
Evolutionary Flexible Neural Networks for Intrusion Detection System

Yuehui Chen and Lei Zhang
School of Information Science and Engineering

Jinan University
Jiwei road 106, Jinan 250022

P.R. China

Ajith Abraham

School of Computer Science
Chung-Ang University, Seoul, Republic Korea

 http://www.softcomputing.net

Abstract: - An Intrusion Detection System (IDS) is a program that analyzes what happens or has happened
during an execution and tries to find indications that the computer has been misused. An IDS does not eliminate
the use of preventive mechanism but it works as the last defensive mechanism in securing the system. This paper
evaluates the performances of Estimation of Distribution Algorithm (EDA) to train a feedforward neural
network classifier for detecting intrusions in a network. Results are then compared with Particle Swarm
Optimization (PSO) based neural classifier and Decision Trees (DT). Empirical results clearly show that
evolutionary computing techniques could play an important role in designing real time intrusion detection
systems.

Key-Words: - Neural networks, flexible neural tree, estimation of distribution algorithm, particle swarm
optimization, intrusion detection systems, decision tree

1 Introduction
Attacks on the nation's computer infrastructures are
becoming an increasingly serious problem.
Computer security is defined as the protection of
computing systems against threats to confidentiality,
integrity, and availability [1]. Confidentiality (or
secrecy) means that information is disclosed only
according to policy, integrity means that information
is not destroyed or corrupted and that the system
performs correctly, availability means that system
services are available when they are needed.
Computing system refers to computers, computer
networks, and the information they handle. Security
threats come from different sources such as natural
forces (such as flood), accidents (such as fire), failure
of services (such as power) and people known as
intruders. There are two types of intruders: the
external intruders who are unauthorized users of the
machines they attack, and internal intruders, who
have permission to access the system with some
restrictions. The traditional prevention techniques
such as user authentication, data encryption, avoiding
programming errors and firewalls are used as the first
line of defense for computer security. If a password
is weak and is compromised, user authentication
cannot prevent unauthorized use, firewalls are
vulnerable to errors in configuration and ambiguous

or undefined security policies. They are generally
unable to protect against malicious mobile code,
insider attacks and unsecured modems. Programming
errors cannot be avoided as the complexity of the
system and application software is changing rapidly
leaving behind some exploitable weaknesses.
Intrusion detection is therefore required as an
additional wall for protecting systems. Intrusion
detection is useful not only in detecting successful
intrusions, but also provides important information
for timely countermeasures. Intrusion detection is
classified into two types: misuse intrusion detection
and anomaly intrusion detection. Misuse intrusion
detection uses well-defined patterns of the attack that
exploit weaknesses in system and application
software to identify the intrusions. Anomaly
intrusion detection identifies deviations from the
normal usage behavior patterns to identify the
intrusion.

We have two options to secure the system
completely, either prevent the threats and
vulnerabilities which come from flaws in the
operating system as well as in the application
programs or detect them and take some action to
prevent them in future and also repair the damage. It
is impossible in practice, and even if possible,
extremely difficult and expensive, to write a
completely secure system. Transition to such a

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)

mailto:yhchen@ujn.edu.cn
http://cilab.ujn.edu.cn/
mailto:ajith.abraham@ieee.org
http://www.softcomputing.net/

system for use in the entire world would be an
equally difficult task. Cryptographic methods can be
compromised if the passwords and keys are stolen.
No matter how secure a system is, it is vulnerable to
insiders who abuse their privileges. There is an
inverse relationship between the level of access
control and efficiency. More access controls make
a system less user-friendly and more likely of not
being used. An Intrusion Detection system is a
program (or set of programs) that analyzes what
happens or has happened during an execution and
tries to find indications that the computer has been
misused. An Intrusion detection system does not
eliminate the use of preventive mechanism but it
works as the last defensive mechanism in securing
the system. Data mining approaches are a relatively
new technique for intrusion detection. There are a
wide variety of data mining algorithms drawn from
the fields of statistics, pattern recognition, machine
learning, and databases. Previous research of data
mining approaches for intrusion detection model
identified several types of algorithms as useful
techniques. Classification is one of the data mining
algorithms, which have been investigated as a useful
technique for intrusion detection models.

