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Abstract: This paper presents an approach for parallel robot’s Jacobian matrix factorization. Besides its computa-
tional efficiency, the proposed approach, which is based on an extension of global formalism developed by Fijany,
does’nt require the inversion of the inverse Jacobian matrix. This new factorization is based on a mathematical
simplification of the parallel kinematic architecture and by introducing passive and active joint concepts. A sin-
gularity study starting from the Jacobian matrix factorization is also presented for the case of a spatial C5 joint
parallel robot.
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1 Introduction

The parallel robot concept [1] [2] [3], characterized
by a mobile and a fixed part linked by kinematic in-
dependent chains, can be considered as an alternative
way to avoid the shortcomings of the anthropomor-
phous classical manipulator structures. One of the
drawbacks of a serial manipulator is its lack of accu-
racy in the positioning of the terminal tool, because of
error accumulations in each link. By comparison with
serial architectures, parallel architectures present also
a greater compactness and stiffness, along with an in-
teresting ratio between the moved load and the robot’s
mass. However, the increase in stiffness is obtained
to the detriment of the workspace, limiting the paral-
lel robotic applications to tasks requiring weak ampli-
tude displacements. The field of simulators [4] [5] [6]
which attempts to apply accelerations with weak am-
plitude displacements and assembly robotics, where
the parallel robot is used as an end-effector [7], consti-
tute some of the many applications of parallel robots.
The determination of the inverse geometric model re-
mains, in the case of parallel robots, relatively easy.
Some general methods have been developed [8] [9].
Due to non-linearities in the equations, the direct ge-
ometric model is difficult to obtain. Some numeric
methods, like Newton-Raphson method, have been
used successfully [2].
In parallel robot research area, the problem of Jaco-
bian matrix determination is an open and interesting
problem. Indeed, the inverse Jacobian matrix compu-
tation is currently known and mastered [2] [10] [11],

but its analytical expression remains relatively com-
plex. Thus analytical formulation of the Jacobian ma-
trix, by symbolic inversion or even by using some for-
mal computing tools, is difficult [2]. Its expression
is generally obtained by a numerical method using a
classic algorithm of matrix inversion or by a method
based on an iterative scheme. Moreover, in order to
limit the computation time, a solution consists of ex-
pressing the Jacobian matrix in a nominal position,
and to consider it as constant. This corresponds to the
hypothesis of using the parallel manipulator around a
nominal situation [2] [3].
In the present paper, a new Jacobian matrix factoriza-
tion is presented. This approach is a generalization of
the approach proposed by Fijany et al. [12] [13] [14]
for serial robot. Thus we consider the parallel robot
as a multi-robot system with k serial robots (the seg-
ments) moving a common load (the mobile platform)
[15] [16]. The basic idea is to compute the Jacobian
matrix associated with each robot link considered as
a serial robot and then to compute the Jacobian ma-
trix of the parallel robot by considering the kinematic
chain closing constraint. This paper is organized as
follows. Some preliminaries and notations are given
in section 2. The Jacobian matrix factorization ap-
proach is detailed in section 3, before presenting the
application of this approach to C5 parallel robot de-
signed at LIIA-Lab [7]. In the section 4, a singularity
study starting from the Jacobian matrix factorization,
is presented. We conclude with some remarks and per-
spectives.
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2 Preliminaries

In this section, we define the required notation, and
preliminaries are presented. The parallel robot is con-
sidered as a multi-robot system with k serial robots
(segments) moving a common load (mobile platform).
The figure (1) shows the links, the frames and position
vectors for the segment i (i = 1, . . . , k).

