
Study on LZW algorithm for Embedded Instruction Memory.
ADBULLAH A. HUSSAIN MAO ZHIGANG

 MICROELECTRONICS MICROELECTRONICS

 Harbin Institute of Technology Harbin Institute of Technology

 Flat No. 202, Building No.6, Harbin 150001, Science Building, 10
th
 floor, Harbin 15000,

 CHINA CHINA

Abstract: - Diminishing instruction size is playing an increasingly important role for decreasing the dissipation

power in portable computing and wireless communication markets and embedded system. We study compression

instructions with LZW algorithm for three programs under two RISC processors. Implementation of algorithm on

the offline-instructions is examined to measure the compression ratio. This study is useful for compressed code

systems where instructions are stored in a compressed format and decompressed on demand. The result is a

significant reduction on the size of the instruction memory and power consumption as well. Our scheme supposes

untouched architecture of processor and retains all the processor functions by doing compression process on the 32-

bit instruction format. This paper is a step of designing decompressor unit according to LZW in terms of small size

instruction memory and low-power embedded system.

Key-Words: - Code Compression, LZW, Algorithm, Embedded System, Low-Power, Instruction compression.

1 Introduction
Previously, the research project was focusing on

instruction compression to reduce memory size.

Wolfe and Chanin were the first to propose an

embedded processor design which incorporates code

compression [1] where Huffman coding algorithm is

used to compress cache blocks. Charles Lefurgy et al

[2] proposed techniques that compress instructions so

that they are easily de-compressible. A number of

industrial efforts have also emerged, including

MIPS16 [3] and ARM’s Thumb processor [4]. Haris

Lekatsas and Wayne Wolf [5] compressed the

instruction segment by using algorithm of arithmetic

coding in combination with a Markov model. They

provided experimental results on two architectures,

Analog Devices Sharc and ARM's. ARM and Thumb

instruction sets, show that programs can often be

reduced more than 50%.

 Some other research project has investigated code

compression’s effect on power consumption; Yoshida

et al. [6] suggested a logarithmic-based compression

scheme where 32-bit instructions map to fixed but

smaller width compressed instructions. They

investigated the power consumption of the system

using memory area only. Benini et al. [7] proposed a

scheme where some frequently appearing instructions

are compressed to 8 bits. Since only a small (but

frequently appearing) subset of instructions is

compressed, 8 bits are sufficient for encoding them.

This ensures compressed instructions are always

fixed-length (8 or 32 bits) hence decoding is very

simple and fast.

 In the embedded system area, the investigation

should involve the design schemes that would lead to

reduce power dissipation on system as well as

reducing memory size. It reduced by compressing

instruction size which will lead up to small embedded

memory on the system, diminish buses transaction,

and power dissipation on the system see [8] [9] [10].

Fig.1: architecture for compressed memory.

Our offering architecture is showed in figure (1),

compressed instruction memory, general purpose core

32-bit, and added de-compressor unit. We are

assuming no touching the processor architecture.

However, the added de-compressor unit to the

processor core in order to return the demand

instruction to original format. Our scheme considered

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp235-239)

the added size and power to the system should

maintain less than previous modification, but it leads

up to small size of instruction memory.

2 Compressing method
In this section, we will introduce the data compression

algorithm that used in compression of the instructions

of the programs under two RISC processors SPARC

and ARM. The programs are WLAN that we

implement 802.11 protocol, and SPEC-Benchmarks;

go and li.

2.1 Algorithm description
Reducing the size of program would be done by

compressing the size of the instruction utilizing a

compression algorithm. That is selected according to;

compressing ratio (The ratio of the size of compressed

instruction segment over the size of original

instruction segment), decompressing speed, and

algorithm is not much complicate to reform the

instruction to original format. The selected algorithm

by our case is one of Ziv-Lempel family algorithms

that is called Lempel-Ziv-Welch algorithm (LZW)

[11]. The features of the algorithm stimulated us to

employ it which presents good compression ratio,

high decompressed speed and amazingly simple. The

arbitrary length of the algorithm outputs considered a

serious drawback when implementing it on instruction

set.

