j = 1, 2, . . .. Let Φ,Φ1,Φ2, . . .
be chance distributions of random fuzzy variables
ξ, ξ1, ξ2, . . .. Then when α > 0.5, Φi(x, α) = 0 if
x < 0, 1

2 if 0 ≤ x < i, 1 if x ≥ i, and Φ(x, α) = 0
if x < 0, 1

2 if x ≥ 0. When α ≤ 0.5, Φi(x, α) = 0
if x < 0, 1 if x ≥ 0, and Φ(x, α) = 0 if x < 0,
1 if x ≥ 0. Thus Φi(x, α) → Φ(x, α). However if
g(α) = 1, f(x) = 1, we have

∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦi(x, α) = 1

→ 1 	= 3
4

=
∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦ(x, α).

The following theorem can easily be proved by
Theorem 5 and 7

Theorem 9. Let Φ,Φ1,Φ2, . . . be chance distribu-
tions of random fuzzy variables ξ, ξ1, ξ2, . . .. As-
sume that there exists a number y0 ∈ R such that
Φi(y0, α) = 0 and Φ(y0, α) = 0 for each α ∈ (0, 1],
then the following three statements are equivalent:

(i) ξi converges to ξ in distribution;

(ii) for any nonnegative continuous function g(α) on
[0, 1] and nonnegative continuous function f(x)
on R with lim

x→±∞ f(x) = 0, we have

lim
i→∞

∫ +∞

−∞
f(x) d

∫ 1

0
g(α)Φi(x, α)dα

=
∫ +∞

−∞
f(x) d

∫ 1

0
g(α)Φ(x, α)dα.

(iii) for any nonnegative continuous function g(α) on
[0, 1] and nonnegative continuous function f(x)
on R with lim

x→±∞ f(x) = 0, we have

lim
i→∞

∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦi(x, α)

=
∫ 1

0
g(α)dα

∫ +∞

−∞
f(x)dxΦ(x, α).

4 Conclusion
In the paper, based on the concept of chance distribu-
tions for random fuzzy variables, some sufficient and
necessary conditions for convergence of random fuzzy
sequences in distribution are given. A sequence of
random fuzzy variables converges to a random fuzzy
variable in distribution if and only if their correspond-
ing integrals are convergent.
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