Figure 1: Links, frames and position vectors for the
segment i

2.1 Nomenclature

2.1.1 Joint and link parameters

• iPj+1,j: position vector from iOj to iOj+1

• k: number of segments
iM : dof number of segment i

• iN : joint number of segment i

• S: active joint number by link

• θa
i , θ̇a

i : position and velocity of active joint of the
segment i

• iθp
j ,

iθ̇p
j : position and velocity of passive joint j

of the segment i

• iωj , ivj ∈ �3: angular and linear velocity of link
j for the segment i

2.1.2 Spatial quantities

• iHj: spatial-axis (map matrix) of joint j for the
segment i. For instance, for a joint with 2 dof
(rotation about Z axis and translation about X
axis), the matrix iHj ∈ �6×2 is given by:

iHj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

X-axis rotation
Y-axis rotation
Z-axis rotation
X-axis translation
Y-axis translation
Z-axis translation

• iVj =

[
iωj
ivj

]
∈ �6: spatial velocity of the link

j for the segment i

• VN+1 ∈ �6: spatial velocity of the end effector

2.1.3 Global quantities

The following global quantities are defined for j =
iN to 1 or j = iM to 1 and i = k to 1

• Q̇i = Col
(

iθ̇j

)
∈ � iM : global vector of ar-

ticular coordinate velocity of the segment i, tak-
ing into account passive and active joints

• Q̇ = Col
(

θ̇a
i

)
∈ �k: vector of generalized

coordinate velocity of the system

• Vi = Col
(

iVj

)
∈ �6 iN : global vector of

spatial velocities for the segment i

• Hi = Diag
(

iHj

)
∈ �6 iN× iM : global ma-

trix of spatial axis for the leg i

2.2 General notations

With any vector V =
[

Vx Vy Vz

]t
, a tensor Ṽ

can be associated whose representation in any frame
is a skew symmetric matrix:

Ṽ =

⎡
⎢⎣ 0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

⎤
⎥⎦

A matrix V̂ associated to the vector V is defined
as:

V̂ =

[
U Ṽ
0 U

]

where U and 0 stand for unit and zero matrices of
appropriate size.
In our derivation, we also make use of global matrices
and vectors which lead to a compact representation
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Figure 2: C5 joint parallel robot

of various factorizations. A bidiagonal block matrix
Pi ∈ �6 iN×6 iN is defined as:

Pi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U

−iP̂N−1 U 0
0 −iP̂N−2 U
0 0
...

...
0 0 0 −iP̂1 U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note according to our notation, iPj+1,j = iPj.

2.3 C5 joint parallel robot description

The C5 joint parallel robot [7] consists of a static and
a mobile part connected together by six actuated seg-
ments (Fig 2 and 3). Each segment is embedded to
the static part at point Ai and linked to the mobile
part through a C5 passive joint (3 degrees of freedom
(DOF ) in rotation and 2 DOF in translation) at point
Bi. Each C5 joint consists of a spherical joint tied
to two crossed sliding plates (Fig 4). Each segment is
equipped with a ball and a screw linear actuator driven
by a DC motor.

The used notation to describe the parallel robot is
defined in the following.

• Rb is the absolute frame, tied to the fixed base:
Rb = (0, x, y, z).

• Rp is the mobile frame, tied to the mobile part:
Rp = (C, xp, yp, zp).

• Let O be the origin of the absolute coordinate
system.

Figure 3: C5 parallel robot representation.

Figure 4: Detail of the C5 joint.

• Let C (or ON+1) be the origin of the mobile co-
ordinate system, whose coordinates are in the ab-
solute frame:

OC/Rb
=

[
xc yc zc

]t

• Ai (or iO1) is the center of the joint between the
segment i and the fixed base:

OAi/Rb
=

[
ax

i ay
i az

i

]t

• Bi (or iON ) is the center of the joint between the
segment i and the mobile part:

CBi/Rp
=

[
bx
i by

i bz
i

]t

• [R] is the rotation matrix of rij elements (in the
RPY formalism), expressing the orientation of
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the Rp coordinate system with respect to the Rb

coordinate system. The expression for this ma-
trix is given by:

[R] =

⎡
⎢⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎥⎦ (1)

where:
r11 = cos β cos γ
r12 = − cos β sin γ
r13 = sin β
r21 = sin γ cos α + cos γ sin β sinα
r22 = cos α cos γ − sin α sin β sin γ
r23 = − cos β sin α
r31 = sin γ sin α − cos γ sin β cos α
r32 = sin α cos γ + cos α sin β sin γ
r33 = cos β cos α

• α, β and γ are the Bryan angles [17], describing
the rotation of the mobile platform with respect
to the fixed part.

