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Abstract: - This paper aims at scheduling the forwarding nodes in one-hop neighborhoods and making the 
two hop neighbors receive the message as soon as possible, which is modeled as the Minimum Time-Slot 
Forwarding (MTSF) problem. We prove that MTSF is NP-hard in general graph and propose two 
approximation algorithms. Theoretical analysis and simulation results show that the average time slot needed 
for broadcasting is a linear of ln|P|, where P is the set of two hop neighbors of source node s. We also 
compare the performance with that of flooding, and the simulation results show that both of them perform 
better than flooding. 
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1  Introduction  
Wireless ad hoc networks have received great 
attention in recent years, due to its applications in 
many areas such as battlefield communication, search 
and rescue, disaster relief and so on. Unlike wired 
networks or cellular networks, no wired backbone 
infrastructure is installed in wireless ad hoc networks. 
In wireless ad hoc networks, nodes are commonly 
powered by cells, and of limited transmission 
abilities, and a communication session is achieved 
through either direct communication when two nodes 
are close enough or forwarding of intermediate nodes 
otherwise. 

Broadcasting is a popular application such as 
sending an alarm signal, network conferences, etc., 
and also a common used strategy to find a route in ad 
hoc networks. Broadcast is more difficult in wireless 
ad hoc networks than in traditional wired networks, 
due to the lack of infrastructures and the broadcast 
nature [2] of nodes in wireless networks. A simple 
broadcasting mechanism, known as flooding, is to let 
all the 1-hop neighbors forward, but it has a serious 
drawback, known as the broadcast storm [3] caused 
by redundant retransmission. One promising 
technique was exploited in [4, 5] to reduce redundant 
retransmissions: Each node maintains a local 
topology of its 2-hop neighborhood, and only a small 

subset of 1-hop neighbors forward the message, 
which can reduce the possibility of collision, 
decrease the delay of broadcast, and improve the 
throughput of the network. The subset of 1-hop 
neighbors selected should cover all the 2-hop nodes, 
and is referred to as forwarding set [5]. The related 
work about forwarding set in broadcast is the 
Minimum Forwarding Set problem [6], which is a 
special case of the Disk Cover problem [9].  

In this paper, however, based on the same 
assumption that each node maintains a local topology 
of its 2-hop neighborhoods, we consider the 
broadcast problem in two-hop neighborhoods. But 
unlike the previous works [2, 10, 11] on broadcasting 
in ad hoc networks which mainly aim at providing 
energy efficient broadcast, we try to minimize the 
delay of broadcast. The work in this paper also 
reduces the possibility of collision and redundant 
retransmission, and improves the throughput of the 
network. This paper models the minimum delay 
broadcast in two-hop neighborhoods as the Minimum 
Time-Slot Forwarding (MTSF), and prove that MTSF 
is NP-hard in general graph, which means that there 
is no polynomial time algorithm for MTSF, unless 
NP⊆P. Two heuristics are presented to solve the 
MTSF problem. Theoretical analysis and simulation 
results shows that the average time slot needed for 
broadcasting is linear of ln|P|, where P is the number 
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of two hop neighbor nodes of the source node s. At 
last we compare the performance of two algorithms 
with that of flooding, and the simulation results show 
that both of the algorithms perform better than 
flooding. 

The rest of the paper is organized as follows. In 
Section 2, the network model and MTSF will be 
introduced. In Section 3, we will prove that MTSF is 
NP-hard. In Section 4, two algorithms for MTSF as 
well as the theoretical and simulation analysis are 
presented. In Section 5, we compare the performance 
of two algorithms with that of flooding by simulation 
experiments. Section 6 serves as conclusion. 

 
2  Network Model 
We assume that each node is of the same 
transmission radius, and two nodes u and v can 
communicate directly with each other if the distance 
between u and v is not more than the transmission 
radius. Then the networks can be modeled as a 
Unit-Disk Graph [8], in which there is an edge 
between two nodes if and only if their distance is not 
more than 1. We also assume that the transmission 
radius of all nodes equals to their interference radius, 
so that one node cannot correctly receive the message 
if two or more of its neighbors transmit at the same 
time. The main idea in this paper is to divide the 
broadcast process into several time slots, and in each 
time slot we choose a subset of 1-hop neighbors to 
forward. This scheme will avoid unnecessary 
collisions, and as a result the delay of broadcast can 
be reduced. At last, all the two-hop nodes should 
receive the message, and our objective is to 
minimizing the number of time slots. At first, we 
need to introduce the definition of Collision-Free 
Cover. 

 
Definition 1. Collision-Free Cover: Given    

G(V, E), node v∈V, node set S⊆V. v is called to be 
collision-freely covered by S, if and only if there 
exists exactly one node u∈S such that v is one of u’s 
neighbors. 

