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Abstract: - Due to geological reasons, fractured reservoirs are extremely heterogeneous. Modelling of these 
reservoirs has so far been considered complex and progress is still inadequate. This paper presents a novel and 
hybrid method to model discrete fracture networks in naturally fractured reservoirs. It involves investigation and 
systematic integration of tasks spanning cross-disciplinary areas: geological, statistical and artificial intelligence 
characterisation of natural fractures, rock and fracture mechanics. This paper also evaluates applications of 
fractal mathematics on characterising natural fracture distributions, especially discrete multifractal dimensions. 
A case study illustrates that discrete multifractal dimensions are greatly more suitable for such complex systems 
as natural fractures, compared to the commonly used single-fractal and statistical distributions. 
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1 Introduction 
Naturally fractured reservoirs (NFR) have recently 
attracted intensive research attention, because the 
world market is increasingly under pressure to 
exploit energy from unconventional sources such as 
naturally fractured oil, gas and hot dry rock 
reservoirs. Overall NFR modelling involves the 
description of reservoir boundaries, rock 
heterogeneity, major faults and medium- to small-
scale discrete fracture networks (DFN). Faults and 
fractures descriptions include both fluid flow as well 
as geometric properties. Comprehensive models of a 
NFR allow us select the best well locations, study 
the response of natural fractures under stimulation 
pressure, design optimum development plan and 
evaluate reservoir potential. 
    This paper reviews important aspects of NFR 
modelling, including fracture characterisation and 
spatial simulation. Subsequently, it presents an 
innovative combination of artificial neural network 
and discrete fractal mathematics for DFN modelling. 
 
 
2 NFR Modelling: a Brief Review 
Natural fractures occur at different scales and are 
highly heterogeneous. Rock fracturing is a 
complicated process, which is sensitive to changes 
in geological conditions. Under lithostatic, fluid 
pressure, tectonic, thermal and geological stresses, 
fractures generally initiate and propagate when the 
stresses become equal or greater to the rock strength. 
Different geological conditions induce different 

fracture patterns, thus, different NFR characteristics. 
Most rocks have simultaneously and sequentially 
undergone multiple deformational events, which 
eventually result in very complicated fracture 
systems [1]. In addition, characterization of fracture 
information from conventional field data represents 
another major problem. Different field data sources 
cover different scales (microscopic to regional) and 
are of different resolutions. No single tool can 
provide all information needed to fully characterize 
a NFR. Moreover, no single tool can provide all 
information needed to fully characterise a NFR. For 
example, seismic and outcrop are regional-scaled 
data sources, whose interpretation can only reveal 
orientation and size of major faults. Well log, core 
and formation micro scanner (FMS) image have 
high resolutions but small investigation radii. They 
reveal orientation, aperture and density of local 
fractures [2, 3]. Thus, in order to portray a complete 
picture, it is essential to develop a model that allows 
efficient integration of field fracture data. The 
integrated reservoir modelling should consist of 
computational tools and methods that utilise 
simultaneously, or sequentially, various data 
sources, representing different reservoir 
characteristics at different scales. This can reduce 
uncertainties, reproducing all observed reservoir 
fracture characteristics [3]. 
    Several integrated techniques to characterize and 
model NFR are available in literature, for example, 
stochastic simulation [4-6], neural network and 
fuzzy logics [7] and other artificial intelligence tools 
[8, 9]. Although the integrated techniques could 
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accommodate multiple data sources, cover various 
modelling scales, many problems remain. First, 
previous discrete stochastic simulations are only 
reliable in near wellbore regions, and the 
unconditioned random filling of inter-well regions 
limits their uses beyond the near wellbore regions. 
Second, interactive models [5] require very intensive 
manual interaction, especially for analysing data and 
understanding fracture behaviours. This limits their 
applications to typical NFR, which usually contain 
many fractures of various scales and 
heterogeneously distributed. Third, most of the 
previous artificial intelligent models are continuum 
(grid-based), whose  outputs are maps of fracture 
intensity or similar fracture index. These models fail 
to take into account details of fracture properties 
such as orientation and size. Despite taking into 
account the overall effect of fracture network upon 
fluid flow in the reservoir, the methods did not 
require generation and treatment of discrete 
fractures. Moreover, in cases where discrete fracture 
properties are considered, only simple statistical 
measurements (e.g. histogram, variogram, normal 
and log-normal distributions) are used regardless of 
the actual fracture behaviours. These limitations are 
the main reasons why progress of NFR modelling 
has so far been inadequate. 
 
 
3 Methodology 
In this paper, the concept of stochastic simulation 
and neural networks (NN) will be further developed 
and used, in a hybrid manner such that the 
previously mentioned problems could be overcome. 
The aim of the first module of NN analysis is to 
develop statistical distributions of key fracture 
properties (location, orientation and size). The 
distributions could be either parametric or non-
parametric, which are used in the second module of 
fractal stochastic simulation. Main features of this 
process are described in the following sections.  
 