• X is the task coordinate vector.

X =
[

α β γ xc yc zc

]t

• Rbi
is the frame tied to the segment i: Rbi

=
(Ai, xbi

, ybi
, zbi

).

• αbi
, βbi

, γbi
are the angles, in the RPY formal-

ism, describing frame Rbi
rotation with respect

to the absolute frame Rb.

• αpi , βpi , γpi are the angles, in the RPY for-
malism, describing the mobile platform rotation
with respect to the frame Rbi

.

3 Factorized expression of the Jaco-
bian matrix

3.1 General approach

The differential kinematic model of a manipulator can
be defined by the relationship between the spatial ve-
locity of the end effector and the vector of general-
ized coordinate velocities of the robot: VN+1 = J Q̇,
where J is the Jacobian matrix.
In the proposed approach, the parallel robot is con-
sidered as a multi-robot system, composed of serial
robots (the segments) moving a common load (the

Figure 5: Scheme of the spatial arrangement of the C5
joint parallel robot segments.

Figure 6: Projection of Fig. 4 onto Y OZ plane.

mobile platform). A relationship linking the Jacobian
matrix of the parallel robot (J ) to the Jacobian matrix
of each segment (Ji) is presented.
The principle of this approach consists of first com-
puting the Jacobian matrix for each leg considered as
an open serial chain. Secondly, the closing constraint
is determined, allowing the computation of the paral-
lel robot Jacobian matrix.
The velocity propagation for a serial chain of inter-
connected bodies is given by the following intrinsic
equation [12][13][14]:

iVj − iP̂ t
j−1

iVj−1 = iHj
iθ̇j (2)

By using the matrix P, equation (2) can be expressed
in a global form by:
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Pt
i Vi = HiQ̇i (3)

thus:

Vi =
(
Pt

i

)−1 HiQ̇i (4)

The end effector spatial velocity VN+1 is obtained by
the following relation:

VN+1 − iP̂ t
N

iVN = 0 (5)

thus:
VN+1 = iP̂ t

N
iVN (6)

Let βi ∈ �6× iN be the matrix defined by βi =[
iP̂ t

N 0 · · · 0
]
, equation (6) becomes:

VN+1 = βiVi (7)

Thus, inserting the expression of Vi from equation (4),
we obtain:

VN+1 = βi

(
Pt

i

)−1 HiQ̇i (8)

Thus:

Ji = βi

(
Pt

i

)−1 Hi (9)

The Jacobian matrix J of the parallel robot is ob-
tained by the closing constraint determination of the
kinematic chain. This determination can be obtained
by expressing the actuated joint velocityQ̇ of the par-
allel robot in function of vectorsQ̇i associated to each
segment i. Let the matrix Πi be characterized by:

Q̇i = Πi Q̇ (10)

Inserting equation (10) into (8), we obtain:

VN+1 = βi

(
Pt

i

)−1 HiΠiQ̇ (11)

Therefore, a factorized expression of the parallel robot
Jacobian matrix is given by:

J = βi

(
Pt

i

)−1 HiΠi (12)

The matrices J and Ji are linked by the following
relationship:

J = Ji Πi (13)

The matrix computation of Πi depends on the par-
allel robot architecture. In the following sections, we
develop the computation of this matrix for the spatial
C5 parallel robot.

