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Abstract: - In this paper, an adaptive control 
technique is applied to controlling the chaotic 
behavior in thruster motor system for deepwater 
ocean robot. This chaotic oscillation has a direct 
impact on the stability, reliability and security of the 
robot. In addition, the proposed approach is also 
verified in the way of both flexibility and 
effectiveness, and a kind of chaotic controller that is 
applicable for manufacturing is designed and 
constructed. The simulation results show that thruster 
motor system can escape from the chaotic state in a 
short time by using the adaptive controller and 
transfer into continuous stable state. The method 
presented has an obvious effect on the control.  
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1 Introduction 
It is interesting to note that sometimes an unexpected 
drastic vibration occurs in the torque and speed of 
the thruster motor system for deepwater ocean robot. 
Due to the limitation of research in learning and 
analyzing full mechanism for the whole mechanical 
system while the real system had very irregular 
behavior, the reason for that problem is generally 
attributed to external disturbance or system accident. 
As a matter of fact, in terms of the investigation of 
modern techniques in nonlinear dynamics, this 
nonlinear effect is characterized by chaotic behavior. 

Ocean robot plays an important role in 
underwater observation, demarcation and exploration 
for ocean sources, in which deepwater thruster motor 
is used as the radical component, whose performance 
and operation behavior directly affect and determine 
the dynamic and static performances, reliability and 
security of the deepwater robot. Therefore, it is 
necessary to recognize the chaotic operation status of 
this thruster motor system for deepwater ocean robot 
and restrain its occurrence so that the thruster motor 

system can get rid of the chaotic operation status and 
guarantee that the deepwater works in proper order.  

 Fig 1  Ocean robot 

 
Fig 2  Thruster motor and propeller 

Thus, the investigation of chaotic behavior such as 
Lyapunov exponents etc. is pretty significant in the 
real world. 
 
2 Chaotic Behavior of Ocean Thruster 

Motor System 
Figure 1 shows an ocean robot equipped with a set of 
thruster system consisting of multi-thruster motors, 
which aim at realizing these motions such as moving 
forwards, moving backwards, floating upwards, 
diving downwards, turning left, turning right, and 
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various combined movements. The thruster motor 
and corresponding propeller used in the robot is 
shown in Figure 2. 

In order to discuss theoretically the dynamic 
chaotic behavior of the thruster motor system for 
ocean robot, we need to construct the physical model 
and mathematical model of the dynamic system, 
respectively. As shown in the literatures [1],[2], [4], 
[5], [6], after application of coordinate 
transformation, linear affined transformation and 
time scaling transformation, the nonlinear chaotic 
model of the thruster motor system for deepwater 
robot is expressed as follows:  
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where µ , γ , σ andν  are structure parameters of 
thruster dynamic system; du~  is a voltage on  the 
direct axis, qu~  is a voltage on  the quadrature 

axis,TL
~ is a load torque after transformation; di

~  is a 
current on  the direct axis, qi

~  is a current on  the 
quadrature axis, ω~ is a rotation speed after 
transformation. 

Compared with the models of classical Lorenz 
chaotic system and Chen’s chaotic system, it seems 
that that of thruster motor system looks like them, 
but, in fact, their topologies are not completely the 
same. Consequently, the topology complexities of 
their dynamic system, their dynamic behavior and 
characteristics are also different. 

We can identify chaotic operation properties and 
characteristics of system through determining the 
characteristic exponents of nonlinear chaotic system. 
The general methods for determining the 
characteristic exponents of nonlinear chaotic system 
are Lyapunov exponents, power spectrum, Poincaré 
map and fractal dimension etc. Lyapunov exponents 
are the most important technique which is employed 
to define strictly and predict chaos of the system. 
Assume that structure parameters of thruster motor 
system for deepwater ocean studied are given as 
follows: 

00.1=µ , 58.5=σ , 55.19=γ  
the initial condition of the system operation is 
defined as: 

[ ]Tqd ii ω~~~ =  [ ]T05.002.005.0

Lyapunov exponents are calculated respectively 
under the conditions of the no load sliding, unload 

operating and load operating of the thruster motor 
system, which is used to indicate whether or not 
chaos occurs in the system. The performance curve  
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Fig 3 Chaotic attractor of thruster motor  

system at no load 
simulated in case of no load is shown in Figure 3, 
where the value of coordinate unit is expressed by 
dimensionless number. Figure 3 clearly illustrates the 
butterfly effect of attractor of the thruster motor 
system, which further directly proves that in this case 
chaotic operation behavior occurs in the thruster 
motor system.  
 
3 Chaotic Control of Thruster Motor 

System  
In spite of a lot of approaches to eliminating the 
negative chaotic phenomena involved in systems, we 
could not resort to only one of methods to restrain all 
of chaotic phenomena existed in practical 
engineering since complexities of chaotic systems 
require the diversity of control methods. For chaotic 
phenomena existed in the real world, we should take 
many factors into consideration, like the limitation of 
initial condition, the flexibility of control measure, 
and the complexity in design of software and 
hardware etc. so as to find an appropriate technique 
according to the concrete problems. 

