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Abstract: - This paper studies evolutionary learning of neural network navigators for mobile robots. To evolve 
navigators that generalize well, we should evaluate the navigators using as many environment patterns as possible 
during evolution. On the other hand, to evolve the navigators efficiently, we should use as few environment 
patterns as possible. It is difficult to know in advance what patterns can produce good navigators. To solve this 
problem, we have proposed a co-evolutionary algorithm that can evolve the navigators and the environment 
patterns together. However, results obtained so far are not good enough. In this paper, we propose to adopt 
clustering in each generation. The basic idea is to cluster the environment patterns first, select the fittest 
environment patterns in each cluster as the representative, and then use some of the best representatives for 
evaluating the navigators. The effectiveness of the proposed algorithm is verified through simulations. 
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1   Introduction 
Neural network (NN) is a good model for robot 
navigation because it can acquire the navigation 
policies automatically through learning. In many 
cases, the policies cannot be given beforehand, 
because the actual environment might be completely 
different from the pre-specified ones. In such cases, 
the robot should be able to acquire the policies by 
itself while working in the environment.   

Usually, we need some training data with given 
teacher signals to train an NN. To get an NN 
navigator, however, supervised learning cannot be 
used because teacher signals are often not available. 
It is known that evolutionary learning or 
reinforcement learning is more efficient. In 
reinforcement learning, when the robot takes a 
certain action in the current state, there is some 
feedback (reward or penalty) from the environment, 
and the robot can learn based on the feedback. In 
evolutionary learning, only an evaluation 
mechanism is provided. Based on this mechanism, 
we can know which robot is good and which one is 
not. In general, evolutionary learning uses less 
information in learning, and might be more suitable 
for automatic acquisition of navigation polices. In 
this research, we consider evolutionary learning 
only. 

There is one dilemma in evolving robot 

navigators. On the one hand, the evolution may 
become unstable if the environment of evolution is 
not fixed, and good navigators cannot be obtained. 
On the other hand, if the environment for evolution 
is fixed, the navigator might be good only for that 
environment. That is, the robot is just a lucky-guy 
that cannot generalize well. 

One method for resolving this dilemma is to 
choose some typical environment patterns to 
evaluate the individual navigators during evolution. 
Using this method, we can reduce the chance of 
obtaining lucky-guys because the evolved robot 
navigator should be good for different environments. 
Also, because the environment patterns are fixed, the 
evolution can be stable.  

One problem in using the above method is that in 
general it is difficult to choose the environment 
patterns that can generate good navigators. Clearly, 
it will be very time consuming if we choose the 
patterns through trial-and-error. In our study, we 
have tried to solve the above problem through 
co-evolution of the evaluation patterns and the robot 
navigators [1].  

There are mainly two problems in using standard 
co-evolutionary learning. First, the environment 
patterns obtained might be very similar with each 
other. Second, the navigators obtained might be 
good only for environment patterns in the last 
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generation because the environment patterns also 
change during evolution. If the individual navigators 
are selected based only on the fitness in the current 
generation, many good individuals can be selected 
against in the next generation. This is the problem 
seen in dinosaur extinction. 

To avoid the first problem, it is a common practice 
to use fitness sharing [2]. To evolve navigators that 
are good for many generations, we have introduced 
the concept of inter-generation fitness [1]. That is, to 
evaluate a navigator, the fitness value for the current 
generation and those for some earlier generations are 
considered together. Using fitness sharing and 
inter-generation fitness, we got better navigators 
when compared with standard co-evolution. 

 However, the results obtained so far are still not 
good enough. To improve the co-evolutionary 
algorithm further, this paper proposes a new 
approach by adopting clustering in each generation. 
The basic idea is to cluster the environment patterns 
first, select the fittest environment pattern in each 
cluster as the representative, and then use some of 
the representatives for evaluation of the navigators. 
Although this approach is very simple, the results 
are significantly better than those obtained by using 
the algorithm proposed earlier. 

This paper is organized as follows. In the next 
section, some preliminaries related to this work are 
provided. In Section 3, we give a short review on the 
standard genetic algorithm (SGA) based evolution 
of the robot navigators. Section 4 describes the 
co-evolution in detail, and proposes the new 
approach.  Section 5 provides the simulation results, 
and Section 6 is the conclusion. 

 
2   Preliminaries 
2.1 The robot model 
In this study, we use the Khepera robot which is a 
well-known mini mobile robot used by many 
researchers for studying intelligent robots. However, 
we do not use the real robot in the experiments 
because that will be very time consuming. We use the 
free software Khepera simulator 2.0. The simulation 
environment is a squared map of 10001000× pixels. 
The layout of the robot(s), the obstacles, and the 
goal(s) can be defined by the user. 
 
2.2 The Navigator Model 
The multilayer perceptron (MLP) is used as the robot 
navigator in this study. The network has one input 
layer, one hidden layer and one output layer. The input 

layer has 17 inputs (8 infrared sensors, 8 light sensors, 
and one dummy input corresponds to the threshold). 
For convenience, the number of hidden neurons is also 
fixed to 17 without fine-tuning. Two output neurons 
are used to encode four actions:  
 
• Move forward:  both outputs are larger than 0.5. 
• Move back: both outputs are less than 0.5. 
• Turn right: the first output is larger than 0.5, and 

the second output is less than 0.5. 
• Turn left: the first output is less than 0.5, and the 

second output is larger than 0.5. 
 