3.2 Application to the C5 joint parallel robot

3.2.1 Preliminaries

According to our notations, we have :

k = 6, ∀i, iM = 6, iN = 2

Let iPN =
[

xi yi zi

]t
,

the propagation vector from Bi to C in the frame
tied to the segment i (Rbi

):

iPN = BiC/Rbi
=

[
iR

]t
[R] BiC/Rp

(14)

iR is the rotation matrix from the frame Rbi
to the

base frame Rb and R the rotation matrix from the
frame Rp to the base frame Rb. For the C5 parallel
robot, the frames Rbi

are chosen parallel to the fixed
frameRb (each segment is embedded). Thus, we have:

iR =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦

Equation (14) is written as:⎧⎪⎨
⎪⎩

xi = −r11b
x
i − r12b

y
i − r13b

z
i

yi = −r21b
x
i − r22b

y
i − r23b

z
i

zi = −r31b
x
i − r32b

y
i − r33b

z
i

(15)

The spatial arrangement of the segments (see Fig.
5 and 6) is as follow:

• The segments 1 and 2 are in the direction of the
x-axis (Yi = Zi = 0 for i = 1, 2).

• The segments 3 and 4 are in the direction of the
y-axis (Xi = Zi = 0 for i = 3, 4).

• The segments 5 and 6 are in the direction of the
z-axis (Xi = Yi = 0 for i = 5, 6).

Thus, we deduce the following relations:

y1 = y2 = yc

z3 = z4 = zc

x5 = x6 = xc

(16)

The global vector of articular coordinate velocity of
the leg i is given by:

Q̇i =
[

ẇpi u̇pi γ̇pi β̇pi α̇pi θ̇a
i

]t
(17)

where u̇pi and ẇpi are translation velocities due to the
crossed sliding plates.
The vector of generalized coordinate velocity is given
by:

Q̇ =
[

θ̇a
6 θ̇a

5 θ̇a
4 θ̇a

3 θ̇a
2 θ̇a

1

]t
(18)
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3.2.2 Matrix Πi determination

The aim of this part is to determine the matrix Πi

given in equation (10).
We have: ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ẇpi

u̇pi

γ̇pi

β̇pi

α̇pi

θ̇a
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Πi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇a
6

θ̇a
5

θ̇a
4

θ̇a
3

θ̇a
2

θ̇a
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The elements iπjk of the matrix Πi are computed
by equation (8). This equation is true for i = 1 to 6,
thus:

βi

(
Pt

i

)−1 HiQ̇i = βj

(
Pt

j

)−1 HjQ̇j (20)

for i and j = 1 to 6.
From equation (20), we can show that for all i, j =
1, . . . , 6 we obtain the following relations:⎧⎪⎨

⎪⎩
α̇pi = α̇pj

β̇pi = β̇pj

γ̇pi = γ̇pj

(21)

After some manipulations on relation (20), we ob-
tain:

• For i = 1 and j = 2

θ̇a
1 = (z2 − z1) β̇pi + (y1 − y2) γ̇pi + θ̇a

2 (22)

• For i = 3 and j = 4:

θ̇a
3 = (z3 − z4) α̇pi + (x4 − x3) γ̇pi + θ̇a

4 (23)

• For i = 5 and j = 6:

θ̇a
5 = (y6 − y5) α̇pi + (x5 − x6) β̇pi + θ̇a

6 (24)

• For i = 1 and j = 3:

u̇p1 = (z1 − z3) α̇pi + (x3 − x1) γ̇pi + θ̇a
3 (25)

• For i = 1 and j = 5:

ẇp1 = (y5 − y1) α̇pi +(x1 − x5) β̇pi + θ̇a
5 (26)

From equation (16), we have y1 = y2, z3 = z4

and x5 = x6. Thus, the equations (22, 23, 24) can be
written as follow:

θ̇a
1 = (z2 − z1) β̇pi + θ̇a

2

θ̇a
3 = (x4 − x3) γ̇pi + θ̇a

4

θ̇a
5 = (y6 − y5) α̇pi + θ̇a

6

(27)

In the following, the matrix Π1 is computed with
equations (19), (25), (26) and (27). We obtain:

Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1−z3
y5−y6

z1−z3
y6−y5

x3−x1
x3−x4

x4−x1
x4−x3

0 0
y5−y1

y5−y6

y6−y1

y6−y5
0 0 x1−x5

z1−z2

x1−x5
z2−z1

0 0 1
x3−x4

1
x4−x3

0 0
0 0 0 0 1

z1−z2

1
z2−z1

1
y5−y6

1
y6−y5

0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

4 Singularity study

Singularities are particular configurations where the
robot becomes uncontrollable. The singular config-
urations are determined by the analysis of the J−1

rank. There are two kinds of singularities [7] [20]:

1. Singularities of first type, which occur when the
determinant of the matrix J−1 becomes infinite.
In their configurations we can find nonzero vec-
tors Q̇ for which VN+1 will be equal to zero.

