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Abstract - This paper presents a class of algorithms for principal component analysis obtained by modification 
of  a class of  algorithms for principal subspace analysis (PSA) known as Plumbley’s General Stochastic 
Approximation. Modification of the algorithms is based on Time-Oriented Hierarchical Method. The method 
uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the “behaviour” of all 
output neurons. On a slower time scale, output neurons will compete for fulfilment of their “own interests”. On 
this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors.  
 
Index terms: PSA, PCA, General stochastic approximation, neural networks, time hierarchy. 

1 Introduction 
The Principal Component Analysis (PCA) is a 
standard technique in feature extraction and data 
compression (Refs. 1-24). Artificial neurons and 
neural networks have been shown to perform PCA 
when gradient ascent (descent) learning rules are 
used, which is related to the constrained 
maximization (minimization) of statistical objective 
functions. Due  to their low complexity, such 
algorithms and their implementation in neural 
networks are potentially useful in cases of tracking 
slow changes of correlations in the input data or in 
updating eigenvectors with new samples.  
 In recent years, many Principal Subspace 
Analysis (PSA) algorithms have been proposed and 
studied in the literature (see e.g. Refs. 1, 2, 3, 5, 7, 
12, 13, 22 and 23). Some of these PSA algorithms 
were modified in order to derive parallel PCA 
algorithms (see Refs. 1, 2, 3, 8, 10, 16, 17, 22). 
Usually, the modification was performed by 
introduction of some asymmetry (inhomogenity) or 
nonlinearity in the original PSA algorithm that is not 
considered desirable from the point of view of the 
implementation of those algorithms in parallel 
hardware. Rare example of fully homogeneous 
algorithm is the bigradient algorithm proposed  in 
[21]. For comprehensive review of known parallel, 
as well as sequential PCA algorithms, see e.g. [2]. 
 In this paper we use a simple method, named 
Time-Oriented Hierarchical Method (TOHM) [8,9], 
to transform the Plumbley’s General Stochastic 
Algorithm (GSA) [19, 20] into a class of PCA 
learning algorithms. By implementation of the 
TOHM we can have fully homogeneous learning rule 

from the aspect of individual neuron, if the initial 
PSA algorithm is fully homogeneous from the aspect 
of individual neuron. The method uses two distinct 
time scales. A given PSA algorithm is responsible, 
on a faster time scale, for the behaviour of all output 
neurons. At this scale, a principal subspace is 
obtained. On a slower time scale, output neurons 
compete to fulfil their “own interests”. At this scale, 
basis vectors in the principal subspace are rotated 
toward the principal eigenvectors.  

Bigradient algorithm [21] is the only other known 
algorithm that uses a similar concept. The difference 
between the TOHM and the bigradient algorithm lies 
in the fact that the family part of the TOHM method 
insures that the individual part of the learning rule 
performs learning on approximately principal 
Grassman/Stiefel submanifold [8, 10]. In other 
words, the family part ensures that weight vectors are 
mutually orthonormal and span the principal 
subspace. Penalty term of the bigradient algorithm 
(which in some sense play the role of the “family 
part”)  insures only that weight vectors are mutually 
orthonormal. In [8-10]  has been explained why the 
TOHM method can be used as a general method that 
transforms the PSA/MSA methods into the 
PCA/MCA methods, and it is not the case with the 
bigradient algorithm.  

In the sections 2 and 3, short recapitulation of the 
general stochastic algorithm and the time-oriented 
hoerachical method are given. Section 4 contains 
analysis of the proposed class of principal 
component analysis learning rules. Small scale 
simulation results are presented in section 5. Section 
6 gives some conclusion. 
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2   General Stohastic Approximation 
The output of the n-th output unit yn (n=1, 2,…, N) of 
a layer of parallel linear artificial neurons is given as 
 
yn(i) = wn(i)Tx(i),  (1) 
 
with x(i) denoting a K-dimensional zero-mean input 
vector of the network and wn(i) denoting a weight 
vector of the n-th output unit. The outputs are exactly 
the principal components if the weight vectors are 
equal to 
 

,,,1, Nncw nn L==  (2) 
 
where cn are unit-length eigenvectors of the input 
data covariance matrix 
 

}.{ TxxEC =  (3) 
 
A GSA represents a class of learning algorithms 
given by the following equation: 
 

( ))()()()()()()1( iiWiyixiiWiW T Θ++=+ γ  (4) 
 (2) 
where y(i)=W(i)Tx(i) and Θ(i) is N x N matrix which 
may be a function of W(i) and/or x(i). Using 
stochastic approximation [11, 15] equation (4) can be 
related to the following ordinary differential equation 
(o.d.e.)  
 