Various intelligent paradigms namely Neural
Networks [2], Support Vector Machine [3],
Neuro-Fuzzy systems [4], Linear Genetic
Programming [5], Flexible Neural Tree [6], [7] and
Decision Trees [9] have been used for intrusion
detection. Various data mining techniques have been
applied to intrusion detection because it has the
advantage of discovering useful knowledge that
describes a user's or program's behavior from large
audit data sets.

This paper proposes an EDA based evolutionary
neural network classifier for detecting intrusions.
The weights, bias and flexible activation function
parameters are optimized by EDA algorithm. Results
are then compared with Particle Swarm Optimization
(PSO) based neural classifier and Decision Trees
(DT).

2 Neural Networks
A typical three-layer feedforward neural network
consists of an input layer, a hidden layer and an
output layer. The nodes are connected by weights and
output signals, which are a function of the sum of the
inputs to the node modified by a simple nonlinear
activation function. The usually used activation
function is the sigmoid function with threshold
defined as

))(exp(1

1)(

1

1 ∑
∑

=

= −−+
=− n

i
ii

n

i
ii

xw
xwf

θ
θ (1)

where xi is the input to the node and wi is the
corresponding input weight, θ is a value which is
usually called the threshold, n is the number of the
inputs to the node. In this study, a flexible activation
functions at hidden and output layers is selected.
Some flexible activation functions shown as follows.
Gaussian function:

))(exp(),,(2

2

b
axbaxf −

−= (2)

Unipolar sigmoid function:

xae

a
axf

21

2
),(

−+
= (3)

Bipolar sigmoid:

)1(
1),(2

2

ax

ax

ea
eaxf −

−

+
−

= (4)

Nonlocal radial coordinates:
)0(,)(),,(22 >−+= − ααaxbbaxf (5)

General multinquadratics:
)10(,)(),,(22 <<−+= ββaxbbaxf (6)

Thin-plate s-pline function:
)ln()(),,(22 axbaxbbaxf −−= (7)

The output of a node is scaled by the connecting

weight and is fed forward as an input to the nodes in
the next layer of the network. The input layer plays
no computational role but merely serves to pass the
input vector to the network. The input layer and the
hidden layer are connected by weights and likewise
the hidden layer and output layer also have
connection weights. The network has the ability to
learn through training. The training requires a set of
training data, i.e., a series of input and associated
output vectors. During the training, the network is
repeatedly presented with the training data and the
weights and thresholds in the network are adjusted
from time to time till the desired input-output
mapping occurs.

3 Neural Network Training by EDA
and PSO

3.1 Estimation of Distribution Algorithm
(EDA)

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)

EDA [15][16][17][18][19][20] is a new class of EAs.
EDA directly extracts the global statistical
information about the search space from the search so
far and builds a probabilistic model of promising
solutions. New solutions are sampled from the model
thus built. Several EDAs [17][18][19][20] have been
proposed for the global continuous optimization
problem. These algorithms are very promising, but
much work needs to be done to improve their
performances. An efficient evolutionary algorithm
should make use of both the local information of
solutions found so far and the global information
about the search space. The local information of
solutions found so far can be helpful for exploitation,
while the global information can guide the search for
exploring promising areas. The search in EDAs is
mainly based on the global information, but DE on
the distance and direction information which is a kind
of local information. Therefore, it is worthwhile
investigating whether combining DE with EDA
could improve the performance of the DE algorithm
and EDA.

One of the major issues in EDAs is how to select
parents. A widely used selection method in EDA is
the truncation selection. In the truncation selection,
individuals are sorted according to their objective
function values. Only the best individuals are
selected as parents.

Another major issue in EDAs is how to build a
probability distribution model p(x). In EDAs for the
global continuous optimization problem, the
probabilistic model p(x) can be a Gaussian
distribution [11], a Gaussian mixture [12][13], a
histogram [14], or a Gaussian model with diagonal
covariance matrix (GM/DCM) [12].