 
Collision-Free Cover means `the effectively 

covered two-hop neighbor nodes in each time slot. In 
order to cover as many nodes as possible, we may 
choose two nodes u and w with the same neighbor c 
in the same time slot. However, we assume that there 
is a perfect MAC control scheme [12], which can 
handle this problem. However, we assume that there 
is a perfect MAC control scheme [12], which can 
handle this problem. And the 1-hop nodes may use 
the broadcast in IEEE 802.11, which has no collision 
detection or avoidance mechanism. In Fig.1 for 

example, nodes u and w may ignore the collision in 
node c and transmit simultaneously in the same time 
slot, for c can receive the message correctly in other 
time slot from another node. And the collision-free 
cover will guarantee that all the two-hop nodes will 
receive the message correctly at last. Now we will 
introduce the MTSF problem as follows.  

 

 
Fig.1 A typical 2-hop neighborhoods of s  

 
 
Definition 2. Minimum Time-Slot Forwarding 

(MTSF): Given a source node s, let D and P be the 
set of 1- and 2-hop neighbors of s respectively. It is to 
find a set F = {D1, D2,…Dn} to minimize the number 
of the time slot, n, subject to   

(1) Di⊆D, 1 ≤ i ≤ n, 
(2) For each node u∈P, there exists j, 1 ≤ j ≤ n, 

such that u is collision-freely covered by Dj.  
 
If we find the set F= {D1, D2,…Dn}, the two-hop 

broadcast can be performed in n time slots, in which 
for time slot i, we choose the forwarding node set Di 
to send message. See in Fig.1. In time slot 1, we may 
let nodes in D1={u, w} to forward, and nodes a, b, d, 
e will receive the message correctly, and in time slot 
2, we let node in D2 ={v}, and node c will be 
collision-freely covered. At last, all the two-hop 
nodes correctly receive the message in two time slots. 
Thus, the minimum delay broadcast in two-hop 
neighborhoods can be modeled as the MTSF problem 
in Unit-Disk Graph.   
 
3  Complexity Analysis for MTSF 
In this section, we will prove that MTSF is NP-hard 
in general graph, so there is no polynomial time 
algorithm for MTSF unless NP⊆P. Before the proof, 
we need to introduce the 3-Dimensional Matching 
problem (3-DM) [7], which has been proved to be 
NP-complete. Then we can prove that MTSF is 
NP-hard by reducing 3-DM to MTSF. 

 
Definition 3. 3-DM[7]: Given three disjoint sets 

X={x1, …, xq}, Y={y1, …, yq}, Z={z1, …, zq}, and a 
subset M ⊆ X×Y×Z, it is to find out if there exists a 
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subset M0 ⊆ M such that each coordinate of any two 
triples are different and | M 0|=q, which also means 
that each element of X, Y, Z appears in M0 exactly 
once. 

 
Lemma 1. MTSF is NP-hard in general graph, 

and there is no polynomial time algorithm for MTSF 
unless NP⊆P. 

 
Proof: We prove Lemma 1 by reducing 3-DM to 

MTSF. Assume that the input of 3-DM is (q, X, Y, Z, 
M). We transform it into the input of MTSF: G=(V1

∪V2∪{s}, E), where s∉X∪Y∪Z∪M is the source 
node, V1=M, V2=X∪Y∪Z are the sets of 1-hop and 
2-hop neighbors of s respectively, and  

E ={(s,v)|v∈V1} 
∪{(mi, xj)| xj equals to the X-coordinate of mi} 
∪{(mi, yk)| yk equals to the Y-coordinate of mi} 
∪{(mi, zl)| zl equals to the Z-coordinate of mi }.  

It is obvious that we can finish this transformation 
in polynomial-time. 

Assume that the optimum result of the MTSF 
problem is F. (1) If |F|=1, without loss of generality, 
we let F=|V0|. According to the definition of MTSF, 
all the 2-hop nodes will be collision-freely covered 
by V0. And the corresponding 3-DM will come out 
true, for we may let M0=V0. (2) If |F|>1, then the 
corresponding 3-DM instant will come out false. So 
3-DM ∝MTSF. Since 3-DM is NP-complete, MTSF 
is NP-hard in general graph.              □ 

 
4  Approximation Algorithms   
The complexity of MTSF in Unit-Disk Graph may be 
seen from the NP-hardness proof of MTSF in general 
graph, though its theoretical analysis is still 
unavailable presently. In this section we present two 
approximation algorithms for the MTSF problem in 
Unit-Disk Graph. Both of them can easily be 
implemented by means of that each node maintains a 
local topology of its 2-hop neighborhoods. 
 