,Θ+= WCW
dt

dW  (5) 

 
where Θ = E(Θ(i))  (expectation is over x). In [19] 
the following Theorem has been proven: 
 
Theorem 2.1  If the N x K weight matrix W has full 
rank for all t, the o.d.e. (5) is asymptotically stable on 
the set where the columns of W span the principal N 
eigenvectors of C. The domain of attraction of this 
set is the set of W such that for all principal 
eigenvectors ci of C (1≤ i ≤ N),  WTci ≠ 0. 
 
So, if it is possible to prove that W(i) from the 
algorithm (4) visits infinitely often, almost surely, 
the compact subset of the domain of attraction of the 
asymptotically stable solution of (5), then the 
algorithm (4) has the same stable points as (5). It 
must be said that such kind of proof is very difficult 
(especially in the general case) and it is not presented 
in [19]. It is also the case for many of the known 
algorithms. Based on experience, generally it can be 
said that if the desired limit of the discrete algorithm 
is not an asymptotically stable point of the averaged 
differential equation, then the convergence will not 

take place and the behaviour of the discrete 
algorithm is not good [17]. In other words, under 
afore mentioned conditions, stable points of (4) will 
be the W which spans the N-dimensional principal 
subspace of C, provided that the matrix W(i) remains 
full rank. This convergence is independent on Θ(i), 
except that particular Θ(i) is required to ensure W(i) 
does not degenerate to a singular matrix as the 
algorithm progresses. 
 
 
3   Time Oriented Hierarchical Method 
Now, we introduce a Time-Oriented Hierarchical 
Method which will be used to derive a new parallel 
PCA algorithm by modification of  GSA. The main 
idea of TOHM [8,9] is that 
 

Each neuron tries to do what is the best for its 
family, and then to do what is the best for himself. 

 
We shall call this idea “the family principle”. In 
other words, the algorithm consists of two parts: the 
first part is responsible for the family-desirable 
feature learning and the second part is responsible for 
the individual-neuron-desirable feature learning. The 
second part is taken with a weight coefficient  ⏐α ⏐< 
1. This means that we make some time-oriented 
hierarchy in realization of the family and individual 
parts of the learning rule – the individual part is 
running on the slower time scale.  

In order to realize “the family principle”, the 
following general method was proposed in [8], [9], 
which transforms PSA/MSA algorithm, denoted by 
FP (defines ∆WPSA/MSA) to a PCA/MCA algorithm, 
denoted by LAPCA/MCA (defines ∆WPCA/MCA): 
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where D is a diagonal matrix with nonzero elements 
dn and such that |dn|<1. IP denotes an individual part 
of the learning rule (defines ∆WIP). This is an 
algorithm for achieving maximization of E((Dy)Ty) 
under the constraints wk

Twk=1 for k=1,2,…,N. In 
other words, IP is single unit PCA alorithm aplied on 
individual weight vectors. It is clear that 
modification rule for synaptic efficacies contain two 
parts: ∆WPCA/MCA = ∆WPSA/MSA + ∆WIP.  

If all dn in (6) are equal to α, we have the 
homogenous case. It is not difficult to see that if 
homogenous PSA/MSA algorithm is used and all dn 
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are equal, then we have fully homogenous 
PCA/MCA algorithm. This method is called TOHM. 

Recently, generalization of the TOHM was 
introduced as GTOHM [10]. Generalization is based 
on modification of (6). The following class of 
learning rules that can be used for parallel extraction 
of principal and minor components is defined by the 
following equation 

 
SPCAorSMCA

MSA
PSA/

MCA
PCA/ IP)(FPLA iD+=   (7) 

 
where LAPCA/MCA defines ∆WPCA/MCA, FP defines 
family part of the learning rule (that is PSA or MSA 
learning rule) ∆WPSA/MSA, IPSPCAorSMCA represent 
individual part of the learning rule (single unit PCA 
or MCA algorithm) and D(i) is diagonal matrix 
which diagonal elements are functions of time. If the 
family part represents PSA algorithm than the 
resulting algorithm is PCA algorithm. If the FP 
represents MSA algorithm than the resulting 
algorithm is MCA algorithm. It is interesting to note 
that individual part can pursue minor component 
while the whole algorithm pursue principal 
components, and also individual part can pursue 
principal component while the whole algorithm 
pursue the minor components.  

 
 
4   A Class of PCA Learning Rules 
Now, a new class of the PCA learning rules will be 
presented. In the case that is going to be analysed, 
family part of the learning rule is an adopted PSA 
learning rule (GSA), and it is given by 

 
( ).)()()()()()1( iiWiyixiiW T

PSA Θ+=+∆ γ  (8) 
 
Adopted individual part of the learning rule is Oja’s 
learning rule. It is given with a following equation 
 

( ).)()()()()()1( 2
, iyiwixiyiiw kkkkIP −=+∆ γ  (9) 

 
In compact notation equation (9) can be rewritten as 
 

( ),))()((diag)()()()()1( TT
IP iyiyiWiyixiiW −=+∆ γ

 (10) 
 
where diag(A) sets all off diagonal elements of a 
matrix A to zero. 
 
