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Abstract: - An Intrusion Detection System (IDS) is a program that analyzes what happens or has happened 
during an execution and tries to find indications that the computer has been misused. An  IDS does not eliminate 
the use of preventive mechanism but it works as the last defensive mechanism in securing the system. This paper 
evaluates the performances of Estimation of Distribution Algorithm (EDA) to train a feedforward neural 
network classifier for detecting intrusions in a network. Results are then compared with Particle Swarm 
Optimization (PSO) based neural classifier and Decision Trees (DT). Empirical results clearly show that 
evolutionary computing techniques could play an important role in designing real time intrusion detection 
systems. 
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1   Introduction 
Attacks on the nation's computer infrastructures are 
becoming an  increasingly serious problem. 
Computer security is defined as the protection of 
computing systems against threats to confidentiality, 
integrity, and availability [1]. Confidentiality (or 
secrecy) means that information is disclosed only 
according to policy, integrity means that information 
is not destroyed or corrupted and that the system 
performs correctly, availability means that system 
services are available when they are needed. 
Computing system refers to computers, computer 
networks, and the information they handle. Security 
threats come from different sources such as natural 
forces (such as flood), accidents (such as fire), failure 
of services (such as power) and people known as 
intruders. There are two types of intruders: the 
external intruders who are unauthorized users of the 
machines they attack, and internal intruders, who 
have permission to access the system with some 
restrictions. The traditional prevention techniques 
such as user authentication, data encryption, avoiding 
programming errors and firewalls are used as the first 
line of defense for computer security. If a password 
is weak and is compromised, user authentication 
cannot prevent unauthorized use,  firewalls are 
vulnerable to errors in configuration and ambiguous 

or undefined security policies. They are generally 
unable to protect against malicious mobile code, 
insider attacks and unsecured modems. Programming 
errors cannot be avoided as the complexity of the 
system and application software is changing rapidly 
leaving behind some exploitable weaknesses. 
Intrusion  detection is therefore required as an 
additional wall for protecting systems. Intrusion 
detection is useful not only in detecting successful 
intrusions, but also provides important information 
for timely countermeasures. Intrusion detection is 
classified into two types: misuse intrusion detection 
and anomaly intrusion detection. Misuse intrusion 
detection uses well-defined patterns of the attack that 
exploit weaknesses in system and  application 
software to identify the intrusions. Anomaly 
intrusion detection identifies deviations from the 
normal usage behavior  patterns to identify the 
intrusion.  

We have two options to secure the system 
completely, either  prevent the threats and 
vulnerabilities which come from flaws in  the 
operating system as well as in the application 
programs or detect them and take some action to 
prevent them in future and also repair the damage. It 
is impossible in practice, and even if possible, 
extremely difficult and expensive, to write a 
completely secure system. Transition to such a 
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system for use in the entire world would be an 
equally difficult task. Cryptographic methods can be 
compromised if the passwords and keys are stolen. 
No matter how secure a system is, it is vulnerable to 
insiders who abuse their privileges. There is an 
inverse relationship between the level of access 
control and efficiency. More access controls make 
a system less user-friendly and more likely of not 
being used. An Intrusion Detection system is a 
program (or set of programs) that analyzes what 
happens or has happened during an execution and 
tries to find indications that the computer has been 
misused. An Intrusion detection system does not 
eliminate the use of preventive mechanism but it 
works as the last defensive mechanism in securing 
the system. Data mining approaches are a relatively 
new technique for intrusion detection. There are a 
wide variety of data mining algorithms drawn from 
the fields of statistics, pattern recognition, machine 
learning, and databases. Previous research of data 
mining approaches for intrusion detection model 
identified several types of algorithms as useful 
techniques. Classification is one of the data mining 
algorithms, which have been investigated as a useful 
technique for intrusion detection models. 

Various intelligent paradigms namely Neural 
Networks [2],  Support Vector Machine [3], 
Neuro-Fuzzy systems [4],  Linear Genetic 
Programming [5], Flexible Neural Tree [6], [7] and 
Decision Trees [9] have been used for intrusion 
detection. Various data mining techniques have been 
applied to intrusion detection because it has the 
advantage of discovering useful knowledge that 
describes a user's or program's behavior from large 
audit data sets. 

This paper proposes an EDA based evolutionary 
neural network classifier for detecting intrusions. 
The weights, bias and flexible activation function 
parameters are optimized by EDA algorithm. Results 
are then compared with Particle Swarm Optimization 
(PSO) based neural classifier and Decision Trees 
(DT). 
 