3.1 Data sources 
Due to complex nature of NFR, different tools and 
disciplines need to be integrated to fully characterize 
the fracture properties. There are two main types of 
data sources about characteristics of fractures 
present in NFR.  
    The first group includes seismic, outcrop and 
other geological sources, which have been used in 
studying reservoir geological features. This group of 
data is at a large (reservoir) scale, with resolution 
ranges from a few inches to several feet. They reveal 
reservoir structure, thickness, lithology and 

curvature of various formations. These factors are 
directly related to several fracture characteristics, 
such as fracture length, spacing, orientation, density 
[7]. Seismic data show orientation and size of major 
faults. Moreover, smaller-scale fracture orientation 
and density can be interpreted from classical P-wave 
seismic attribute maps, such as AVO and/or shear 
wave attributes [10]. Outcrops data also describe 
various fracture characteristics, such as orientation, 
size and spacing, at sub-seismic scale [4]. 
    The other group contains the data available at the 
well sites, such as logs, core, drilling and well 
testing. Among the most efficient logging tools for 
fracture characterization are dip meter (giving 
fracture orientation), borehole televiewer, formation 
micro scanner and core. They allow determination of 
fracture properties such as dip, strike, aperture, 
density and fractal dimension (via the box counting 
method) [7]. Wellbore data are of higher resolution 
(fraction of an inch) and more related to small scale 
fractures than the seismic and outcrop data. 
 
3.2 Neural network characterization 
Different data sources reveal different aspects of the 
fracture system and are of different scales. The inter-
relationships between different data types and their 
relevance on fracture characterization are very 
complicated. Problem arises when secondary 
parameters (fractal measurement, fracture density) 
are computed, where an integration of several data 
sources is required. NN is hence used to incorporate 
the available data to characterize the complex 
relationships that might exist between them and the 
fracture parameters. A NN is capable of integrating 
different data sources of different nature to delineate 
the required relationships [11]. 
    Back-propagation NN uses a set of processing 
elements (or nodes) that are similar to human brain 
neurons. These nodes are interconnected in a 
network that can then identify patterns/ relationships 
in the input data [11]. In other words, NN can learn 
from experience. The NN is a supervised learning 
technique, which can learn almost any functions 
regardless of noise in the data or the complexity of 
their relationships. The NN learns through an 
iterative procedure: through example. The input data 
are combined with a set of weighting factors (set W1 
and set W2), through hidden layers, to estimate the 
outputs. Fig.1 shows the sketch model of a NN. The 
aim of the training process is to continually 
adjusting the weighting factors W1, W2 so as the 
error in the outputs is minimized (better fit the 
model). The NN technique is applied in computing 
distribution of the two key fracture properties: 
fracture density and fractal dimensions. 
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Fig. 1- Three-layer NN with 5 hidden neurons used in this 
study. W1 and W2 are the two sets of weighting factors. 
 
3.3 Fracture density distribution  
Density is defined as mean fracture area per unit 
volume. It is one of the most important fracture 
characteristics, being directly proportional to the 
total number of fractures, their relative size and 
distribution. It is an improved version of intensity, 
which refers to mean number of fractures per unit 
volume. Density takes into account the different 
roles that big and small fractures have. Fracture 
density map quantifies degree of fracture clustering 
and represents true measurement on spatial point 
pattern (random, regular, clustered or mixed). 
    Due to its importance, both characterisation and 
simulation of fracture density are desired in NFR 
modelling. Nevertheless, previous works did not 
present these steps satisfactorily. Firstly, most works 
involved only fracture intensity, whose map can 
reveals just certain patterns of centre points [6, 12]. 
Secondly, the characterisations employed simple 
methods such as least squared errors, kernel and 
kriging. The predictions of density or intensity 
values from well data over the field were made by 
pure mathematical estimations [13]. They could be 
greatly improved by incorporating variations in 
physical conditions such as rock strength and 
lithological contents. Finally, grid-based models 
stopped at output fracture intensity maps. On the 
other hand, due to mathematical intricacy, most of 
discrete models neglected density or intensity 
distribution data. 
    In this work, fracture density values are first 
calculated directly from fracture data at wellbores 
(e.g. wellbore images and core). They are then used 
as NN training data. Density distribution map is 
subsequently determined from the NN outputs. The 
resulting density map is expected to be more reliable 
compared to results of previous methods. 
 
