
SEMF Testing Methodology for an Inter-eBusiness Software
development

Víctor Fernández P., Ricardo Chalmeta
Grupo Integración y Re-Ingeniería de Sistemas (IRIS)

Universitat Jaume I. Castellón, 12071. Spain

Abstract: - The change towards an e-business strategy is leading to a strong demand by companies for e-business
solutions. However, in spite of companies' interest in this new management model, many e-business
implementations fail. One of the main causes is that the existing methodologies to approach a e-business project
are not adequate as they do not satisfactorily integrate and complement the strategic and technological aspects of
e-business, and this gets more strength when we consider Large Complex eSystems with High Volume Complex
Engagements. The purpose of this paper is to provide an experience report of a methodology, called Strategic
Engineering Management Facility (SEMF), for the testing of inter-enterprises ebusiness software development in
Large Complex eSystems.

Key-Words: - e-Business Strategy, Large Complex Systems, complex engagements, testing, inter-enterprises

1 Introduction
Inside Software Engineering there are different
structured approaches to define the project’s
approach for software development [1]. One of this is
the V-Model [2]. It is a well-known variation of the
System Development Life Cycle which emphasizes
system quality assurance. This model can be
extended in order to guide during inter-enterprise e-
business software designing, building and testing
(Figure 1).

 The requirements phases of the development life
cycle along the left side of the V-Model are
structured so that successive levels of detail may be
added to the system’s requirements.

 The levels of test, depicted along the right-side of
the V-Model, are structured to validate the system’s
requirements defined in the corresponding phase of
design. So, this model provides for a structured, top-
down decomposition of requirements based on
ebusiness needs, and tests that are fundamentally
aligned to validate those requirements [3].

TEST PLAN
MANAGEMENT

REQ
UIREM

ENTS / SCO
PE

M
ANAG

EM
ENT

TE
ST

 E
XE

CU
TI

O
N

M
AN

AG
EM

EN
T

Test

Build

Design

Integration
Detail Design
Requirements

Component
Tests

Integration
Requirements

Assembly
Integration

Test

Inter-eBusiness
Capability

Requirements

Integrated
Product Test

Inter-
eBusiness

Case /
Contract

Benefits
Realization

Test

Build

TEST PLAN
MANAGEMENT

REQ
UIREM

ENTS / SCO
PE

M
ANAG

EM
ENT

TE
ST

 E
XE

CU
TI

O
N

M
AN

AG
EM

EN
T

Test

Build

Design

Integration
Detail Design
Requirements

Component
Tests

Integration
Requirements

Assembly
Integration

Test

Inter-eBusiness
Capability

Requirements

Integrated
Product Test

Inter-
eBusiness

Case /
Contract

Benefits
Realization

Test

Build

Fig.1 V-Model structure for inter-ebusiness software
development

2 SEMF Testing Methodology
However, to improve the efficiency of inter-ebusiness
software development and the predictability of the
results with the V-Model, a project’s methodology
should align to the V-Model, where distinct phases of
design are defined with corresponding levels of
integration test. The methodology should also define
the relevant processes and corresponding deliverables
at each distinct phase of design and test.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp77-79)

Test PlanEnterprises Integration Test Plan

Test
Condition

Integration
Test

Condition
Script

Integration
Script

Test Case /
Data Set

Test Case /
Data Set

Results

Inter-
operability

Tests
Results

Requirement
Interoprability
Requirement Defect

Interoperability
Defect

 To solve this problem, a testing methodology
called Strategic Engineering Management Facility
(SEFM) has been developed (table 1). This new
testing methodology must be applied to each of the
different testing phase levels of the V-model shown
in figure 1: component test, assembly integration and
integrated product tests.

Table 1. SEMF Testing Metholodgy phases and
objectives

 SEMF testing methodology specifies the
framework to improve the ability of enterprises ‘as a
whole’ to easily, correctly and safely render their
existing (as well as their coming) applications and
software communicate and cooperate. This includes
well-defined and structured processes, deliverables
and tools across the software development life cycle,
and is a fundamental part of the Large Complex
eSystems, defined by the bullet points highlighted
below:

- many people and enterprises collaborating in
a common ebusiness (inter-ebusiness)

- multi-year project horizon
- significant ebusiness impact
- high potential value/high potential risk

 Following, as an example, we will show how the
phases of test plan management and configuration
management of the SEMF testing methodology
support all test phases of the V-Model (right side of
the V-model).

3 SEMF Test Plan Management Phase
Test plan management management specify the
structured approach, processes and deliverables to
verify the successful implementation of integration

requirements and designs into the software
components.

 The test plan management is defined at each level
of test, and describes the test conditions used to
validate requirements, and the approach used to
exercise the conditions (e.g., using test data and
ebusiness process).

 Figure 2 shows the integration test plan structure,
and the corresponding relationships to other entities.