GM/DCM is used in our algorithm. In
GM/DCM, the joint density function of the k-th
generation is written as follows:

∏
=

=
n

i

k
i

k
iik xNxp

1

),;()(σμ (8)

where,

).)(
2
1exp(

2
1),;(2

i

i

i

k
i

k
ii

x
xN

σ
μ

πσ
σμ

−
−= (9)

In eqn. (8), the n-dimensional joint probability
distribution is factorized as a product of n univariate
and independent normal distributions. There are two
parameters for each variable required to be estimated
in the k-th generation: the mean, k

iμ
) , and the

standard deviation, k
iσ) . They can be estimated as

follows:

∑
=

==
M

j

k
ji

k
i

k
i x

M
x

1

1μ) (10)

∑
=

−=
M

j

k
i

k
ji

k
i xx

M 1

2)(1σ) (11)

Implementation of EDA for NN classifier. Before
describing the details of EDA for training NN
classifier, the issue of coding is presented. Coding
concerns the way the weights, bias and the flexible
activation function parameters of NN are represented by
individuals. A float point coding scheme is adopted
here. For NN coding, suppose there are M nodes in
hidden layer and one node in output layer and n input
variables, then the number of total weights is

1×+× MMn , the number of thresholds is M+1
and the number of flexible activation function
parameters is M+1, therefore the total number of free
parameters in a NN to be coded is

)1(2 +++× MMMn . These parameters are
coded into an individual or particle orderly.

Let Pop(t) be the population of solutions at
generation t. EDAs work in the following iterative
way.
S1 Selection. Select M promising solutions from
Pop(t) to form the parent set Q(t) by truncation
selection method;
S2 Modeling. Build a probabilistic model p(x) based
on the statistical information extracted from the
solutions in Q(t);
S3 Sampling. Sample new solutions according to the
constructed probabilistic model p(x);
S4 Replacement. Partly replace solutions in Pop(t) by
the sampled new solutions to form a new population
Pop(t + 1).

3.2 Parameter Optimization with PSO

The Particle Swarm Optimization (PSO)
conducts searches using a population of particles
which correspond to individuals in evolutionary
algorithm (EA). A population of particles is
randomly generated initially. Each particle represents
a potential solution and has a position represented by
a position vector xi. A swarm of particles moves
through the problem space, with the moving velocity
of each particle represented by a velocity vector vi. At
each time step, a function fi representing a quality
measure is calculated by using xi as input. Each
particle keeps track of its own best position, which is
associated with the best fitness it has achieved so far
in a vector pi. Furthermore, the best position among
all the particles obtained so far in the population is
kept track of as pg. In addition to this global version,

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)

another version of PSO keeps track of the best
position among all the topological neighbors of a
particle. At each time step t, by using the individual
best position, pi, and the global best position, pg(t), a
new velocity for particle i is updated by

))()((
))()(()()1(

22

11

txtpc
txtpctvtv

ig

iiii

−+
−+=+

φ
φ

 (12)

where c1 and c2 are positive constant and φ1 and φ2 are
uniformly distributed random number in [0,1]. The
term vi is limited to the range of vmax. If the velocity
violates this limit, it is set to its proper limit.
Changing velocity this way enables the particle i to
search around its individual best position, pi, and
global best position, pg. Based on the updated
velocities, each particle changes its position
according to the following equation:

)1()()1(++=+ tvtxtx iii (13)
A neural network classifier trained by PSO

algorithm with flexible bipolar sigmoid activation
functions at hidden layer were constructed for the
breast cancer data set. The issue of coding is similar
with the one used in EDA-NN discussed above.

The simple loop of the proposed training
algorithm for neural network is as follows.

S1 Initialization. Initial population is generated
randomly. The learning parameters c1 and c2 in PSO
should be assigned in advance;

S2 Evaluation. The objective function value is
calculated for each particle;

S3 Modification of search point. The current
search point of each particle is changed using
Eqn.(12) and Eqn.(13);

S4 if maximum number of generations is
reached or no better parameter vector is found for a
significantly long time (100 steps), then stop,
otherwise goto step S2.