 
2   Neural Networks 
A typical three-layer feedforward neural network 
consists of an input layer, a hidden layer and an 
output layer. The nodes are connected by weights and 
output signals, which are a function of the sum of the 
inputs to the node modified by a simple nonlinear 
activation function. The usually used activation 
function is the sigmoid function with threshold 
defined as 
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where xi is the input to the node and wi is the 
corresponding input weight, θ is a value which is 
usually called the threshold, $n$ is the number of the 
inputs to the node. In this study, a flexible activation 
functions at hidden and output layers is selected. 
Some flexible activation functions shown as follows. 
Gaussian function: 
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Unipolar sigmoid function: 
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Bipolar sigmoid: 
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Nonlocal radial coordinates: 
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General multinquadratics: 
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Thin-plate s-pline function: 
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The output of a node is scaled by the connecting 

weight and is fed forward as an input to the nodes in 
the next layer of the network. The input layer plays 
no computational role but merely serves to pass the 
input vector to the network. The input layer and the 
hidden layer are connected by weights and likewise 
the hidden layer and output layer also have 
connection weights. The network has the ability to 
learn through training. The training requires a set of 
training data, i.e., a series of input and associated 
output vectors. During the training, the network is 
repeatedly presented with the training data and the 
weights and thresholds in the network are adjusted 
from time to time till the desired input-output 
mapping occurs. 
 
 
3   Neural Network Training by EDA 
and PSO 
 
3.1 Estimation of Distribution Algorithm 
(EDA)  

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)



EDA [15][16][17][18][19][20] is a new class of EAs. 
EDA directly extracts the global statistical 
information about the search space from the search so 
far and builds a probabilistic model of promising 
solutions. New solutions are sampled from the model 
thus built. Several EDAs [17][18][19][20] have been 
proposed for the global continuous optimization 
problem. These algorithms are very promising, but 
much work needs to be done to improve their 
performances. An efficient evolutionary algorithm 
should make use of both the local information of 
solutions found so far and the global information 
about the search space. The local information of 
solutions found so far can be helpful for exploitation, 
while the global information can guide the search for 
exploring promising areas. The search in EDAs is 
mainly based on the global information, but DE on 
the distance and direction information which is a kind 
of local information. Therefore, it is worthwhile 
investigating whether combining DE with EDA 
could improve the performance of the DE algorithm 
and EDA. 

One of the major issues in EDAs is how to select 
parents. A widely used selection method in EDA is 
the truncation selection. In the truncation selection, 
individuals are sorted according to their objective 
function values. Only the best individuals are 
selected as parents. 

Another major issue in EDAs is how to build a 
probability distribution model p(x). In EDAs for the 
global continuous optimization problem, the 
probabilistic model p(x) can be a Gaussian 
distribution [11], a Gaussian mixture [12][13], a 
histogram [14], or a Gaussian model with diagonal 
covariance matrix (GM/DCM) [12]. 

GM/DCM is used in our algorithm. In 
GM/DCM, the joint density function of the k-th 
generation is written as follows:  
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In eqn. (8), the n-dimensional joint probability 
distribution is factorized as a product of n univariate 
and independent normal distributions. There are two 
parameters for each variable required to be estimated 
in the k-th generation: the mean, k

iμ
) , and the 

standard deviation, k
iσ) . They can be estimated as 

follows: 
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Implementation of EDA for NN classifier. Before 
describing the details of EDA for training NN 
classifier, the issue of coding is presented. Coding 
concerns the way the weights, bias and the flexible 
activation function parameters of NN are represented by 
individuals. A float point coding scheme is adopted 
here. For NN coding, suppose there are M nodes in 
hidden layer and one node in output layer and n input 
variables, then the number of total weights is 

1×+× MMn , the number of thresholds is M+1 
and the number of flexible activation function 
parameters is M+1, therefore the total number of free 
parameters in a NN to be coded is 

)1(2 +++× MMMn . These parameters are 
coded into an individual or particle orderly. 

Let Pop(t) be the population of solutions at 
generation t. EDAs work in the following iterative 
way. 
S1 Selection. Select M promising solutions from 
Pop(t) to form the parent set Q(t) by truncation 
selection method; 
S2 Modeling. Build a probabilistic model p(x) based 
on the statistical information extracted from the 
solutions in Q(t); 
S3 Sampling. Sample new solutions according to the 
constructed probabilistic model p(x); 
S4 Replacement. Partly replace solutions in Pop(t) by 
the sampled new solutions to form a new population 
Pop(t + 1). 
 