2. Singularities of second type, which occur when
the determinant of the matrix J−1 is equal to
zero. They correspond to an uncontrollable dis-
placement of the mobile part when all the active
links are locked.

Several authors [7] [20] [21] [22] have extensively
studied the singular configurations of mechanisms.
Among them, Merlet [2] has proposed a geomet-
ric method based on the Grassman geometry. This
method consists of defining the conditions of linear
dependency between the Plucker vectors of the lines
associated to the segments of the manipulator. This
linear dependency leads to a degeneracy of the inverse
Jacobian matrix as it is formed of these vectors.
In our case, we determine the singular configurations
starting from the factorization Jacobian matrix J . The
equation (13) gives the Jacobian expression as (for
i = 1):

J = J1 Π1 (29)

Thus
det (J ) = det (J1) det (Π1) (30)

The matrix J1 is given by the equation (9). We obtain:

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 −y1 z1 0 1
0 1 x1 0 −z1 0
1 0 0 −x1 y1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(31)
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We deduce the determinant of this matrix:

det (J1) = 1 (32)

The matrix Π1 is given by the equation (28). We de-
duce:

det (Π1) =
1

(x3 − x4) (y5 − y6) (z1 − z2)
(33)

• The singular configurations of first type are then
defined when:

det (Π1) = ∞ (34)

These singularities appear when:

x3 = x4 or y5 = y6 or z1 = z2

Considering the equations (1) and (15) and the
geometrical considerations, by1 = by

2, bz
3 =

bz
4, bx

5 = bx
6 , given by Fig (5), we deduce:

1. Configrations for x3 = x4

cos β cos γ (bx
3 − bx

4) = 0
⇒ β = ±π

2 , or γ = ±π
2

(35)

2. Configurations for y5 = y6

(cos α cos γ − sin α sinβ sin γ) (by
5 − by

6) = 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α = ±π
2 , and (γ = 0 or β = 0)

γ = ±π
2 , and (α = 0 or β = 0)

α = π
4 and γ = π

4 and β = π
2

α = −π
4 and γ = −π

4 and β = −π
2

α = −π
4 and γ = π

4 and β = −π
2

α = π
4 and γ = −π

4 and β = −π
2

(36)

3. Configurations for z1 = z2

cos β cos α (bz
1 − bz

2) = 0
⇒ β = ±π

2 , or α = ±π
2

(37)

Finally, first type singular configurations appear
for α = ±π

2 , or β = ±π
2 , or γ = ±π

2 , or for any
combination of these values.

• The singular configurations of second type are
defined when:

det (Π1) = 0 (38)

Considering the equation (33), these singularities
appear when:

(x3 − x4) (y5 − y6) (z1 − z2) = ∞
These configurations are not geometrically pos-
sible for the C5 parallel robot, thus does not have
any singularity of the second type.

5 Conclusion

In this paper we have presented a new factorization
technique of the Jacobian matrix for parallel robots.
This method which gives an analytical expression,
without any need of the forward kinematic model, has
been tested on the C5 joint parallel robot built in our
laboratory.
The Jacobian matrix factorization have been used for
singular configuration determination. The interest of
our approach is within parallel robot simulation, de-
sign and operational space control. The dynamic
modeling, based on this formalism is under investiga-
tion for the factorization of the inertia matrices (joint
and operational spaces) and their inverses, leading to
the modeling algebra for robot modeling and control
[23].
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