
An Improved Co-evolutionary Algorithm for Evolving
Robot Navigators & Environment Patterns

Kouichi SAKAMOTO and Qiangfu ZHAO

Department of Information System
University of AIZU

Aizuwakamatsu, 965-8580, Japan
{d8061104, qf-zhao}@u-aizu.ac.jp

Abstract: - This paper studies evolutionary learning of neural network navigators for mobile robots. To evolve
navigators that generalize well, we should evaluate the navigators using as many environment patterns as possible
during evolution. On the other hand, to evolve the navigators efficiently, we should use as few environment
patterns as possible. It is difficult to know in advance what patterns can produce good navigators. To solve this
problem, we have proposed a co-evolutionary algorithm that can evolve the navigators and the environment
patterns together. However, results obtained so far are not good enough. In this paper, we propose to adopt
clustering in each generation. The basic idea is to cluster the environment patterns first, select the fittest
environment patterns in each cluster as the representative, and then use some of the best representatives for
evaluating the navigators. The effectiveness of the proposed algorithm is verified through simulations.

Key-Words: - Neural networks, co-evolutionary learning, genetic algorithm, fitness sharing, inter-generation fitness, robot
navigation, clustering.

1 Introduction
Neural network (NN) is a good model for robot
navigation because it can acquire the navigation
policies automatically through learning. In many
cases, the policies cannot be given beforehand,
because the actual environment might be completely
different from the pre-specified ones. In such cases,
the robot should be able to acquire the policies by
itself while working in the environment.

Usually, we need some training data with given
teacher signals to train an NN. To get an NN
navigator, however, supervised learning cannot be
used because teacher signals are often not available.
It is known that evolutionary learning or
reinforcement learning is more efficient. In
reinforcement learning, when the robot takes a
certain action in the current state, there is some
feedback (reward or penalty) from the environment,
and the robot can learn based on the feedback. In
evolutionary learning, only an evaluation
mechanism is provided. Based on this mechanism,
we can know which robot is good and which one is
not. In general, evolutionary learning uses less
information in learning, and might be more suitable
for automatic acquisition of navigation polices. In
this research, we consider evolutionary learning
only.

There is one dilemma in evolving robot

navigators. On the one hand, the evolution may
become unstable if the environment of evolution is
not fixed, and good navigators cannot be obtained.
On the other hand, if the environment for evolution
is fixed, the navigator might be good only for that
environment. That is, the robot is just a lucky-guy
that cannot generalize well.

One method for resolving this dilemma is to
choose some typical environment patterns to
evaluate the individual navigators during evolution.
Using this method, we can reduce the chance of
obtaining lucky-guys because the evolved robot
navigator should be good for different environments.
Also, because the environment patterns are fixed, the
evolution can be stable.

One problem in using the above method is that in
general it is difficult to choose the environment
patterns that can generate good navigators. Clearly,
it will be very time consuming if we choose the
patterns through trial-and-error. In our study, we
have tried to solve the above problem through
co-evolution of the evaluation patterns and the robot
navigators [1].

There are mainly two problems in using standard
co-evolutionary learning. First, the environment
patterns obtained might be very similar with each
other. Second, the navigators obtained might be
good only for environment patterns in the last

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp205-211)

generation because the environment patterns also
change during evolution. If the individual navigators
are selected based only on the fitness in the current
generation, many good individuals can be selected
against in the next generation. This is the problem
seen in dinosaur extinction.

To avoid the first problem, it is a common practice
to use fitness sharing [2]. To evolve navigators that
are good for many generations, we have introduced
the concept of inter-generation fitness [1]. That is, to
evaluate a navigator, the fitness value for the current
generation and those for some earlier generations are
considered together. Using fitness sharing and
inter-generation fitness, we got better navigators
when compared with standard co-evolution.

 However, the results obtained so far are still not
good enough. To improve the co-evolutionary
algorithm further, this paper proposes a new
approach by adopting clustering in each generation.
The basic idea is to cluster the environment patterns
first, select the fittest environment pattern in each
cluster as the representative, and then use some of
the representatives for evaluation of the navigators.
Although this approach is very simple, the results
are significantly better than those obtained by using
the algorithm proposed earlier.

This paper is organized as follows. In the next
section, some preliminaries related to this work are
provided. In Section 3, we give a short review on the
standard genetic algorithm (SGA) based evolution
of the robot navigators. Section 4 describes the
co-evolution in detail, and proposes the new
approach. Section 5 provides the simulation results,
and Section 6 is the conclusion.

2 Preliminaries
2.1 The robot model
In this study, we use the Khepera robot which is a
well-known mini mobile robot used by many
researchers for studying intelligent robots. However,
we do not use the real robot in the experiments
because that will be very time consuming. We use the
free software Khepera simulator 2.0. The simulation
environment is a squared map of 10001000× pixels.
The layout of the robot(s), the obstacles, and the
goal(s) can be defined by the user.

