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Abstract: Third and fourth-order spectral characterization of acoustic and ultrasonic events are
developed using two high-sensitivity piezoelectric sensors, in order to expand the possibilities of
getting thetracksof low-level transients produced when wood fibres are broken. Although the power
spectral density is a valid tool for a prior characterization, third-order spectra slices shows better
performance under the assumption of symmetrically distributed noise, focussing on a lower number
of frequency components. Fourth-order slices can be used as an alternative when the resolution in
the bi-spectrum is not as much satisfactory.

Keywords: Cumulants, higuer-order statistics, low-level signals, polyspectra, transient charac-
terization, ultrasound.

1 Introduction

Computational intelligence for measurement
systems is being introduced to enhance the per-
formance of embedded data acquisition units,
devoted to detect and characterize low-level
transients, which constitute the symptoms of
machinery faults or insect infestations (our re-
search interest). The struggle between com-
putational cost and performance is being over-
come by means of new emerging techniques
which comprise new characterization criteria.

In the frequency domain, during the last 15
years a myriad of tools have been introduced
to enhance the detection of low-level transients.
Second order statistics and power spectra esti-
mation (the second order spectrum) fail in low
SNR conditions even withad hoc piezoelec-
tric sensors. Spectrum estimation and spectro-
gram extract time-frequency features, but ignor-
ing phase properties of the signals. Besides,
second-order algorithms are very sensitive to
noise.

Other prior-art second-order tools, like
wavelets and wavelet packets (time-dependent
technique) concentrate on transients and non-
stationary movements, making possible the de-
tection of singularities and sharp transitions, by
means of sub-band decomposition [1].

As an alternative, higher order statistics
(HOS) have proven useful in different char-
acterization applications, like insects detection
[2],[3], machinery faults [4],[5] and tremor
recognition [6]. The conclusions of these works
were funded in the advantages of cumulants;
in particular, in the capability of enhancing the
SNR of a signal buried in symmetrically dis-
tributed noise processes.

In this paper third-order spectra slices are
used to characterize termite emissions. The re-
sults help the HOS researcher to better under-
stand the higher-order frequency diagrams; in
particular in the field of insect characterization
by AE signal processing. The conclusions are
based in records which were acquired within the
surrounding perimeter of the infestation. The
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quality of the signals has been established using
the criteria of audibility and the levels of quan-
tization used in the digitalizing process by the
data acquisition equipment. The accelerometer
used is the SP1-L probe from AED2000 instru-
ment, with a high sensitivity and a short band-
width.

The paper is structured as follows: Section
2 recalls the theoretical background of HOS,
focussing on the computational tools. Experi-
ments are drawn in Section 3, which is intended
as a tool to interpret results from HOS-based ex-
periments. Finally, conclusions are explained in
Section 4.

2 Higher-Order Statistics
(HOS)

The motivation of the poly-spectral analysis is
three fold: (a) To suppress Gaussian noise pro-
cesses of unknown spectral characteristics; the
bi-spectrum also suppress noise with symmet-
rical probability distribution, (b) to reconstruct
the magnitude and phase response of systems,
and (c) to detect and characterize nonlinearities
in time series.

Before cumulants, non-Gaussian processes
were treated as if they were Gaussian. Cumu-
lants and their associated Fourier transforms,
known as poly-spectra [7], reveal information
about amplitude and phase, whereas second or-
der statistics (variance, covariance and power
spectra) are phase-blind [8].

The relationship among the cumulants of
stochastic signals,xi, and their moments can be
calculated by using theLeonov-Shiryayevfor-
mula. The second-, third-, and fourth-order cu-
mulants are given by [2], [8] equation 1:

Cum(x1, x2) = E{x1 · x2}. (1a)

Cum(x1, x2, x3) = E{x1 · x2 · x3}. (1b)

Cum(x1, x2, x3,x4) = E{x1 · x2 · x3 · x4}
− E{x1 · x2}E{x3 · x4}
− E{x1 · x3}E{x2 · x4}
− E{x1 · x4}E{x2 · x3}.

(1c)

In the case of non-zero mean variablesxi

have to be replaced byxi-E{xi}.
Let {x(t)} be arth-order stationary random

real-valued process. Therth-order cumulant is
defined as the jointrth-order cumulant of the
random variablesx(t), x(t+τ1),. . . ,x(t+τr−1),

Cr,x(τ1, τ2, . . . , τr−1)

= Cum[x(t), x(t + τ1), . . . , x(t + τr−1)].

(2)

The second-, third- and fourth-order cumu-
lants of zero-meanx(t) can be expressed using
equations 1 and 2, via:

C2,x(τ) = E{x(t) · x(t + τ)}. (3a)

C3,x(τ1, τ2) = E{x(t)·x(t+τ1)·x(t+τ2)}. (3b)

C4,x(τ1, τ2, τ3)

= E{x(t) · x(t + τ1) · x(t + τ2) · x(t + τ3)}
− C2,x(τ1)C2,x(τ2 − τ3)

− C2,x(τ2)C2,x(τ3 − τ1)

− C2,x(τ3)C2,x(τ1 − τ2).