3.2  Parameter Optimization with PSO 

The Particle Swarm Optimization (PSO) 
conducts searches using a population of particles 
which correspond to individuals in evolutionary 
algorithm (EA). A population of particles is 
randomly generated initially. Each particle represents 
a potential solution and has a position represented by 
a position vector xi. A swarm of particles moves 
through the problem space, with the moving velocity 
of each particle represented by a velocity vector vi. At 
each time step, a function fi representing a quality 
measure is calculated by using xi as input. Each 
particle keeps track of its own best position, which is 
associated with the best fitness it has achieved so far 
in a vector pi. Furthermore, the best position among 
all the particles obtained so far in the population is 
kept track of as pg. In addition to this global version, 
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another version of PSO keeps track of the best 
position among all the topological neighbors of a 
particle. At each time step t, by using the individual 
best position, pi, and the global best position, pg(t), a 
new velocity for particle i is updated by 
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where c1 and c2 are positive constant and φ1 and φ2 are 
uniformly distributed random number in [0,1]. The 
term vi is limited to the range of vmax. If the velocity 
violates this limit, it is set to its proper limit. 
Changing velocity this way enables the particle i to 
search around its individual best position, pi, and 
global best position, pg. Based on the updated 
velocities, each particle changes its position 
according to the following equation: 

)1()()1( ++=+ tvtxtx iii         (13) 
A neural network classifier trained by PSO 

algorithm with flexible bipolar sigmoid activation 
functions at hidden layer were constructed for the 
breast cancer data set. The issue of coding is similar 
with the one used in EDA-NN discussed above. 

The simple loop of the proposed training 
algorithm for neural network is as follows. 

S1 Initialization. Initial population is generated 
randomly. The learning parameters c1 and c2 in PSO 
should be assigned in advance; 

S2 Evaluation. The objective function value is 
calculated for each particle; 

S3 Modification of search point. The current 
search point of each particle is changed using 
Eqn.(12) and Eqn.(13); 

S4 if maximum number of generations is 
reached or no better parameter vector is found for a 
significantly long time (100 steps), then stop, 
otherwise goto step S2. 
 
3.3  Decision Tree Classification 
For comparison purpose, a Decision tree induction is 
one of the classification algorithms in data mining. 
The Classification algorithm is inductively learned to 
construct a model from the pre-classified data set. 
Each data item is defined by values of the attributes. 
Classification may be viewed as mapping from a set 
of attributes to a particular class. The Decision tree 
classifies the given data item using the values of its 
attributes. The decision tree is initially constructed 
from a set of pre-classified data. The main approach 
is to select the attributes, which best divides the data 
items into their classes. According to the values of 
these attributes the data items are partitioned. This 
process is recursively applied to each partitioned 
subset of the data items. The process terminates when 

all the data items in current subset belongs to the 
same class. A node of a decision tree specifies an 
attribute by which the data is to be partitioned. Each 
node has a number of edges, which are labeled 
according to a possible value of the attribute in the 
parent node. An edge connects either two nodes or a 
node and a leaf. Leaves are labeled with a decision 
value for categorization of the data. 

Induction of the decision tree uses the training 
data, which is described in terms of the attributes. 
The main problem here is deciding the attribute, 
which will best partition the data into various classes. 
The ID3 algorithm [11] uses the information 
theoretic approach to solve this problem. Information 
theory uses the concept of entropy, which measures 
the impurity of a data items. The value of entropy is 
small when the class distribution is uneven, that is 
when all the data items belong to one class. The 
entropy value is higher when the class distribution is 
more even, that is when the data items have more 
classes. Information gain is a measure on the utility 
of each attribute in classifying the data items. It is 
measured using the entropy value. Information gain 
measures the decrease of the weighted average 
impurity (entropy) of the attributes compared with 
the impurity of the complete set of data items. 
Therefore, the attributes with the largest information 
gain are considered as the most useful for classifying 
the data items. 

To classify an unknown object, one starts at the 
root of the decision tree and follows the branch 
indicated by the outcome of each test until a leaf node 
is reached. The name of the class at the leaf node is 
the resulting classification. Decision tree induction 
has been implemented with several algorithms. Some 
of them are ID3 [11] and later on it was extended into 
C4.5 [12] and C5.0. Another algorithm for decision 
trees is CART [13]. Of particular interest to this work 
is the C4.5 decision tree algorithm. C4.5 avoids over 
fitting the data by determining a decision tree, it 
handles continuous attributes, is able to choose an 
appropriate attribute selection measure, handles 
training data with missing attribute values and 
improves computation efficiency. C4.5 builds the 
tree from a set of data items using the best attribute to 
test in order to divide the data item into subsets and 
then it uses the same procedure on each sub set 
recursively. The best attribute to divide the subset at 
each stage is selected using the information gain of 
the attributes. 