Fig.2 Test plan management structure

 The key components of the test plan are
highlighted below:

 Integration Test conditions: identify which
enterprise and process is being tested within the given
level of test. One to many conditions are typically
‘linked’ to an interoperability requirement.
Conditions are structured to ‘prove’ all facets of a
requirement are tested, in some cases this might
include negative or alternative conditions for a given
requirement (e.g., confirm customer found / confirm
customer not found). Test conditions may be
organized around inter-business process or function
area for ease of definition and management.

 Test case/data: includes the data entities, like
customers or orders, used to validate a condition.
Typically, groups of mutually exclusive test
conditions make up the test case and the detailed data
defined for the test case satisfies the test
condition/requirement. Where possible, engagement
typically rely on production-type data for use in
testing to reduce time spend in manufacturing data
and to improve the realism of the test.

 Interoperability Results: define the expected and
actual results of the integration test execution.
Generally, expected and actual results are associated
with steps within the test script to associate the
expected / actual outcome with the action specified in
the script.

Requirements
Management

Test Plan
Management

Test
Execution
Management

Defect
Management

•Centralize
requirements
repository
•Manage
changes in
scope
•Trace a
requirement
through
analysis and
and design
•Understand
the priority and
status of a
requirement

•Describe
how a
requirement is
tested
•Provide
analysis of
test
completeness
•Provide
testing
metrics

•Provide
framework for
test execution
•Provide
consistent
location for
capturing
actual results
•Provide
framework for
regression
testing

•Relate
defects test
execution -
discovery
point
•Provide
metrics
associated
with quality,
productivity,
etc.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp77-79)

 Integration Test scripts: define how the test is
conducted within the context of the inter-ebusiness
process and supporting applications. Integration test
scripts typically contain appropriate level of detail
required to provide instruction on using the
application to exercise the integration test
conditions.The integration test script should provide
cross-reference to conditions exercised within the
script, as well as references to appropriate test cases
to be used in the context of the script. Once the
integration test script is executed, this one provides
the necessary proof that a interoperability condition is
satisfied. Generally integration test scripts are
organized into sub-cycles and cycles, which reflect
the order and precedence of script execution
according to inter-business process rules and
dependencies. Organization of cycles and sub-cycles
is then used derive the test schedule structure and
dependencies.

 The custom components of the SEMF framework
provide the essential linkage between requirements
and the associated test conditions within a given level
of test. SEMF provides the overall blueprint to
establish and map requirement types into an
appropriate level of test. Requirements of a given
type (e.g. integration capability design -
requirements) are then mapped into an
interoperability test condition ‘repository’ so
conditions may be subsequently associated with that
requirement.

4 SEMF Integration Configuration
Management Phase
Integration configuration management address the
need to migrate software components between
development and test environments to a centralized
real environment through which the differents
enterprises could interact and manage its inter-
ebusiness. Integration configuration management
provides the logical framework to group like remote
software module components, as well as the outline
for the physical environment and tools to
promote/demote software between development and
test environments.

 The SEMF testing methodology provides the
ability to link one to many requirements to a software
component/package. SEMF enabled links between
requirements and software components provide the
ability to understand scope of design changes to a
given software component. Additionally, as
interoperability defects are discovered during
integation test execution, impacted modules can be

linked to impacted requirements by analyzing the
script-to-condition relationships.

5 Conclusions
The SEMF testing methodology showed in this paper
has been used and validated in fifteen inter-
enterprises e-business projects. As a result of this, the
following conclusions of the use of SEFM have been
obtaining:

 Effective testing of the system’s requirements
relies on a structured test plan and execution
approach, which describes what is being tested (e.g.,
conditions based on design requirements) and how
the requirements are being tested (e.g., using
interoperability process and data).
 A structured interoperability test planning and
execution, along with integration of requirement and
defect entities, improve the integration project’s
ability to verify requirements.
 SEMF ensure completeness of test and ability to
describe ‘how’ requirement is satisfied through
structured test plan model
 SEMF reduce time and effort required for project
to establish the integration test planning processes,
deliverables and tools
 SEMF support definition and reporting of standard
test planning and execution metrics (e.g.,
productivity, quality, etc.)
 SEMF reduce test execution times by integrating
test automation tools with established test plan
structure.

Acknowledgements:
This project has been founded by different
enterprises, Accenture and CICYT DPI2003-02515.

References:
[1] Sánchez J.S., Chalmeta R., et al.,” Ingeniería de

Proyectos Informáticos: Actividades y
Procedimientos”, Colección “Universitas”,
Publicacions de la Universitat Jaume I, 2003.

[2] Plogert, K., “The tailoring process in the German

V-Model”, Journal of Systems Architecture, 1996,
42:8, pp.601-609.

[3] Knight L, “System Development Methodologies

for Web Enabled E-Business: A Customization
Paradigm”, http://www.kellen.net/SysDev.htm,
2005

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp77-79)