4.1 Algorithm1 
The main idea of Algorithm1 is that we try to 
collision-freely cover as many nodes as possible in 
each time slot. And the scheme is that once there are 
some nodes such that the set of collision-freely 
covered nodes will be enlarged by adding one of 
them to the forwarding node set, we arbitrarily 
choose one of them and add it to the forwarding node 
set.  
4.1.1 The Description of Algorithm1 

Algorithm1 
Input: source node s, the sets D, P of 1- and 

2-hop neighbors of s respectively. 
Output: a subset F = {D1, D2,…Dn}  
Begin 
Initially, N1=D, N2=P 
F=nil, S= N1, j=0 
While(|N2|!=0) 
{    

T=nil, j++, i=0; 
Repeat 
{  
 (a) i++;  
(b) Randomly choose one of the nodes, say v, 

in S, such that |N(T∪{v})|>|N(T)|, where 
N(T) = {nodes of N2 collision-freely 
covered by T };  

(c) S=S−v, T=T∪{v}; 
}  
Until there is no node in S, such that 
|N(T∪{v})|>|N(T)|.  

F=F∪{T}, N2= N2−N(T); 
} 
Return(F); 
End 

 
4.1.2 The Analysis of Algorithm1  
We assume that all nodes are uniformly distributed in 
the analysis of Algorithm 1. When Algorithm 1 runs 
to Step (c) in each iteration, node v is being moved 
from S to T, i=| T |. Let  

OKi = |N(T)|,  
OKnew = |N(T∪{v})|− |N (T)|, 
ERRi = | {nodes of N2 covered by T with collision}|, 
NILi = | {nodes of N2 not in the coverage of T} |, 
ERRnew =|{new nodes covered with collision by v}|, 
OKnew = | N(T∪{p})|− |N(T)|, 

then 

2

2

( ) ( ( | ))
( )( )| |
( )( ) | |

new new

i

i

E OK E E OK d
E NILE d N
E NILE d N

=

= ×

= ×

              (1)                           

2

( )( ) ( ) | |
i

new
E OKE ERR E d N= ×               (2) 

We also have 
1( ) ( ) ( ) ( )i i new newE OK E OK E OK E ERR+ = + −    (3)              

1( ) ( ) ( )i i newE NIL E NIL E OK+ = −        (4)                       

1( ) ( ) ( )i i newE ERR E ERR E ERR+ = +        (5)                      
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From (1) to (5), we have 
1

2

( )( ) ( ) (1 )| |
i

i
E dE OK E d i N

−= × × −        (6) 

Assign ln( ( ))iy E OK= . So to find maximum E(OKi), 
we only need to find the maximum y. 

From 0dy
di

= ,  

2

1
( )ln(1 )| |

i E d
N

−
=

−
. 

So  

2 2

( ){ ( )} ( ) ( )(1 ) ln(1 )| | | |
i

E dMax E OK E d E de N N

−
=

× − × −

, 

and 
 

2 2
2 2

{ ( )} ( ) 1
( ) ( )| | | | (1 ) ln(1 )| | | |

iMax E OK E d
E d E dN N e N N

= − ×
× − × −

                                              
(7)  

Equation(7) indicates that the average number of 
collision-freely covered nodes in one time slot is a 
function of 

2

( )
| |

E d
N

, and the following lemma will 

help us to estimate 
2

( )
| |

E d
N

.   

Lemma 2. 
2

( )
| |

E d
N

 is a constant in Unit Disk 

Graph if nodes are uniformly distributed.  
 
Proof: See in Fig.2 as shown below. S1 is the area 

covered by s, which is also the locating area of 1-hop 
neighbors of s, and S2 is the maximum possible 
locating area of 2-hop neighbors of s. Then S2 = 3S1. 
For any 1-hop node v of s, denote its coverage area as 
Sv. Let Sin= Sv∩S1, Sout= Sv∩S2.  

Assume that the degree of node v is d, and the 
distance between v and the source node s is x. Under 
the assumption of uniform distribution, we have 

2
2

( )( | )   | | outS xE d x N S= × .

1
2

2

2
1

( ( )) | |

( )               (| | / 3) (1 )

in

in

S S xN S
S xN S

−= ×

= × −

 

 

 
 

It can be worked out easily that         
24( ) 2 (arccos( ) ( ))2 4in

x xxS x × −= × − , 1S π= . 