 
4   Simulation Studies 
 
4.1  The Data Set 
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The data for our experiments was prepared by the 
1998 DARPA intrusion detection evaluation program 
by MIT Lincoln Lab. The data set contains 24 attack 
types that could be classified into four main 
categories namely Denial of Service (DOS), Remote 
to User (R2L), User to Root (U2R) and Probing. The 
original data contains 744 MB data with 4,940,000 
records. The data set has 41 attributes for each 
connection record plus one class label. Some features 
are derived features, which are useful in 
distinguishing normal from attacks. These features 
are either nominal or numeric. Some features 
examine only the connection in the past two seconds 
that have the same destination host as the current 
connection, and calculate statistics related to protocol 
behavior, service, etc. These called same host 
features. Some features examine only the 
connections in the past two seconds that have same 
service as the current connection and called same 
service features. Some other connection records were 
also stored by destination host, and features were 
constructed using a window of 100 connections to the 
same host instead of a time window. These called 
host-based traffic features. R2L and U2R attacks 
don't have any sequential patterns like DOS and 
Probe because the former attacks have the attacks 
embedded in the data packets whereas the later 
attacks have many connections in a short amount of 
time. So some features that look for suspicious 
behavior in the data packets like number of failed 
logins are constructed and these are called contents 
features. The data for our experiments contains 
randomly generated 11982 records having 41 
features [8].  

This data set has five different classes namely 
Normal DOS, R2L, U2R and Probe. The training and 
test comprises of 5092 and 6890 records respectively. 
All the IDS models were trained and tested with the 
same set of data. As the data set has five different 
classes we performed a 5-class binary classification. 
The normal data belongs to class 1, Probe belongs to 
class 2, DOS belongs to class 3, U2R belongs to class 
4 and R2L belongs to class 5. 

 
4.2 Intrusion Detection by EDA-NN 
A neural network classifier with structure {41-8-1} 
trained by EDA with flexible bipolar sigmoid 
activation functions were constructed using the 
training data sets and then the neural network 
classifier was used on the test data set to detect the 
different types of attacks. All the input variables were 
used for the experiments. Table 1 depicts the 
detection performance of EDA-NN for test data set. 

 
4.3 Intrusion Detection by PSO-NN 

For comparison purpose, a neural network classifier 
with structure {41-8-1} trained by PSO and with 
flexible bipolar sigmoid activation functions were 
also constructed using the same training data sets and 
then the neural network classifier was used on the test 
data set to detect the different types of attacks. All the 
input variables were used for the experiments. Table 
1 depicts the detection performance of PSO-NN for 
test data set.  
 
4.4 Intrusion Detection by DT 
The important variables were also decided by their 
contribution to the construction of the decision tree. 
Variable rankings were generated in terms of 
percentages. We eliminated the variables that had 
0.00% rankings and considered only the primary 
splitters or surrogates. This resulted in a reduced 12 
variable data set with x2, x4, x5, x11, x22, x23, x24, x27, x30, 
x31, x32, x34 as variables. The detection performance of 
the DT by using the original 41 variable data set is 
shown in Table 1. 

The achieved true positive and false positive 
rates using 41 input variables by the EDA-NN, 
PSO-NN and DT algorithms are depicted in Table 2. 

 
Table 1. Detection performance using EDA-NN, 
PSO-NN and DT classification models for test data 
set 
Attack Class EDA-NN PSO-NN DT 
Normal 97.58% 95.69% 82.32% 
Probe 95.57% 95.53% 94.83% 
DOS 97.76% 90.41% 77.10% 
U2R 99.90% 100% 99.83% 
R2L 98.90% 98.10% 94.33% 

 
Table 2. Comparison of false positive rate (fp) and 
true positive rate (tp) for EDA-NN, PSO-NN and DT 
classifiers for test data set 
Attack 
Class 

EDA-NN 
fp(%)  tp(%)

PSO-NN 
fp(%)  tp(%) 

DT 
fp(%)  tp(%)

Normal 0.29 99.64 4.3 88.70 29.7 99.60
Probe 0.02 56.57 0.40 37.15 0.24 31.00
DOS 3.94 98.86 3.68 89.38 72.1 97.63
U2R 0.01 52.00 0.05 55.81 0.02 59.26
R2L 0.08 87.39 0.17 86.63 0.02 30.73

 
4.4 Intrusion Detection by FNT 
For comparison purpose, we also provide the results 
obtained with flexible neural tree (FNT). For details 
please refer to the reference [21], [6], [7].  

In general, FNT can reduce or extract important 
variables for intrusion detection system and have best 
classification accuracy. The DT can reduce the 
dimension, but it also reduces the classification 
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accuracy. Different training algorithms for NN have 
different classification results. EDA trained NN has 
better classification rate. 
 
 
5   Conclusions 

In this paper, we have illustrated the importance 
of evolutionary algorithm and neural networks based 
techniques for modeling intrusion detection systems. 
EDA-NN classification accuracy is grater than 95% 
for all the considered attack types (classes) and 
achieved good true positive and false positive rates. It 
is to be noted that for real time intrusion detection 
systems EDA and neural networks would be the ideal 
candidates because of its simplified implementation. 
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