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Abstract: A mixed integer programming based approach for optimal control of a class of nonlinear systems with 
typical non-smooth and even discontinuous components is presented. Firstly, a model denoted as General Linear 
System Model (GLSM), which can be used to describe accurately a wide range of nonlinear systems with typical 
nonlinear components, is established. Secondly, based on GLSM, mixed integer predictive control (MIPC) 
approach for optimal regulation and tracking problems is studied. At the end of the paper, numerical simulations 
are presented. Simulation results show that approach developed in this paper is suitable and effective. 
Key Words:  Nonlinear System, Optimal Control, Mixed Integer Predictive Control (MIPC),  

Typical Nonlinear Components. 

0 Introduction 
Strictly speaking, in the engineering practice, the plants, which the control theories deal with, are all nonlinear, 
with different degrees of non-linearity. When the plants operate in a very limited range, we can approximate the 
plants with simple linear models with satisfied accuracy by using the well-known Tyler series expansion 
approach. But this approach cannot be applied to such a class of nonlinear systems that the systems contain 
typical nonlinear components which are usually non-smooth, and even are discontinuous, for example, relay, 
dead zone, magnetic loop. And the series expansion approach cannot be applied to piecewise linear systems either. 
The also well-known description function method can indeed be employed to treat such a class of nonlinear 
systems, but this approach can only analysis the self-excited oscillation of such nonlinear system. It is difficult to 
analysis other response performance of such nonlinear system and is impossible to design controller for nonlinear 
systems using the description function method. Recently developed feedback linearization method [1] is an 
effective way for design of controllers for nonlinear systems. But this method also has its limitation: it can only 
be applied to smooth nonlinear system, it cannot be used to design controller for nonlinear systems with typical 
nonlinear components.  
In this paper, a mixed integer programming based approach for optimal control of a class of nonlinear systems 
with typical non-smooth and even discontinuous components is presented. Firstly, a model denoted as General 
Linear System Model (GLSM), which can be used to describe accurately a wide range of nonlinear systems with 
typical nonlinear components, is established Secondly, based on GLSM, mixed integer predictive control (MIPC) 
approach for optimal regulation and tracking problems is studied. A mixed integer quadratic programming (MIQP) 
problem is solved at every time instant when MIPC is implemented. At the end of the paper, numerical example 
by using the already developed MIQP solver, is presented. 

1 General Linear System Model 

A model denoted as General Linear System Model (GLSM) is established in this section. In order to simplify the 
presentation, consider the typical dead zone nonlinear component shown in Fig. 1 when developing the general 
linear system model. At the end of this section, we will generalize the model for nonlinear systems with other 
typical nonlinear components.  
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In Fig.1, assume ,)( 1×∈ mRtu  and mRc ×∈ 1 is constant vector. Introducing auxiliary logical variables )(1 tδ  and 
)(2 tδ , and their definitions are as in propositional logic (1a) ~ (1d). According to techniques that propositional 

logic can be equivalently transformed into mixed integer linear inequality [2-5], (1a) ~ (1d) can be rewritten as 
ineq.(2a) ~ ineq.(2d) respectively.                                                
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tu Θ∈

≤ , and values of mM , usually can be estimated reasonably for any 

specified problem. ε  is a very small positive number, for example, 1e-6. According to definitions of )(1 tδ  and 
)(2 tδ , and with the features of dead zone nonlinear component in the mind, it is easy to obtain (3a) ~ (3b) and (4a) 

~(4d). Where )(tz  is the output of nonlinear component. 
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It is obvious from (3a) and (3b) that 0)( =tz  when 0)()( 21 == tt δδ . It can easily be seen from (4a) and (4b) that 
1)()( −= tcutz  when 1)(2 =tδ , and that (4b) is of triviality when 0)(2 =tδ . Again, (3a) and (3b) can be 

equivalently rewritten as ineq (5a) and (5b) respectively.   
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Rearrange the mixed integer linear inequalities (2a) ~ (2d), (4a) ~ (4d), (5a) and (5b), we obtain the vector 
inequality (6). Where )]'(),([)( 21 ttt δδδ = . 5   1   ,3   ,2   VandVVV  are as follows: 
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In fact, vector inequality (6) established the relationship between the output, the input and the auxiliary logical 
variables of the nonlinear component. Suppose that a nonlinear plant to be controlled can be modeled as in Fig 2a, 
the relationship between the system’s State )(tx  and input )(tu  can be established as in (7a) and (7b). We 
named (7a) and (7b) as the General Linear System Model, GLSM. 
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In the GLSM, )(tz  act as the auxiliary continuous variable. At first glimpse, it seems that the GLSM is linear. 
But in fact, because there exist the restrictions of the values (0 or 1) for logical variables )(1 tδ  and )(2 tδ , 
GLSM is nonlinear. In addition to modeling systems containing the dead zone nonlinear component, GLSM can 

Fig.1 dead zone nonlinear component 
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Fig.2a. Cascade connection of linear subsystem with nonlinear components 
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Fig.2b. Feedback connection of linear subsystem with nonlinear components 
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also describe accurately systems with other typical nonlinear components shown in Fig 3.   