3.4 Discrete multifractal 
There are not many data sources for characterisation 

of fracture size (i.e. length, area and aperture). The 
lack of reliable field measurements makes it difficult 
to be analysed statistically. Fractal geometry realizes 
proper mathematical framework for geometrical 
study of many complex non-Euclidean shapes found 
in nature. It has been proved especially suitable for 
natural discontinuities such as fractures [14]. Fractal 
is a fundamental concept in the field of theoretical 
geometry. It describes features that appear self-
similar under varying degrees of magnification. The 
invariant self-similarity can be portrayed by a single 
quantity of fractal dimension (D) [15]. The fractal 
dimension is a function of strength, tectonic history 
and lithology of the fractured rock mass. It is related 
to number of fractures (Nr), whose radii greater than 
a radius value (r):  

Dr r
CN =    (1) 

where C is a proportional constant. Value of fractal 
dimension can be easily evaluated by the graphical 
box-counting analysis on core, wellbore images, 
outcrop and seismic data [14]. 
    Although a large number of investigations 
validated fractal characteristics of a DFN, many 
others disagreed [16]. It has been argued that several 
self-similarity ranges exist in complicated networks 
of micro scaled and regional scaled fractures. 
Several investigators used the box-counting method 
to realise that fractal property of a DFN is scale-
variant. Thus, single fractal dimension is not always 
sufficient to explain natural fractures over a 
significant range of scales. Due to the irregularities, 
multifractal analysis is more suitable.  
    In broad terms, objects with more than one fractal 
dimensions are multifractal. In other words, 
multifractal objects contain a union of subsets, with 
separate scaling exponents. There are two 
approaches for extension from single fractal to 
multifractal. One is to introduce new parameters to 
account for spatial intertwines of fractal dimensions. 
Fractal dimension is generalised by continuous 
fractal spectrum. Most of existing multifractal 
models employ this approach [17]. The other 
approach uses discrete multifractal, where a set of 
different fractal dimensions (i.e. array of limited 
values, instead of continuous spectrum) account for 
all ranges of self-similarity.  
 
Continuous multifractal spectrum 
Application of multifractal analysis is examined on a 
2D DFN (Fig.2). The network is divided into boxes 
with linear size (l) and N(l) is the number of boxes 
that intersect or contain fractures. Values of fractal 
dimensions, as derived from eq. 1:  
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where α is called the coarse Holder exponent [18]. 
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Fig. 2- Box-counting method for a DFN 
 
    Define N(l,α) as the number of boxes of size (l) 
having coarse Holder exponent (α). The probability 
of a cell corresponding to value α is: 

2),(),( llNClP ⋅⋅= αα            (3) 
where C is a constant. By considering the limit l 0, 
the continuous fractal dimension (f(α)) [18] and co-
dimension (c(α)) spectra [17] are defined as:  
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Multifractal can be represented by either of the two. 
In case of mono fractal, the limit f(α) converges to 
the single fractal dimension value. The continuous 
multifractal can be evaluated using the box-counting 
procedure and eqs. 4 and 5. 
 
Discrete multifractal 
Alternatively, the discrete multifractal model is 
used. Discrete values of the coarse Holder exponent 
(αk) (k = 1,…, m) corresponds to m discrete values of 
f(αk): 

mk
l

lN
l

f k
k ,...,1,

log
),(log

0
lim

)( =⎥
⎦

⎤
⎢
⎣

⎡
−

→
=

αα
     

(6)
 

Discrete multifractal values can be calculated based 
on the moment method as in Cheng [19]. According 
to the author, discrete multifractal exists and can be 
used in many fields of science. 
    It could be observed that multifractal analysis is 
desired for DFN characterisation. When there are 
sufficient representative data, both continuous 
multifractal dimension function and discrete 
multifractal values can be accurately determined, 
based on methods described above. However, it is 
usually not the case. Limited data include a few 

major faults from seismic maps, local 2D network 
map from outcrops and small-scaled fractures from 
cores and wellbore images. Thus, even though it is 
likely that multifractal exists, its characterisation is 
difficult. This is the reason for the popularity of 
single fractal in fracture literature, although it is 
unrealistic. In this work introduces the combination 
of a NN and multifractal dimension mathematics to  
effectively study natural fracture spatial distribution. 
First, discrete fractal dimensions are calculated at 
different ranges of available data. Graphical box-
counting method is routinely applied. Then, a NN 
integrates other data sources to predict values of 
fractal dimensions at all scales and locations. This 
procedure is not analogous to conventional 
interpolation and extrapolation method as kriging. 
When predicting dimension value for a point 
(region) in the field, the result depends on not only 
geographical locations but also geological, 
lithological, seismic and/or well log responses. Due 
to the lack of representative data, a great deal of 
predictive modelling is involved. As a result, despite 
popularity of continuous multifractal, discrete 
multifractal is believed to be more suitable for 
fracture characterisation and modelling. 
 