2.2 The Navigator Model
The multilayer perceptron (MLP) is used as the robot
navigator in this study. The network has one input
layer, one hidden layer and one output layer. The input

layer has 17 inputs (8 infrared sensors, 8 light sensors,
and one dummy input corresponds to the threshold).
For convenience, the number of hidden neurons is also
fixed to 17 without fine-tuning. Two output neurons
are used to encode four actions:

• Move forward: both outputs are larger than 0.5.
• Move back: both outputs are less than 0.5.
• Turn right: the first output is larger than 0.5, and

the second output is less than 0.5.
• Turn left: the first output is less than 0.5, and the

second output is larger than 0.5.

2.3 The Problem Used as the Test Bed
The problem used to test the efficiency of the proposed
algorithms is very simple. We just consider evolving a
mobile robot that can reach a given goal from any start
point in an environment containing some obstacles.
The layout of the environment is not changed during
evolution. The environment patterns in this case are
the start points and the orientation of the robot. If we
can solve this problem well, we can try to solve more
complex problems in the next step. On the other hand,
if we cannot solve this simple problem, the algorithm
must be improved further.

3 Evolving the Navigators Based on
Standard Genetic Algorithm

In our earlier study, we have studied evolutionary
learning of robot navigators based on SGA, and tried
to extract understandable policies from the evolved
NN navigator [3]. To understand co-evolutionary
learning of robot navigators and the environment
patterns, this section provides a brief review of
SGA-based learning of robot navigators.

To evolve the robot navigators, we need to define
the fitness and genotype of the individual navigators.
In our study, the genotype of an NN robot navigator
is simply the list of all connection weights
represented in real numbers. Since the problem
considered here is to obtain robot navigators that can
drive the robot to a given goal (light source) from
any start point, we can define the fitness based on the
distance between the robot and the goal after the
robot moves for a given number of steps. If the robot
can reach the goal, we should prefer those that can
reach the goal quickly (use less steps). Specifically,
the fitness of a robot navigator can be calculated as
follows:

Step 1: The robot is put to the start point.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp205-211)

Step 2: Let the robot move in the environment based
on the sensor inputs and the decisions made by the NN
navigator. The robot stops when the number of moves
reaches to 2,000, or when it reaches the goal.
Step 3: If the robot cannot reach the goal, the fitness

is defined as follows:

)(BAfitness distance−×= (1)

where A and B are constants, and distance is the
distance between the robot and the goal when the robot
stops. In our study, we define A=0.1 and B=700. In
addition, if the robot reaches the goal within 2,000
steps, the bonus given below is added to the fitness.

])2000[(2 DCnBonus +×−= (2)

Here, C=0.000016 and D=14. The parameters A, B, C
and D are so chosen that when the robot reaches the
goal with 1,000 steps, the fitness is 100. If the robot
reaches the goal with 2,000 steps, the fitness becomes
84. The fitness is still higher than that of the robot that
cannot reach the goal.
Based on the definition of the genotype and that of

the fitness given above, SGA evolves the individual
navigators using three genetic operations, namely
selection, crossover and mutation. Specifically,
truncation selection, 2-point crossover, and
weight-by-weight mutation are used in our study.

4 Co-evolution of Robot Navigators

and Environment Patterns
4.1 General considerations
To evolve robot navigators using SGA, the selection
of start points is very important. If we fix one start
point, the robot can reach the goal from this start
points, but if we put the robot to other start points, it
may not be able to reach the goal. If we evaluate robot
using random start points that are generated in each
generation, the generalization ability may become
higher, but the evolution process may not be stable
because the evaluation criterion is not constant.

To solve the above problem, we can use
co-evolutionary algorithm to evolve the robot
navigators and the environment patterns together.
The individual of an environment pattern in the
problem considered here is the coordinate (x,y) of
the start point and the orientation of the robot at that
point.

4.2 Standard Co-evolution
Let us consider the standard co-evolutionary algorithm
first. Fig. 1 shows the flowchart of co-evolution. It can
be described as follows:

Initialization

Evaluation of navigators

Evolution of navigators

Evaluation of environments

Evolution of environments

Number of

generation = Ng ?

End

Start

N o

Yes

Fig. 1 Flowchart of standard co-evolution

Step 1: Generate two initial populations, one for the

robot navigators, and another for the environment
patterns. All individuals are initialized using random
numbers.
Step 2: Evaluate the individual navigators using all

current environment patterns. For each navigator, the
fitness of the robot for each environment pattern is
defined by (1) and (2). Its total fitness is the sum of the
fitness values for all environment patterns. The fitness
of a navigator should be as high as possible.
Step 3: Evolve the robots using SGA.
Step 4: Evaluate the environment patterns using all

current navigators. Specifically, for a given
environment pattern, put all navigators, one by one, to
the position and orientation defined by this pattern,
and let the robot move towards the goal. For each
robot, we get a fitness value as defined by (1) and (2).
The fitness of the environment pattern is defined as the
sum of the fitness values of all navigators. Note that
“fitness” of an environment pattern should be as small
as possible. That is, we should find such patterns from

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp205-211)