 

 
If a plant to be controlled can be modeled as in Fig 2b, the relationship between the system’s State )(tx  and 
input )(tu  can be established as in (8a) and (8b).  
To generalize (7a), (7b) and (8a), (8b), we obtained the GLSM as in (9a) ~ (9c). It can be pointed out that the 
GLSM can easily deal with the system’s states and/or inputs constraints which usually had to be satisfied because 
of, for example, the physical restricts or for the operation safety. 

2  Optimal Control of Nonlinear Systems 

Based on GLSM, Mixed Integer Predictive Control, MIPC, approach for optimal regulation and tracking 
problems of nonlinear systems is studied in this section. A Mixed Integer Quadratic Programming, MIQP, 
problem is solved at every time interval when MIPC is implemented. Suppose that t is current time, and that )(tx is 
the current system state. Denote )},1(),...,1(),0({1 −=− kuuuu ttt

k
t to be the predicted optimal control sequence and 

)),(,()|( 1−+= k
tutxktxtkx  to be the predicted system state at kt + . )|( tkδ ， )|( tkz ， )|( tkx ， )|( tky  are similarly 

defined. At time t, establishing following optimization problem (12) and (13): 
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Where xQxx i
Qi

′=2 . 0≥′= iQQi  is weighted matrix. And ( ,, ee ux ee z,δ ) satisfying (14) is the equilibrium point 

of GLSM. 
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In order to guarantee the stability of the closed loop mixed integer predictive control system, we introduced the 
equality constraint (13d) in the optimization problem. From (13a), we can obtained (15) 
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By introducing the follow denotations and, after rearrangement of the (12), (13) and (15), we obtained (16), 
which is the standard Mixed Integer Quadratic Programming problem, MIQP.   

, 
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Suppose we obtained the optimal control sequence )}1(),...,1(),0({ ***
1*

−=
−

Tuuuu ttt

T

t at current time t by solving the 
MIQP problem of (16). According to the philosophy of the receding horizon control [6], only the optimal control 

)0(*
tu  is actually enforced upon the plant, and other control )}1(),...,2(),1({ *** −Tuuu ttt is discarded. In the next 

sampling time t+1, repeat the above steps of (12)~(16) when )1( +tx is available.   
For optimal regulating problem, the above Mixed Integer Predictive Control can regulate optimally the initial 
state )(0 tx  to system’ equilibrium point ( ,, ee ux ee z,δ ) which is usually the origin.  
For optimal tracking problem, the output of the system, )(ty , can track optimally reference input )(tr . In this case, 

Fig. 3 several non-smooth and even discontinuous components
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equilibrium point ( ,, etet ux etet z,δ ) for any specific time t and corresponding )(tr , can be obtained as follows:    
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where ρ andQ are weighted positive numbers. (17) and (18) can also be cast as a standard MIQP problem (16). 
The MIQP problem can be solved effectively by using the Branch & Bound (B&B) approach [7].  

3.  Numerical Example 

Suppose that the linear subsystem of a nonlinear plant to be )(
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can be modeled as in Fig. 2b. c=[3 3], 5000,1 == Qρ , x0=[-1 1]', T=3; 

)
50
2sin()( ttr π

= ， 10005),2,2(*1.04,01.03 I(2,2),*0.012,01.01 ===== QIQQQQ , and I(2,2) is identity. Simulation 

results are shown in Fig. 4a and Fig.4b. 

 
Fig. 4a, Optimal tracking trajectory                  Fig. 4b, Optimal control inputs 

4.  Conclusions 

A mixed integer programming based approach for optimal control of a class of nonlinear systems with typical 
non-smooth and even discontinuous components is presented. A model denoted as General Linear System Model 
(GLSM) is established which can describe accurately systems with typical nonlinear components, for example, 
relay, dead zone, magnetic loop. Numerical simulations show that approach developed in this paper is suitable 
and effective for optimal control of a class of nonlinear systems. 
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