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Abstract: A random fuzzy variable is afunction from a possibility space to the set of random variables. Based on
the chance distributions for random fuzzy variables, some sufficient and necessary conditions of cornvergence of

random fuzzy sequence in distribution are investigated.
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1 Introduction

Fuzziness plays an essential role in the real world.
Fuzzy set theory has been developed very fast since
it was introduced by Zadeh (1965) [1]. A fuzzy set
was characterized with its membership function by
Zadeh. The term fuzzy variable was fist introduced
by Kaufmann (1975) [2], and then appeared in Zadeh
(1978) [3] and Nahmias (1978) [4] as a fuzzy set of
real numbers. In order to establish the mathematics of
fuzzy set theory, Nahmias (1978) [4] introduced three
axioms to define possibility spaces. A fuzzy variable
may be defined as a function from a possibility space
to the set of real numbers. In order to define a self-
dual measure, Liu and Liu (2002) [5] gave the concept
of credibility measure. And Liu (2004) [6] presented
an axiomatic foundation of credibility theory dealing
with fuzzy variables based on credibility measure.

Fuzzy variable was generalized by bifuzzzy vari-
able, random fuzzy variable, and so on. Bifuzzy
variable was introduced by Liu (2002) [7] as a func-
tion from a possibility space to the set of fuzzy vari-
ables. And random fuzzy variable was defined by Liu
(2002) [8] asafunction from a possibility spaceto the
set of random variables.

Based on the chance measure and expected value
operator in Liu (2002) [8] and Liu and Liu (2003) [9],
some mathematical properties of random fuzzy vari-
ables were derived by Zhu and Liu (2004) [10] [11].
The concept of chance distribution for random fuzzy
variables was introduced and several properties of
chance distributions were studied in Zhu and Liu
(2004) [10]. For random fuzzy sequences, there are
several concepts of convergence, for example, con-
vergence amost surely, convergence in chance, con-

vergence in mean and convergence in distribution. It
is useful to deal with the criteria of convergence in
distribution for random fuzzy sequences.

In the following, we first recall some useful con-
cepts such as possibility spaces, random fuzzy vari-
ables and chance distributions. Then we investigate
some sufficient and necessary conditions of conver-
gence in distribution for random fuzzy sequences.

2 Some Concepts

In convenience, we give some useful concepts at first.
Let © be a nonempty set, and P(0©) the power set of
©. The triplet (©,P(0),Pos) is said to be a pos-
sibility space if Pos, caled possibility measure, is
a nonnegative set function defined on P(©) satisfy-
ing that (i) Pos{0} = 0, (ii) Pos{®} = 1, (iii)
Pos{Ur A} = supy Pos{Ay} for Ay, € P(O). An-
other measure Cr, called credibility measure [5], is
defined by Cr{A} = (Pos{A} +1—Pos{A°})/2 for
any A € P(0), where A°¢ isthe complementary set of
A. A fuzzy variable is defined as a function from a
possibility space to the set of real numbers.

Definition 1. (Liu [8]) A random fuzzy variable is a
function from a possibility space (©,P(0), Pos) to
the set of random variables.

Definition 2. (Liu [8]) Let £ be a random fuzzy vari-
able, and B a Borel set of R. Then the chance of ran-
dom fuzzy event {£ € B} is a function from (0, 1] to
[0, 1], defined as

Ch{¢ € B}(a) = . ?E{; eigg Pr{¢(0) € B}. (1)
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Definition 3. (Liu F[@T) The chance distribution o -

(=00, +00) x (0,1] — [0, 1] of a random fuzzy vari-
able ¢ is defined by ®(x, ) = Ch{¢ < z}(a).

It follows from Zhu and Liu (2004) [10] that the
chance distribution ®(x, ) of a random fuzzy vari-
able isincreasing in x for any «, and decreasing and
left-continuous in o for any .

Definition 4. Suppose that &, ®,®,,... are the
chance distributions of random fuzzy variables
&, 61,8, ..., respectively. We say that {&;} converges
in distribution to ¢ if ®;(z, o) — ®(x; «) for all con-
tinuity points (x, ) of ®.