 The key insight of the method that is possible to

automatically build a dictionary of previously seen

strings in the text being compressed. The dictionary

does not have to be transmitted with the compressed

text, since the decompressor can build it the same way

 the compressor does, and if coded correctly, will have

exactly the same strings that the compressor

dictionary had at the same point in the text.

2.2 Building dictionary and coding
The dictionary starts off with 256 entries, one for each

possible character (8-bit string). Every time a string

not already in the dictionary is seen, a longer string

consisting of that string appended with the single

character following it in the text is stored in the

 dictionary. The output consists of numeric codes

(integer indices) into the dictionary. These initially are

9 bits each, and as the dictionary grows, can increase

to up to 16 bits. A special symbol is reserved for

"flush the dictionary" which takes the dictionary back

to the original 256 entries, and 9 bit indices. This is

useful if compressing a text which has variable

characteristics, since a dictionary of early material is

not of much use later in the text. This use of variably

increasing index sizes is one of Welch's contributions.

Another was to specify an efficient data structure to

store the dictionary. The LZW compression algorithm

in its simplest form is shown in figure 2.

Routine LZW_COMPRESS

 STRING = get input character

 WHILE there are still input characters DO

 CHARACTER = get input character

 IF STRING+CHARACTER is in the string table then

 STRING = STRING + character

 ELSE

 output the code for STRING

 add STRING+CHARACTER to the string table

 STRING = CHARACTER

 END of IF

 END of WHILE

 output the code for STRING

Fig. 2: The Compression Algorithm

 Taking an example would give better explanation

about the algorithm. To begin with, all characters that

may occur in the binary file are assigned a code.

Suppose the MOV instruction that has chosen from

the 32-bit ARM processor Instruction set as binary file

to be compressed, only substituting the characters ‘a’

instead of code ‘0’ and ‘b’ instead of code ‘1’ for

simplicity.

ababaabbbabbaabbababaaabbbbaaaba

The mapping between character strings and their

codes is stored in a dictionary. Each dictionary has

two fields; key and code. The character string

represented by code is stored by the field key. The

dictionary for above example is showed in table (1).

 The LZW decompression algorithm in its simplest

form is shown in figure 3. The decompression

algorithm is a companion algorithm for compression

one. It needs to be able to take the stream of codes

output from the compression algorithm, and use them

 to exactly recreate the input stream. it is reverse

direction process with using same dictionary.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp235-239)

code key code key

0 a 9 bba

1 b 10 aab

2 ab 11 bbab

3 ba 12 baba

4 aba 13 aaa

5 aa 14 abbb

6 abb 15 bbaa

7 bb 16 aaba

8 bab

Table 1: LZW compression dictionary to the example.

Routine LZW_DECOMPRESS

 Read OLD_CODE

 output OLD_CODE

 WHILE there are still input characters DO

 Read NEW_CODE

 STRING = get translation of NEW_CODE

 output STRING

 CHARACTER = first character in STRING

 add OLD_CODE + CHARACTER to the

translation table

 OLD_CODE = NEW_CODE

 END of WHILE

Fig. 3: The Decompression Algorithm

3 Experimental Results
Compressing the execution program idea is not new

and the compressing algorithm as well. However, the

compressing-decompression scheme could be

promising that we are presenting. However, storing

the instruction in memory depends on the instruction

size and the instruction location. If the compressing

process diminishes the size of instruction and keep the

location of new form of instruction as it was. That

would be fine solution to the random access to the

instruction after compression. The idea is showed in

figure 4.

Fig. 4: Retaining memory location of compressed Inst.

The architecture design of some processors may

support two modes; one for normal use and the other

for the low power use. That what has design in ARM

processor which the ARM Thumb shrinks the

instruction size. The ARM Thumb has diminished

some functions of original design.

 However, our scheme supposes to compress the

instruction 32-bit to be in a compressed format

without touch the architecture of the processor. This

technique has given fine compression ration and more

than 50% for the three programs and under the ARM

processor and SPARC processor. Moreover, processor

functions will not be lost. The figures (5) and (6)

represent the statistical study on the three programs

that implement on the two RISC processors. Figures

are showing the usage instructions by compiler to

interpret programs. These varieties of instructions are

not too much that would effect positively on the

dictionary which is not expanded largely during the

compression processing. However, table (2) is shown

compression ratio of the programs in binary version

with considering all above arguments in study.