3.3 Decision Tree Classification
For comparison purpose, a Decision tree induction is
one of the classification algorithms in data mining.
The Classification algorithm is inductively learned to
construct a model from the pre-classified data set.
Each data item is defined by values of the attributes.
Classification may be viewed as mapping from a set
of attributes to a particular class. The Decision tree
classifies the given data item using the values of its
attributes. The decision tree is initially constructed
from a set of pre-classified data. The main approach
is to select the attributes, which best divides the data
items into their classes. According to the values of
these attributes the data items are partitioned. This
process is recursively applied to each partitioned
subset of the data items. The process terminates when

all the data items in current subset belongs to the
same class. A node of a decision tree specifies an
attribute by which the data is to be partitioned. Each
node has a number of edges, which are labeled
according to a possible value of the attribute in the
parent node. An edge connects either two nodes or a
node and a leaf. Leaves are labeled with a decision
value for categorization of the data.

Induction of the decision tree uses the training
data, which is described in terms of the attributes.
The main problem here is deciding the attribute,
which will best partition the data into various classes.
The ID3 algorithm [11] uses the information
theoretic approach to solve this problem. Information
theory uses the concept of entropy, which measures
the impurity of a data items. The value of entropy is
small when the class distribution is uneven, that is
when all the data items belong to one class. The
entropy value is higher when the class distribution is
more even, that is when the data items have more
classes. Information gain is a measure on the utility
of each attribute in classifying the data items. It is
measured using the entropy value. Information gain
measures the decrease of the weighted average
impurity (entropy) of the attributes compared with
the impurity of the complete set of data items.
Therefore, the attributes with the largest information
gain are considered as the most useful for classifying
the data items.

To classify an unknown object, one starts at the
root of the decision tree and follows the branch
indicated by the outcome of each test until a leaf node
is reached. The name of the class at the leaf node is
the resulting classification. Decision tree induction
has been implemented with several algorithms. Some
of them are ID3 [11] and later on it was extended into
C4.5 [12] and C5.0. Another algorithm for decision
trees is CART [13]. Of particular interest to this work
is the C4.5 decision tree algorithm. C4.5 avoids over
fitting the data by determining a decision tree, it
handles continuous attributes, is able to choose an
appropriate attribute selection measure, handles
training data with missing attribute values and
improves computation efficiency. C4.5 builds the
tree from a set of data items using the best attribute to
test in order to divide the data item into subsets and
then it uses the same procedure on each sub set
recursively. The best attribute to divide the subset at
each stage is selected using the information gain of
the attributes.

4 Simulation Studies

4.1 The Data Set

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)

The data for our experiments was prepared by the
1998 DARPA intrusion detection evaluation program
by MIT Lincoln Lab. The data set contains 24 attack
types that could be classified into four main
categories namely Denial of Service (DOS), Remote
to User (R2L), User to Root (U2R) and Probing. The
original data contains 744 MB data with 4,940,000
records. The data set has 41 attributes for each
connection record plus one class label. Some features
are derived features, which are useful in
distinguishing normal from attacks. These features
are either nominal or numeric. Some features
examine only the connection in the past two seconds
that have the same destination host as the current
connection, and calculate statistics related to protocol
behavior, service, etc. These called same host
features. Some features examine only the
connections in the past two seconds that have same
service as the current connection and called same
service features. Some other connection records were
also stored by destination host, and features were
constructed using a window of 100 connections to the
same host instead of a time window. These called
host-based traffic features. R2L and U2R attacks
don't have any sequential patterns like DOS and
Probe because the former attacks have the attacks
embedded in the data packets whereas the later
attacks have many connections in a short amount of
time. So some features that look for suspicious
behavior in the data packets like number of failed
logins are constructed and these are called contents
features. The data for our experiments contains
randomly generated 11982 records having 41
features [8].