3 Sufficient and Necessary Condi-
tions of Convergence

Theorem 5. Let &, ®q, Py, ... be chance distribu-
tions of random fuzzy variables &, &,&,,. .., and &
converge to ¢ in distribution. Assume that a and b are
two real numbers such that ® is continuous at (a, 1)
and (b,1). If g(«) is a nonnegative continuous func-
tion on [0,1] and f(x) is a nonnegative continuous
function on [a, b], then

b

1
lim f(x)d/ 9()®;(z, a)da

71—00 a 0
b 1
- [ r@a [ s @

Conversely, if (2) holds for any nonnegative con-
tinuous functions g(«) and f(x), then

15iﬁ)1 Zlggl@ [®i(z, a0 — §) — Di(a,a — )]
=®(z,a) — P(a,) (3

for any continuity point (z, ) of ®.

Proof. For any positive integer m,n, let 0 = o <
a; < ... < am; = 1 beaset of division points of
(0,1, a = x9g < 1 < ... < x, = baset of divi-
sion points of [a, b], and let these points be continuity
points of al &;(x,a), ®(z,a),i=1,2,....

Let /4 betheindicator of aset A. Write

m—1
aj)ig a0 (), 0<a<l,
gm(x){ ];) g( ]) [ 3§ 0+ )( )

g(amfl)a

n—1
fu(z) = { Vgo @), z,0)(1), a<z<b,
f(xn—l), xr = b.
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Then g¢,,(«) converges uniformly to g 05 as

max;(ajy1 — a;) — 0, fu(x) converges uniformly
to f(x) as max,(z,+1 — z,) — 0. Suppose that
the larger the numbers m and n, the smaller the par-
titions of the interval [0, 1] and the partitions of the
interval [a,b], that is, max;(aj11 — o) — 0 as
m — oo and max, (x,+1 — x,) — 0asn — oo.
For arbitrary ¢ > 0, choose m; and ngy such that
lgm (@) — g(a)] < eforal a € [0,1] whenm > my
and |fn,(z) — f(x)| < eforal z € [a,b]. Denote

M = sup |g(a)|and L = sup |f(z)|. Then
ael0,1] z€(a,b]

b 1
/ (F(@) — fup()) d / 9(0)®;(z, a)da| < Me
a 0
@
uniformly for 4,
b 1
[ 1@ [ (9(0) = gn(@)0i(w,a)dal < Le
(5)
uniformly for : when m > my, and
b 1
/ (F(2) — fup()) d / 9(0)®(x, a)da| < Me.
a 0 (6)

Choose a positive number my such that when m >
ma,

3
L

9()® (v, aj)(aj11 — aj) —

j=0
1 £
| s@a.a)a) < = @
m—1
9(j11)®(2y, ajy1)(aj41 — ) —
7=0
1 g
®(z,,a)da| < =, (8
| st@ta.anal < = @
foradl v =0,1,2,...,n9. Choose a positive number
ms such that when m > ms,
(3
lg(vjt1) — g(aj)] < Tng’ 9)
for dl 7 = 0,1,2,...,m. Let myg =

max{my, mo, msz}. We have

1
0

5= [ 1) [ guaferez.nia

= T:Oiolf(l“u) /;VH d/ol Gmy (@) P (2, a)der



mo (@) [@i(Tp41,0) —
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T 9()®(2y41,0)da —
0

=% fw)
D, (xy, )] de

no—1 mo—1 Q41
=5 1w gtan [ @itaa)
v=0 7=0 i

Qj

— ®i(xy, )] da.
Since ®;(x, «) isdecreasing in «, we have

Qjt1

Di(@y, j1) (a1 — o) < / P;(zy, )da

Qj
< (I)i(xl/aaj)(aj-i-l - aj)v (10)
foralv=0,1,2,...,n9. Thus

no—1 mo—1
A
Ji < Jii = Z f(zy) Z 9() [Pi(zys1, 05) —
v=0 7=0

Di(zy, 1)) (41 — ), (11)

and
A no—1 mo—1
Ji = Joi = Z flzy) Z 9(a;) [®i(zv41, j11)
v=0 j=0

—®;(zy, j)] (1 — ;). (12)