2.3 The Problem Used as the Test Bed 
The problem used to test the efficiency of the proposed 
algorithms is very simple. We just consider evolving a 
mobile robot that can reach a given goal from any start 
point in an environment containing some obstacles. 
The layout of the environment is not changed during 
evolution. The environment patterns in this case are 
the start points and the orientation of the robot. If we 
can solve this problem well, we can try to solve more 
complex problems in the next step. On the other hand, 
if we cannot solve this simple problem, the algorithm 
must be improved further. 
 

3   Evolving the Navigators Based on 
Standard Genetic Algorithm 

In our earlier study, we have studied evolutionary 
learning of robot navigators based on SGA, and tried 
to extract understandable policies from the evolved 
NN navigator [3]. To understand co-evolutionary 
learning of robot navigators and the environment 
patterns, this section provides a brief review of 
SGA-based learning of robot navigators.  

To evolve the robot navigators, we need to define 
the fitness and genotype of the individual navigators. 
In our study, the genotype of an NN robot navigator 
is simply the list of all connection weights 
represented in real numbers. Since the problem 
considered here is to obtain robot navigators that can 
drive the robot to a given goal (light source) from 
any start point, we can define the fitness based on the 
distance between the robot and the goal after the 
robot moves for a given number of steps. If the robot 
can reach the goal, we should prefer those that can 
reach the goal quickly (use less steps). Specifically, 
the fitness of a robot navigator can be calculated as 
follows: 

 
Step 1: The robot is put to the start point.  
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Step 2: Let the robot move in the environment based 
on the sensor inputs and the decisions made by the NN 
navigator. The robot stops when the number of moves 
reaches to 2,000, or when it reaches the goal.   
Step 3: If the robot cannot reach the goal, the fitness 

is defined as follows: 
 

)(BAfitness distance−×=                             (1) 
 
where A and B are constants, and distance is the 
distance between the robot and the goal when the robot 
stops. In our study, we define A=0.1 and B=700. In 
addition, if the robot reaches the goal within 2,000 
steps, the bonus given below is added to the fitness. 
 

])2000[( 2 DCnBonus +×−=                                 (2) 
 
Here, C=0.000016 and D=14. The parameters A, B, C 
and D are so chosen that when the robot reaches the 
goal with 1,000 steps, the fitness is 100. If the robot 
reaches the goal with 2,000 steps, the fitness becomes 
84. The fitness is still higher than that of the robot that 
cannot reach the goal. 
Based on the definition of the genotype and that of 

the fitness given above, SGA evolves the individual 
navigators using three genetic operations, namely 
selection, crossover and mutation. Specifically, 
truncation selection, 2-point crossover, and 
weight-by-weight mutation are used in our study. 
 
4   Co-evolution of Robot Navigators 

and Environment Patterns 
4.1 General considerations 
To evolve robot navigators using SGA, the selection 
of start points is very important. If we fix one start 
point, the robot can reach the goal from this start 
points, but if we put the robot to other start points, it 
may not be able to reach the goal. If we evaluate robot 
using random start points that are generated in each 
generation, the generalization ability may become 
higher, but the evolution process may not be stable 
because the evaluation criterion is not constant.  

To solve the above problem, we can use 
co-evolutionary algorithm to evolve the robot 
navigators and the environment patterns together. 
The individual of an environment pattern in the 
problem considered here is the coordinate (x,y) of 
the start point and the orientation of the robot at that 
point.  

 

4.2 Standard Co-evolution 
Let us consider the standard co-evolutionary algorithm 
first. Fig. 1 shows the flowchart of co-evolution. It can 
be described as follows: 
 

Initialization 

Evaluation of navigators 

Evolution of navigators 

Evaluation of environments 

Evolution of environments 

Number of 

generation = Ng ? 

End 

Start 

N o 

Yes 

 
Fig. 1 Flowchart of standard co-evolution 

 
Step 1: Generate two initial populations, one for the 

robot navigators, and another for the environment 
patterns. All individuals are initialized using random 
numbers.  
Step 2: Evaluate the individual navigators using all 

current environment patterns. For each navigator, the 
fitness of the robot for each environment pattern is 
defined by (1) and (2). Its total fitness is the sum of the 
fitness values for all environment patterns. The fitness 
of a navigator should be as high as possible. 
Step 3: Evolve the robots using SGA. 
Step 4: Evaluate the environment patterns using all 

current navigators. Specifically, for a given 
environment pattern, put all navigators, one by one, to 
the position and orientation defined by this pattern, 
and let the robot move towards the goal. For each 
robot, we get a fitness value as defined by (1) and (2). 
The fitness of the environment pattern is defined as the 
sum of the fitness values of all navigators. Note that 
“fitness” of an environment pattern should be as small 
as possible. That is, we should find such patterns from 
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