(3c)

We assume that the cumulants satisfy the
bounding condition given in equation 4:

τ1=+∞∑
τ1=−∞

· · ·
τr−1=+∞∑
τr−1=−∞

|Cr,x(τ1, τ2, . . . , τr−1)| < ∞.

(4)

The higher-order spectra are usually defined
in terms of therth-order cumulants as their (r-
1)-dimensional Fourier transforms
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Sr,x(f1, f2, . . . , fr−1)

=

τ1=+∞∑
τ1=−∞

· · ·
τr−1=+∞∑
τr−1=−∞

Cr,x(τ1, τ2, . . . , τr−1)

· exp[−j2π(f1τ1 + f2τ2 + · · ·+ fr−1τr−1)].

(5)

The special poly-spectra derived from equa-
tion 5 are power spectrum (r=2), bi-spectrum
(r=3) and try-spectrum (r=4). Only power spec-
trum is real, the others are complex magni-
tudes. Poly-spectra are multidimensional func-
tions which comprise a lot of information. As
a consequence, their computation may be im-
practical in some cases. To extract useful in-
formation one-dimensional slices of cumulant
sequences and spectra, and bi-frequency planes
are employed in non-Gaussian stationary pro-
cesses [3].

Once summarized the foundations of the ex-
periment, hereinafter we present que results ob-
tained by means of the tools described here.

3 Experimental results

Two ultrasonic piezoelectric transducers have
been selected to perform characterization. Ten
sample registers have been recorded (for each
transducer) using the oscilloscopeAgilent-
54622A and the ICP1 interface units for the
piezoelectric sensors (fromAcoustic Emission
Consulting). Each register comprises a vibra-
tory event, produced by breaking wood fibres.
The goal is to get the spectral track of this
breaks according to HOS and analyze the ad-
vantages that this characterization technique ex-
hibits versus the traditional power spectral den-
sity. The SNR is pointed as 40 dB.

The following figures summarize battery of
experiments developed to characterize the sen-
sors. Comparing Figs. 1 and 2 it is obvious
that the frequency response is far different. In
fact, the SP1H is a wide-band transducer. On

1Integrated Circuit Piezoelectric protocol

the other hand, numerous resonance peaks are
found. Because these are not resonance
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Figure 1: One sample register and its spectrum
representing a vibratory event recorded with the
sensor SP1-L.
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Figure 2: One sample register and its spectrum
representing a vibratory event recorded with the
sensor SP1-H.

On the basis of these results we establish the
conclusions related to the identification crite-
rion proposed.

4 Conclusions

In this work it has been shown that the diag-
onal slices of the bi-spectrum and trispectrum
are valid and convenient tools for characteriza-
tion of low-level ultrasonic transients. We have
funded this conclusion on three arguments:
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Figure 3: Average diagonal bispectrum for the
sensor SP1-H.
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Figure 4: Trispectrum slice of one sample reg-
ister forτ3 = 0: SP1-H.

First, higher-order cumulants and spectra, as
defined herein, enable the signal analysis pro-
cedure to have access to waveform information
that is typically unavailable when using prior
art (second-order) methods. In particular, we
remark the enhancement of the frequency di-
agrams. This is due to the rejection exerted
on symmetrically distributed noise processes.
In fact, non-Gaussian processes are completely
characterized by means of HOS.

Secondly, the potentially valuable informa-
tion contained in an ultrasonic signal (most part
of its spectrum) is related to the impulses. The
average spectrum reveals amplitude informa-
tion (the resonance peaks) but phase informa-
tion is not shown. Higher-order spectra are ar-
rangements of complex numbers and contain

this additional information which can be valu-
able in a pattern recognition or identification
criterion context.

Finally, using different sensors the criterion
changes the frequencyset-point. Besides, the
probability of a false alarm is very low, consid-
ering the fact that we had to provide, intention-
ally, the worst case of background noise. Re-
peatability has been estimated in a75 per cent.

Future work is focussed on reducing the com-
putational complexity of HOS in two directions.
On one side, we are using compact functions,
like FFT andFFTshift. Secondly, we have to
adopt a compromise between the maximum lag
(χ) and the resolution, in order to save storage
memory and time. These actions are oriented to
implement the algorithms in a digital signal pro-
cessor, in an autonomous hand-instrument for
insect detection.

Acknowledgement

The authors would like to thank theSpanish
Ministry of Education and Sciencefor funding
the projects DPI2003-00878, TEC2004-06096
and PTR1995-0824-OP.

References

[1] J. J. G.De la Rosa, C. G. Puntonet, I. Lloret,
J. M. Górriz, Wavelets and wavelet pack-
ets applied to termite detection, Lecture
Notes in Computer Science (LNCS) 3514
(2005) 900–907, computational Science -
ICCS 2005: 5th International Conference,
GA Atlanta, USA, May 22-25, 2005, Pro-
ceedings, PartI.

[2] J. J. G.De la Rosa, C. G. Puntonet, I. Lloret,
An application of the independent com-
ponent analysis to monitor acoustic emis-
sion signals generated by termite activity in
wood, Measurement (Ed. Elsevier) 37 (1)
(2005) 63–76, available online 12 October
2004.

4

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp24-28)



[3] J. J. G.De la Rosa, I. Lloret, C. G. Pun-
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