Letting ¢ — oo, we get

no—1 mo—1
Zlgélo Jii = Zo f(z) % 9(e) [®(zp41, a5) —
v= J=

P(2y, jt1)] (41 — )
no—1 mo—1
= > flx) [( > 9(e)@(@pr1, o) (a1 —
v=0 7=0
1
aj)_/o g(a)@(x,,+1,a)da)

mo—1

#( [ st@@tw a3 gla)

j=0
D(zy, ajp1) (@1 — ay)
mo—1

+ Z::O (9(@jr1) = 9(@) P (zy, ajy1) (@t

—Oéj)]

+E s | [ ! (@) (@yer, a)da

v=0

/ 1 (@), a)da]

<3e+ ,,;o f(xy)
A o(e)0(5,, )]

b 1
= no(z) d a)®(z, a)da

| tw@ra [ s(@)e,apa + 3¢
by (7), (8) and (9). Similarly, we can get

b 1
lim Jy; > / fro () d/ 9(a)®(z, a)da — 3e.
a 0

Hence
b 1
hriiigp Ji —/a fno(ac)d/ 9()®(z, a)da
: <3e. (13)
We have

I = /abf(x)d/olg(a)fbi(x,a)da—
/abf(x) d/olg(a)@(:):,a)da
= /ab[f(x) — fno(2)] d/olg(oé)@i(%a)da*-

b 1
/ fro(a) d /0 (9(0) — o (0)®1(z, 2)da

1
0

b
—I-/ fro () d/ Gmeo (@)@ (x, a)da—

b 1
/afno(ac)d/o 9()®(z, a)da

b 1

= [ 1@ = @) [ gle)p@.a)ia
It follows from (4), (5) and (6) that

1] < (2M + L)e + |J; —

b 1
/a Foo(2) d /0 9(@)B(z, a)da| . (14)

Letting ¢ — oo, we get

limsup |I| < (2M + L+ 3)e
by (13). This proves the first part of the theorem.
Conversely, suppose that (2) holds for any non-
negative continuous functions g(«) and f(z). Let
(z0, ) be acontinuity point of ®(z,«a), a < a9 <
b,0 < ag < 1. Choosee > 0 such that zg + ¢ <
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e TWO nonnegative

b,ag —e > 0. Let g(a) and f(
conti nuous functions defl ned by

g(a) =
4
og—€e < «
n+1 a—ag+e
( ) ( 0 ) Sao_nLJrl67
1 ao—n+1€<a
1
’ Sao_n—ﬂv
ao——€<a
1 _ n+1
(n+1)e " (a— ap) <an
0 0<a<ayg—c¢
’ orog <a<l,

\

where n is a positive integer, and

17 a <z < o,
f@)=3 e H—az+z0+e), xo<a<mo+e,
0, ro+e<x<b.

Then

1
/0 9(0)[®s (0, @) — Bi(a, a)]da

_ / d/olg(a)@i(x,oe)doz
< [[1wa [ swimana. a9

Letting ¢ — oo, from (2), we get

1
Jim sup / 9(0)[®s(z0, @) — Bi(a, a)]da

1—00

/f / a)®(z, a)da
< /+ d/olg(a)@(:):,a)da
1

1
xo + ¢, )da — / 9(a)®(a,a)da
0

[®(zg + €,a) — P(a, a)|da

Ag@ﬂ
/a :OE g(a)

IN

[D(zp + €,a) —

apg—¢

= [®(zg +¢&,d)) —

®(a, a)]da
®(a, '),

whereag — e < o/ < ag. Since

1
/0 9(a)[®;(z0, @) — P;(a, a)]da

d
> j [D;(z0, ) — P;(a,a)]da

ap—en/(n+1)
n—1

= [P, AN
@4(x0, ") ol

where ag —en/(n+1) < o’ < a9 —¢/(n + 1).
Therefore,

®;(a,a’)]

n—1

li b, " _ P, "
imsup{Pi(w0, o) = #ifa, 0
S (I)(LIZ‘() + Eja/) - @(a’7 a/)'

Sinced/,a” T ag ase — 0, letting e — 0 yields that

-1
lim sup lim sup[®;(zg, ) — ®;(a, o L
sl sup 0, 0”) — (0 )]
< ®(zg, ap) — P(a, ap).
Letting n — oo, we have
lim sup lim sup[®; (zo, ") — ®;(a, a’)]

e—0 i—00

S (I)(Qf(),Oé()) -
Similarly, let a + ¢ < xg, and

®(a,ap). (16)

1, a<lxz<xy—E€,
fx) =3 e (—x+x), 20—¢e <z <,
0, To < T.
We can get

lim i(I)lf lim inf[®;(zg, @) — ®;(a, a”)]

n—1
@(a,ao)]n+1.