This paper proposed an adaptive control method 
to restrain the chaotic phenomena of thruster motor 
system for deepwater robot, this method is simple, 
reliable and is easy to be achieved. Let us assume 
that the mathematical model of thruster motor system 
is represented by following -order state equation: n

))(),(()( ttt uxFx =&                      （2） 
by adding a control vector to the equation (2), the 
system equation is converted into a disturbance 
equation of autonomous system, in symbols: 

ku
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Theorem: If we can construct a differentiable 
positive definite function  and its total 
derivative calculated along the solution curve 
of the equation (3) is negative definite, then the 
undisturbed motion of autonomous system will be 
asymptotically stable. This theorem is called as 
Lyapunov asymptotically stable theorem. 

( )xV

( )xV&

Proof: For any small enough ε , we generate a 
sphere by setting zero point as a center point and εS
ε as a radius. Then let us assume that l is the 
minimum of on the sphere. Since the positive 
definite function V has infinitesimal upper 
boundary, we can always find a positive number

( )xV
( )x

δ so 
that any point within the limitation of ( ) δ≤tx can 
satisfy the following requirement: V . Select 

 as the initial value of x at , and meet 
such form as

( ) l<x

0t=0x ( )t t
( ) δ≤= 00 txx , then we have 

. Use the following equation to compute the 
integration of along solution curve : 
( )0 l<V x
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since ，V , we have: ( ) lV <0x ( ) 0<x&

( ) ( ) lVV <≤ 0xx                      （5） 
thus, at any time , the equation 0tt ≥ ( ) ε≤tx  can 
be always satisfied. As a result, the undisturbed 
motion of autonomous system meets the stable 
requirements.  
Through proof by contradiction, it can be proved that 
( ) 0→tx  as ∞→t . Provided that there exists a 

positive number e , when , we have:  0tt ≥
( ) eV >x                   （6） 

Similarly, since the positive definite function 
has infinitesimal upper boundary, a positive 

number
( )xV

β  must be found so that any point within the 
limitation of ( ) β≤tx

e<

can satisfy the following 
equation: .  ( )V x
Consequently, if the equation (6) is true, then the 
following form must be met:  

( ) εβ ≤≤ tx                  （7） 
Let set β as radius to generate a sphere , then 
solution curve must be constrained inside the 
ring region composed of and . Let negative 
definite function have the maximum 

βS

l

( )tx

V&
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( )x − in the 
closed region, then the estimated value of ( )xV in the 

region can be written as: 
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When t is big enough, turns out to be negative, 
this conflicts with the condition of positive definitive 
function

( )xV

( )xV . Therefore, equation (6) could not be 
true. In other words, regardless of small enough , 
it is possible for 

e
( )V e<x  at a certain time 1tt = . As 

( )xV is a decreasing function with time, ( )xV will be 
forever less than from then on, and tends to be 
zero gradually; namely, in the case of  

e
∞→t , we 

have ( ) 0→tx . It is guaranteed that the undisturbed 
motion of autonomous system will be asymptotically 
stable. Control strategy is effective. 

In terms of Lyapunov asymptotically stable 
theorem, and the real model and operating condition 
of the studied system, we need to design a chaotic 
control algorithm and a kind of chaotic controller to 
retain the system stable, in other words, it is required 
to construct a state feedback controller u . k

In the next section, taking brushless motor for 
deepwater ocean robot at the condition of no load 
sliding as an example, state variable di

~ is only 
imposed a control on, and the structure of the 
controller is configured as ddk iku ~~ −= . Thus, the state 
equations of controlled brushless motor system can 
be written as follows: 
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Lyapunov function is defined as: 
222 ~~~ ω++= qd iiV               （10） 

then we obtain 
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based on the preceding equation, it is easy to 
determine feedback gain coefficient to keep matrix k
( )kA positive definite, and we obtain 

( ) ( )( ) 02
min <−≤−= XkAXkAXV T λ&         (12) 

so ( ) ( ) teVtV min0 λ−≤             （13） 
where minλ is the minimum of eigenvalue of ( )kA .  
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Fig 4  Transient states of chaotic attractor after   

imposing a control on the system at  s78=t

Since the initial value of Lyapunov function is 
bounded, the closed- loop system is unconditionally 
stable. After being imposed a control, the system will 
be asymptotically stable at a rate of exponent, and 
end up with going out the chaotic region.  

( )0V

On the basis of preceding mechanism, we designed 
and constructed a chaotic adaptive controller to 
restrain the chaotic behavior of thruster motor system 
for deepwater ocean robot so that it can quickly jump 
out of chaotic state and step into the stable domain. 
Now we set adaptive controller feedback gain 
coefficient , and simulate the thruster motor 
system controlled and impose this proposed control 
on it at , the simulated results are illustrated 
in Figure 4, which shows transient states of chaotic 
attractor. 

0.5=k

s78=t

 
4 Conclusion 
This paper successfully applied modern nonlinear 
control theory to restraining the chaotic behavior of 
thruster motor system for deepwater ocean robot. 
Based on theoretical proof for the feasibility and 
effectiveness of the proposed method, a chaotic 
controller is designed and constructed for restraining 
the chaotic behavior, and the thruster motor system 
on which a control is imposed is imitated. The results 
demonstrate that chaotic phenomena existed in the 
system can be eliminated and it is helpful for getting 
rids of chaotic region and stepping into continuously 
stable state. Moreover, the built chaotic controller is 
with such characteristics as simplicity, effectiveness, 
and feasibility in engineering processing. It is proved 
that this technology presented can be used as control 
strategy and restraint scheme for chaotic operation 
behavior possibly occurred in the thruster motor 

system, furthermore, it is helpful for the embedded 
software development of chaotic control which 
assures ocean robot works more properly. 
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