3.5 Spatial simulation of fracture network 
Having reservoir distributions of fracture density 
and discrete multifractal dimensions, we simulate 
the NFR using a geological stochastic modelling 
technique. The reservoir is divided into grids, each 
grid a cubic block of edge length L. Within this rock 
mass, the centres of penny-shaped (circular) 
fractures are generated stochastically. The radii of 
randomly distributed fractures are then defined as: 

( ){ } DDD rrr /1
maxmin1 −−− +−= ααα     (7) 

in which, α is a randomly distributed uniform 
deviate between 0 and 1; rα is the radius of a fracture 
for a random value of  α; rmin and rmax are the 
minimum and the maximum radii of fractures 
observed in the reservoir and D is the fractal value at 
the grid’s centre. Eq. 7 is executed repeatedly with 
different values of α until the target fracture density 
distribution is achieved. 
 
 
4 Case Study 
A case study is used to demonstrate capability of the 
proposed model. First, the fracture density and 
discrete multifractal dimension for simulating blocks 
in the reservoir are estimated by a NN. Input data are 
seismic velocity, amplitude and lithology index. 
They are chose among the previously mentioned 
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data sources, as they are widely available, reliable 
and of high resolution. The data are available for the 
whole reservoir (e.g. Fig.3).  
  The training data for the NN are composed of the 
above set of input data, fractal dimension and 
fracture density at the wellbore. Through the 
training, the NN establishes complex relationships 
between these parameters. Using these relationships, 
the model generates the distribution of fractal 
dimension and fracture density in the whole 
reservoir (Figs.4 and 5). The NN analysis has very 
high reliability, with the matching (between output 
and input values) correlation being very close to 1.   
Moreover, by analysing the weighting factor sets 
W1 and W2, one can also understand the effects of 
different inputs on the two outputs. Table 1 confirms 
the relevance of three chosen inputs, with lithology 
index is the most dominant factor while seismic 
amplitude is the least. 
    The result values of fractal dimension and fracture 
density are the important data for the next step: 
fractal-stochastic fracture generation. There are also 
other data sources, such as the rock properties, other 
fracture properties (orientation, class properties and 
approximate length) and stress data. 
    The fracture orientation distribution contains dip, 
azimuth and the probability that occurs (weighting). 
It is obtained from fracture outcrops, measurements 
on core or borehole images logging and seismic 
profile. The reservoir fractures are divided into four 
different classes, based on the distinction in their 
geological, lithological and physical (including 
fractal) properties. The class details are basic friction 
angle, shear dilation angle at zero normal stress, 
initial relative offset, largest fracture and smallest 
fracture to simulate, largest coherent slip patch, 
fractal dimension, 90% normal closure reference 
stress and cohesion. Those data are also computed 
directly from the same sources as fracture 
orientation. Output of simulation is the reservoir’s 
detailed and realistic DFN (Fig.6). 
 

 
Fig.3- Seismic velocity 3D data (m/s). W1 to W8 show 
the locations of existing wells. 

 

 
Fig.4- Characterized 3D Fractal dimension. 

 

 
Fig.5- Characterised 3D fracture density (m2/m3). 

 

 
Fig.6- Result DFN (Medium scaled fractures). 

 
Table 1– Difference in test set performance  

  Mean squared errors Difference 
All Inputs 0.0491   

Seismic velocity 0.3355 -0.2864 
Seismic amplitude 0.2292 -0.1801 
Lithology Index 0.3667 -0.3176 

 
 
5 Discussion 
The introduction of discrete multifractal and NN to 
NFR characterisation and modelling denotes a 
number of important advantages. First, multifractal 
is a powerful tool that has been used in various 
fields of science for self-similarity characterisation. 
It can distinguish patterns in the spatial distribution 
of geological features [19]. Multifractal is especially 
suitable for natural fractures. By using multifractal 
to represent the fracture length distribution, 
inconsistent and inaccurate probability density 
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functions can be avoided. Thus, characterisation of 
fracture size becomes a great deal more informative, 
flexible and representative. Besides, together with 
fracture density, multifractal signifies relationships 
between the number of fractures, their size and 
spatial distribution. Second, NN allows consistent 
computation of discrete multifractal dimensions over 
the whole reservoir. Consequently, unlike its 
continuous form, discrete multifractal can now be 
applied into the modelling process. 
 
 
6 Conclusion 
In conclusion, an intelligent efficient method has 
been developed to extrapolate well data throughout 
the whole reservoir and to derive important 
parameters (discrete multifractal, fracture density) 
for DFN modelling. This paper has shown how data 
from different sources can be processed by 
combination of different techniques to derive more 
realistic natural fracture characteristics. The 
integration of data from different sources and NN, 
fractal analysis and stochastic analysis techniques 
has yielded a hybrid neuro-fractal-stochastic model 
for NFR modelling. It could also be noted that the 
modelling process can be repeated throughout the 
field life, as more and more data become available. 
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