Compression ration % processor

WLAN go li

ARM 55 58 59

SPARC 50 55 53

Table 2: Compression ratio under our scheme.

We expected the used power by the compressed

program would be lower, and we are going to

improved after complete the design of the

decompressed unit. Only one thing remaining that

performance of the system under these considerations

should not be much lower the case the system with out

decompressor unit. However, improving that will be

next step of our research on this system under our

scheme.

4 Conclusion
This paper has examined LZW algorithm to compress

the offline-instructions for three programs under ARM

and SPARC processors. The compression ratio is

significantly reducing size the instructions without

losing any of functions support by the processor.

Future work will continue to prove and design

decompressor unit for embedded system in terms of

low-power.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp235-239)

ARM

0

5

10

15

20

25

30

35

40

A
D
D

A
N
D

O
R
R

S
U
B

C
M
P

M
V
N

M
O
V

L
D
R

L
D
R
B

L
D
R
H

S
T
R

S
T
R
B

S
T
R
H

L
D
M

S
T
M

R
S
B B

B
L

Instructions

%

WLAN

li

go

Fig. 5: Instructions usage under ARM processor.

SPARC

0

3

6

9

12

15

18

21

24

a
d
d

a
n
d

b
n
e

jm
p
l

ld
u
b ld

n
o
p o
r

re
st
o
re

sa
v
e

se
th
i

sl
l st

su
b
c
c

w
r b

b
e

sr
a

sr
l

ld
u
h

st
b

st
h

b
ic
c

ca
ll

Instructions

%

WLAN

li

go

Fig. 6: Instructions usage under SPARC processor.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp235-239)

References:

 [1] A.Wolfe and A. Chanin, Executing Compressed

Programs on an Embedded RISC Architecture, Proc.

25th Ann. Int’l Symp. On Microarchitecture, pp. 81-

91, December, 1992.

 [2] C. Lefurgy, P. Bird, I.-C. Cheng, and T. Mudge.

Improving code density using compression

techniques, In Proc. 30th International Symposium

on Microarchitecture, December, 1997 pp. 194-203.

 [3] K.D. Kissell, MIPS16: High Density MIPS for

the Embedded Market, Silicon Graphics Group,

1997.

 [4] Advanced RISC Machines Ltd., An Introduction

to Thumb, March, 1995.

 [5] H. Lekatsas and W. Wolf, SAMC: a code

 compression algorithm for embedded processors,

 IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, Vol. 18, No. 12,

1999, pp. 1689-701.

 [6] Y. Yoshida, B.-Y. Song, H. Okuhata, T. Onoye, I.

Shirakawa, An Object Code Compression Approach

to Embedded Processors, Proc. of the Int’l Symp. On

Low Power Electronics and Design (ISLPED-97),

1997 , pp. 265-268.

 [7] L. Benini, E. Macii and M. Poncino. Selective

Instruction Compression for Memory Energy

Reduction in Embedded Systems, IEEE/ACM Proc.

of Int’l Symp. On Low Power Electronics and Design,

1999, pp. 206-211.

[8] E. Billo, R. Azevedo, G. Araujo, P. Centoducatte,

Design of a decompressor engine on a SPARC

processor, Proceedings of the 18th annual

symposium on Integrated circuits and system design,

Brazil, 2005,pp 110 - 114.

[9] L. Benini, A. Macii, and A. Nannarelli, Code

 compression for cache energy minimization in

 embedded systems, IEE Proceedings on Computers

and Digital Techniques, Vol. 149, No. 4, July 2002,

pp.157-163.

 [10] Haris Lekatsas, Jörg Henkel, Wayne Wolf, Code

compression for low power embedded system design,

Proceedings of the 37th conference on Design

automation, June 05-09, Los Angeles, California,

United States, 2000, pp.294-299.

[11] T. Welch, A technique for High Performance

 Data Compression, IEEE Computer, Vol. 16, No. 6,

1984, pp. 8 -19.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp235-239)