 

1
2

0 1

21
2 2

0

2

( ) ( ( | ))
( )| |2 ( ) (1 )3

4| | | |( ) 2 2 (arccos )3 3 2 4
0.1378

in

E d E E d x
S xNx dxS

x x xN N x dx

N
π

=

= × × −

× −
= − × × × −

= ×

∫

∫

 
So 

2

( ) 0.1378| |
E d

N =  is a constant in Unit Disk 

Graph.                                   □ 
 
With 

2

( ) 0.1378| |
E d

N = , Equation (7) becomes 

2

{ ( )}=0.3966
| |

iMax E OK
N

, 

 
which indicates that averagely about 40% of the 
nodes of N2 are collision-freely covered at each time 
slot. Assume that δ nodes are covered without 
collision in the last time slot and t is the number of 
time slot needed by Algorithm 1, then  
 

-1| | (1 0.3966)tP δ× − = ,  
where P is the set of two-hop neighbors of s. So 

 
(ln ln | |) 1ln(1 0.3966)
1.9795ln | | -1.9795ln 1
1.9795| |    

Pt

P
P b

δ

δ

−= +−
= +
= +

 

 
It indicates that the average time slot needed for 

broadcast of Algorithm1 is a linear of ln|P|, and the 
simulation result confirms it too. See in Fig.3. In 
Fig.3, the number of two-hop neighbors varies from 
48 to 1536, set b= −3.0939, and randomly run 500 
times. As in Fig.3, the theoretical result and the 
experimental result match very well. The number of 
two-hop neighbors is not very large practically, and 
the reason that we choose large number of two-hop 
nodes is for the comparison between theoretical result 
and the experimental result. As we will see in Section 
5, the number of two-hop neighbors varies from 5 to 
50, in the comparison between the two algorithms 
proposed and flooding, which is more practical.  

Fig.2 Coverage of one hop node 
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4.2 Improvement of Algorithm 
In Algorithm 1, for each time slot, we choose the new 
forwarding nodes randomly. However, we can design 
some positive schemes to choose the forwarding 
nodes, which may decrease the time slots needed in 
Algorithm1. 
 

Algorithm2 
Input: source node s, the sets D, P of 1- and 

2-hop neighbors of s respectively. 
Output: a subset F = {D1, D2,…Dn}  
Begin 
Initially, N1=D, N2=P 
F=nil, S= N1, j=0 
While(|N2|!=0) 
{    

T=nil, j++, i=0; 
Repeat 

{  
 (a) i++;  
(b) choose the node v in S, satisfying  
|N(T∪{v})|>|N(T)| and for all u∈S 
|N(T∪{v})|≥|N(T∪{u})|, where  
N(T) = {nodes of N2 collision-freely covered 

 by T };  
 (c) S=S−v, T=T∪{v}; 
}  
Until there is no node in S,  
such that |N(T∪{v})|>|N(T)|.  

F=F∪{T}, N2= N2−N(T); 
} 
Return(F); 
End 

Fig.3. Simulation results for algorihm1 

Fig.4. Comparison between agorithm1 and algorithm2 

Fig.5. Performance comparison with flooding 
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As described in Algorithm2, the forwarding node, 
which can collision-freely cover the largest number 
of nodes of N2, is added to T at Step (c). And the 
simulation results reveal that the performance of 
Algorihm2 is much better than Algorihm1. See in 
Fig.4. We guess that the average time slots needed in 
Algorihm2 is also a linear of ln|P|, but its theoretical 
analysis is unavailable presently.  

5 Comparisons with Flooding 
In this section, we will present our performance 
evaluation to compare two proposed schemes, 
Algorithm1 and Algorithm2, with flooding with NS-2. 
We assume that nodes are uniformly distributed in 
the networks. The number of two-hop nodes varies 
from 5 to 50, and the number of one-hop nodes is 
about 1/3 of the number of two-hop nodes. The 
simulator is round based. At the beginning of every 
round, 1-hop nodes send RTS packets for 
transmission, and only those who receive the CTS 
packets can transmit. Other 1-hop nodes must wait 
until the next round. We calculate only the total 
rounds for all the 2-hop nodes to receive the data, and 
don’t consider the actual transmission time. And the 
simulation result is shown in Fig.5.  

As in Fig.5, both Algorithm1 and Algorithm2 
perform better than flooding, especially Algorithm2. 
And with the increasing of the number of two-hop 
neighbors, the gap between the performance of 
Algorithm2 and that of flooding become larger. It is 
due to that more two-hop nodes induce to more 
possibility of collision in flooding, which has a 
negative impact on the performance of flooding.  

 
6  Conclusion 
This paper focuses on the minimum delay broadcast 
problem in two-hop neighborhoods, and aims at 
scheduling the forwarding nodes in one-hop 
neighborhoods in order to minimize the transmission 
delay of broadcast. We model it as the Minimum 
Time-Slot Forwarding problem, and prove that 
MTSF is NP-hard in general graph, but whether 
MTSF is NP-hard in Unit-Disk Graph is still open. 
Two heuristics are proposed to solve the MTSF 
problem. Theoretical analysis and simulation results 
show that the average time slot needed for 
broadcasting is linear of ln|P|, where P is the set of 
two hop neighbors of source node s. We also 
compare their performances with flooding, and the 
simulation results show that both Algorithm1 and 
Algorithm2 perform better than flooding, especially 
Algorithm2. And the future work is to design 
algorithms to scheduling forwarding nodes for 
multi-hop broadcast or multicast, which is more 

general. 
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