Letting n — oo and combining with (16), we proved

> [®(wo, ) —

lim lim [®;(zg, a9 — ) — D;(a, ap — 0)]
610 i—oo

= ®(x0,a9) — P(a, ap).

If xp = a or xg = b, it iseasily seen that the above
equation holds. Therefore the second part of the theo-
remis proved.

Theorem 6. Let ®, &, Dy, ... be chance distribu-
tions of random fuzzy variables &, &,&,,. .., and &
converge to & in distribution. Assume that a and b are
two real numbers such that & is continuous at (a, 1)
and (b,1). If g(«) is a nonnegative continuous func-
tion on [0,1] and f(x) is a nonnegative continuous
function on [a, b], then

1 b
i [ g(@)da [ f@)d,0,,0)

71— 00 0 1 b
= [ stayta [ s@)ta), )
0 a
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where x)d,P(x, ) denotes a Rlemann-Stle(itjes

an
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a

integral for given a.
Conversely, if (17) holds for any nonnegative
continuous functions g(«) and f(z), then

15iﬁ)1 zlg?o [®i(z, a0 — §) — Di(a,a — )]
=®¢(z,a) — P(a,a) (18)

for any continuity point (z, ) of ®.
Proof. The conclusion follows from Theorem 5.

Theorem 7. Let ®,®,, Do, ... be chance distribu-
tions of random fuzzy variables &, &, &, ..., and &
converge to £ in distribution. Let g(«) be nonnegative
continuous on (0, 1] and f(x) be nonnegative contin-
uous on R with xgglw f(z) = 0. then

1 +oo
tim [ gla)da | f@dsiwa)

—
1—00 — s

1 +o0
_ /0 g@da [ f@)d,®(z,0). (19)

Conversely, if (19) holds for any nonnegative
continuous function f(x) with hftn f(z) =0, then

léiﬁr)l lim [®;(z, a0 — 0) — ®i(y, v — 9)]

= (b(x7 Oé) - (I)(y’ Oé) (20)
for any continuity point (z, ), (y, ) of ®.
Proof. For agiven e > 0, choose A > 0 such that

|f(x)] <efor|z|] > Aand (—A,1),(A,1) areconti-
nuity points of ®. Then

/ f(@2)d®i(x,a)| < 5/ d,®i(z,a) <e¢,
|lz|>A lz|>A

and

/ f(2)de®(z, )| < 5/ d,®(z,a) <e.
|lz[>A |z|>A

Denote sup,¢o 1) [9(a)| = M. We have

/01 g(a)da /|g;|2,4f(x)dx¢)i(x’a)

1
< Ms/ da/ dy®i(z, ) < Me, (21)
0 |z|>A

1
/ g(a)da/ f(z)d, ®(x, @)
0 |z|>A
1
< Ms/o da/xZAdICI)(x,a) < Me. (22)

Thus

/Olg(a)da /+oo F(2)de®i(z, )

—00

-] e [ e

—0o0

<

/01 g(a)da /if(x)dxq)i($,a)

— /01 g(a)da /_1: f(2)de®(7, )

/01 g(a)da /|x|2Af(x)d$(I>i(x7a)

_ /01g(a)di/leAf(x)dx(D(x’a)
/01 g(a)da /_Af(x)dxq)i(fl’,a)

+

<

1 A
- / g(a)da/ f(z)d®(x, )| + 2Me

0 —A
by (21) and (22). It follows from Theorem 6 that (19)
holds.

Conversely, suppose that (19) holds for
any nonnegative continuous function f(x) with
lim, 1o f(z) = 0. By the similar procedure to the
proof of second part of Theorem 5, we can prove the
second part of the theorem.

Remark 8. If lim, 1 f(x) # 0, the equation (19)
may not hold. For example, let

© = {61,6,,...},

Q={w,wy,...}, Pr{w}=1/2" i=1,2....