This data set has five different classes namely
Normal DOS, R2L, U2R and Probe. The training and
test comprises of 5092 and 6890 records respectively.
All the IDS models were trained and tested with the
same set of data. As the data set has five different
classes we performed a 5-class binary classification.
The normal data belongs to class 1, Probe belongs to
class 2, DOS belongs to class 3, U2R belongs to class
4 and R2L belongs to class 5.

4.2 Intrusion Detection by EDA-NN
A neural network classifier with structure {41-8-1}
trained by EDA with flexible bipolar sigmoid
activation functions were constructed using the
training data sets and then the neural network
classifier was used on the test data set to detect the
different types of attacks. All the input variables were
used for the experiments. Table 1 depicts the
detection performance of EDA-NN for test data set.

4.3 Intrusion Detection by PSO-NN

For comparison purpose, a neural network classifier
with structure {41-8-1} trained by PSO and with
flexible bipolar sigmoid activation functions were
also constructed using the same training data sets and
then the neural network classifier was used on the test
data set to detect the different types of attacks. All the
input variables were used for the experiments. Table
1 depicts the detection performance of PSO-NN for
test data set.

4.4 Intrusion Detection by DT
The important variables were also decided by their
contribution to the construction of the decision tree.
Variable rankings were generated in terms of
percentages. We eliminated the variables that had
0.00% rankings and considered only the primary
splitters or surrogates. This resulted in a reduced 12
variable data set with x2, x4, x5, x11, x22, x23, x24, x27, x30,
x31, x32, x34 as variables. The detection performance of
the DT by using the original 41 variable data set is
shown in Table 1.

The achieved true positive and false positive
rates using 41 input variables by the EDA-NN,
PSO-NN and DT algorithms are depicted in Table 2.

Table 1. Detection performance using EDA-NN,
PSO-NN and DT classification models for test data
set
Attack Class EDA-NN PSO-NN DT
Normal 97.58% 95.69% 82.32%
Probe 95.57% 95.53% 94.83%
DOS 97.76% 90.41% 77.10%
U2R 99.90% 100% 99.83%
R2L 98.90% 98.10% 94.33%

Table 2. Comparison of false positive rate (fp) and
true positive rate (tp) for EDA-NN, PSO-NN and DT
classifiers for test data set
Attack
Class

EDA-NN
fp(%) tp(%)

PSO-NN
fp(%) tp(%)

DT
fp(%) tp(%)

Normal 0.29 99.64 4.3 88.70 29.7 99.60
Probe 0.02 56.57 0.40 37.15 0.24 31.00
DOS 3.94 98.86 3.68 89.38 72.1 97.63
U2R 0.01 52.00 0.05 55.81 0.02 59.26
R2L 0.08 87.39 0.17 86.63 0.02 30.73

4.4 Intrusion Detection by FNT
For comparison purpose, we also provide the results
obtained with flexible neural tree (FNT). For details
please refer to the reference [21], [6], [7].

In general, FNT can reduce or extract important
variables for intrusion detection system and have best
classification accuracy. The DT can reduce the
dimension, but it also reduces the classification

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)

accuracy. Different training algorithms for NN have
different classification results. EDA trained NN has
better classification rate.

5 Conclusions

In this paper, we have illustrated the importance
of evolutionary algorithm and neural networks based
techniques for modeling intrusion detection systems.
EDA-NN classification accuracy is grater than 95%
for all the considered attack types (classes) and
achieved good true positive and false positive rates. It
is to be noted that for real time intrusion detection
systems EDA and neural networks would be the ideal
candidates because of its simplified implementation.

Acknowledgments
This research was partially supported by the Natural
Science Foundation of China grant 60573065, and
The Provincial Science and Technology
Development Program of Shandong grant
SDSP2004-0720-03.

References:
[1] R.C. Summers, Secure Computing: Threats and

Safeguards. McGraw Hill, New York, 1997.
[2] M. Debar, D. Becke, and A. Siboni. A Neural

Network Component for an Intrusion Detection
System. Proceedings of the IEEE Computer
Society Symposium on Research in Security and
Privacy, 1992.