Then (0,P(©),Pos) is a possibility space and
(Q,P(2), Pr) is a probability space. Assume & are

Pos{6;} =1, i=1,2,...,

random fuzzy variables defined by
&i(0;) = e
0, ifj>i,

fori,j =1,2,..., wheren; are random variables de-
fined by

ni(w1) =0, ni(w;) =1,
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ori=1,2,..., =23, ¢ arandom fuzzy
variable as £(6;) = ¢;, where CZ are random variables
as

0, ifj=1
Gwj) =0, Glwj)=4 .
i, ifj>1,
fori = 2,3,...; j = 1,2,.... Let &, &y, Po,...

be chance distributions of random fuzzy variables
551,52,.. Then when a > 0.5, ®;(z,a) = 0 if
r<0,5if0<z<ilifz>i and®(z,a) =0
|f:n<0 $ifz > 0. Whena < 0.5, ®;(z,a) =0
if z < 0,1ifa: > 0, and ®(z,a) = 0if z < 0,
1if x > 0. Thus ®;(z,a) — ®(z,a). However if
gla) =1, f(z) =1, wehave

/01 g(a)da /+OO F(2)de®y(z, ) = 1

—0o0

1 —+o00
—1# Z = /0 g(a)da 3 f(z)d, ®(x, ).

The following theorem can easily be proved by
Theorem5and 7

Theorem 9. Let &, ®,, Dy, ... be chance distribu-
tions of random fuzzy variables &,&,&,.... As-
sume that there exists a number y € R such that
®;(yo, ) = 0 and ®(yo, ) = 0 for each a € (0, 1],
then the following three statements are equivalent:

(i) & converges to ¢ in distribution;

(if) for any nonnegative continuous function g(«) on
[0, 1] and nonnegative continuous function f(z)
on R with lirin f(z) =0, we have

T— =00

—+00

1
lim f(x) d/O 9()®;(z, a)da

1— 00 —00

= [T i@ a [ st

—00

(iii) for any nonnegative continuous function g(«) on
[0, 1] and nonnegative continuous function f(z)
on R with lixf f(z) =0, we have

T— =00

1 +o0

lim g(a)da f(z)dy®i(x, @)

11— 00 0

-/ ! y(a)da [ s,

—0o0
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conditson

In the paper, based on the concept of chance distribu-
tions for random fuzzy variables, some sufficient and
necessary conditions for convergence of random fuzzy
sequences in distribution are given. A sequence of
random fuzzy variables converges to a random fuzzy
variable in distribution if and only if their correspond-
ing integrals are convergent.

References:

[1] L.A. Zadeh, Fuzzy sets, Information and Con-
trol, Vol. 8, 338-353, 1965.

[2] A. Kaufmann, Introduction to the Theory of
Fuzzy Subsets, New York: Academic Press,
1975.

[3] L.A. Zadeh, Fuzzy sets as abasis for atheory of
possibility, Fuzzy Sets and Systems, Val. 1, 3-28,
1978.

[4] S. Nahmias, Fuzzy variables, Fuzzy Sets and
Systems, Vol. 1, 97-110, 1978.

[5] B. Liuand Y.-K. Liu, Expected vaue of fuzzy
variable and fuzzy expected value models, IEEE
Transactions on Fuzzy Systems, Vol. 10, No. 4,
445-450, 2002.

[6] B. Liu, Uncertainty Theory: An Introduction
to its Axiomatic Foundations, Berlin; Springer-
Verlag, 2004.

[7] B. Liu, Toward fuzzy optimization without
mathematical ambiguity, Fuzzy Optimization
and Decision Making, Vol. 1, No. 1, 43-63,
2002.

[8] B. Liu, Theory and Practice of Uncertain Pro-
gramming, Heidelberg: Physica-Verlag, 2002.

[9] Y.-K. Liu and B. Liu, Expected value opera-
tor of random fuzzy variable and random fuzzy
expected value models, International Journal
of Uncertainty, Fuzziness & Knowledge-Based
Systems, Vol.11, No.2, 195-215, 2003.

[10] Y. Zhu and B. Liu, Continuity theorems and
chance distribution of random fuzzy variables,
Proceedings of the Royal Society of Lodon Se-
ries A, Vol. 460, 2505-2519, 2004.

[11] Y. Zhu and B. Liu, Some inequalities of random
fuzzy variables with application to moment con-
vergence, Computers & Mathematics with Ap-
plications, Vol. 50, No. 5-6, 719-727, 2005.