[3] S. Mukkamala, A.H. Sung and A. Abraham,
Intrusion Detection Using Ensemble of Soft
Computing Paradigms, Advances in Soft
Computing, Springer Verlag, ermany, pp.
239-248, 2003.

[4] K. Shah, N. Dave, S. Chavan, S. Mukherjee, A.
Abraham and S. Sanyal, Adaptive Neuro-Fuzzy
Intrusion Detection System, IEEE International
Conference onITCC'04, Vol. 1, pp. 70-74, 2004.

[5] A. Abraham, Evolutionary Computation in
Intelligent Web Management, Evolutionary
Computing in Data Mining, A. Ghosh and L. Jain
(Eds.), Studies in Fuzziness and Soft Computing,
Springer Verlag Germany, Chapter 8, pp.
189-210, 2004.

[6] Y. Chen, B. Yang, J. Dong, and A. Abraham,
Time-series Forecasting using Flexible Neural
Tree Model, Information Science, 174(3-4):
219-235, 2005.

[7] Y. Chen, A. Abraham, Feature Selection and
Intrusion Detection using Hybrid Flexible Neural
Tree, ISNN-05, LNCS 3498, pp. 439-444, 2005.

[8] KDD cup 99,
http://kdd.ics.uci.edu/database/kddcup99/kddcup
.data10percent.gz

[9] S. Chebrolu, A. Abraham, J. P. Thomas, Feature
Detection and Ensemble Design of Intrusion
Detection Systems. Computers and security, Vol.
24/4, pp. 295-307, 2005.

[10] Barbara D., Couto J., Jajodia S. and Wu N.,
ADAM: A Testbed for Exploring the Use of Data
Mining in Intrusion Detection. SIGMOD Record,
30(4), pp. 15-24, 2001.

[11] J. R. Quinlan. Induction of Decision Trees.
Machine Learning, 1:81-106, 1986.

[12] J. R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[13] Brieman L., Friedman J., Olshen R., and Stone
C., Classification of Regression Trees.
Wadsworth Inc., 1984.

[14] D. Joo, T. Hong, I. Han, The neural network
models for IDS based on the asymmetric costs of
false negative errors and false positive errors,
Expert Systems with Applications, Vol. 25, pp.
69-75, 2003.

[15] A. Ochoa, H. Muhlenbein, M. Soto, A
Factorized Distribution Algorithm Using Single
Connected Bayesian Networks, PPSN, 787-796,
2000.

[16] M. Pelikan, D. E. Goldberg and E. Cantu-Paz,
BOA: The Bayesian Optimization Algorithm, In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO99), I,
525-532, 1999.

[17] S. Rudlof and M. Koppen, Stochastic
Hill-Climbing with Learning by Vectors of
Normal Distributions, Nagoya, Japan, 1996.

[18] P. Larranaga and J. A. Lozano, Estimation of
Distribution Algorithms: A New Tool for
Evolutionary Computation, Kluwer Academic
Publishers, 2001.

[19] P. A. N. Bosman and D. Thierens, Expanding
from Discrete to Continuous EDAs: The IDEA,
In Proceedings of Parallel Problem Solving from
Nature, PPSN-VI, 767-776, 2000.

[20] S. Tsutsui, M. Pelikan, and D. E. Goldberg,
Evolutionary Algorithm Using Marginal
Histogram Models in Continuous Domain, In
Proceedings of the 2001 Genetic and
Evolutionary Computation Conference
Workshop, 230-233, San Francisco, CA, 2001.

[21] Y. Chen, B. Yang and J. Dong, Nonlinear
System Modeling via Optimal Design of Neural
Trees, International Journal of Neural Systems,
Vol.14, No.2, 125-137, 2004.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp428-433)

http://kdd.ics.uci.edu/database/kddcup99/kddcup.data10percent.gz
http://kdd.ics.uci.edu/database/kddcup99/kddcup.data10percent.gz
http://cilab.ujn.edu.cn/paper/ijns.pdf
http://cilab.ujn.edu.cn/paper/ijns.pdf
http://cilab.ujn.edu.cn/paper/ijns.pdf