Now, based on (6) we can define the new PCA 
learning rule as 
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We denote one particular realization of Θ(i) as ΘF(i) 
such that it ensures that W(i) does not degenerate to a 
singular matrix as the algorithm progresses. In that 
case we can write (11) as 
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Equation (12) can be rewritten as  
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It is not difficult to see that (13) can be written as  
 

( ),)()()()()()1()()1( iiWiyixiiWiW PCA
T Θ+++=+ γα

 
 (14) 
 
where 
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Obviously, (14) represents a special case of GSA. 
That means that convergence point of (14) will be W 
which spans the principle N-dimensional space of C, 
under the assumption that ΘPCA(i) is such that it 
ensures that W(i) remains full rank for all i. Now it 
will be shown that actual asymptotically stable points 
are principal eigenvectors of C. 

Using stochastic approximation [11, 15] we know 
that algorithm (12) can be related to the following 
o.d.e. 

 

( ) ( )( ),diag CWWWCWWCW
dt

dW T
F −+Θ+= α  (15) 

 
or equivalently (see (14)) 
 

( ).)1( PCAWCW
dt

dW
Θ++= α  (16) 

 
From [19] we know that algorithm (16) will be stable 
on the set where columns of W span the principal 
subspace of C, under assumption that W has full rank 
for all t. Since we said that ⏐α⏐< 1, then the analysis 
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preformed in [19] is valid for (13) and (14). That is 
clear from Theorem 3.3.2 and analysis that follows 
after that theorem in [19].  

From Theorem 2.1 we know if columns of W 
span the principal subspace of C, it must be  
 

,0=Θ+ FWCW  (14) 
 
since W that spans the principal subspace represents 
a stationary point of a particular PSA algorithm (in 
which Θ(i) = ΘF(i)) represented by equation (8) (see 
also Theorem 2.2 in [20]).  

So, having in mind (15), at stable points of (12), 
the following  equation holds 
 

( )( ) .0diag =− CWWWCW Tα  (17) 
 
Now, if we write (17) for individual columns wk (k 
=1,2… N) of matrix W, we have 
 
( ) ,0=− kkk wCw λα  (18) 

 
where λk is k-th diagonal element of matrix 
diag(WTCW). Obviously, (18) represents a set of 
equations that search for eigenvectors of matrix C. 
Since we know that columns wk span the principal 
subspace of C, the solution of the set of equation (18) 
are wk which are equal to principal eigenvectors of 
matrix C. Solution for W is any permutation of 
matrix which consists of principal eigenvectors of C.  

From previous analysis it is obvious that we have 
the PCA algorithm that is fully homogeneous from 
the aspect of individual neuron, if the selected PSA 
algorithm is fully homogeneous from the aspect of 
individual neuron. It should be said that the selection 
of α depends on the specific PSA algorithm and its 
influence on the stability of algorithm must be 
investigated in every particular case. It seems (at 
least to the author of this paper) that the analysis in 
general case must be difficult, if possible at all. For 
instance, in some cases α must be selected to be 
negative, like it is the case for the particular PSA 
method for which simulation results are going to be 
presented in the next section, while in some cases of 
paricular selection of PSA method (for instance for 
LMSER PSA algorithm proposed in [23]) α must be 
chosen to be positive. Restriction ⏐α⏐< 1 is based on 
intuitive reasoning, simulation results and analysis of 
few particular algorithms. 

Further generalization of the proposed method is 
possible. Assume that the individual part of the 
learning rule is in the form 

 
( ))()()()()()1(, iiwixiyiiw IPkkkIP Θ−=+∆ αγ  

  

and that it represents some single neuron PCA or 
MCA method. In that case we again can apply 
analysis that we made for the particular selection of 
the individual part of the learning rule (in our case it 
was Oja’s learning rule). Several methods of this 
form could be found in the literature (see e.g. [2]). 
 
 
5 Experimental results for a particular 

case 
In this section some experimental results will be 
presented for the case when a PSA algorithm is the 
Subspace Learning Algorithm (SLA). The SLA is 
given by the following equation [13, 14]: 
 

.,,1,
),()()(

,)()()()()()()()1(
1

Nkm
ixiwiy

iwiyiyixiyiiwiw

T
mm

N

m
mmkkkk

L=
=

⎥
⎦

⎤
⎢
⎣

⎡
−+=+ ∑

=
γ

 (19) 
 
Equation (19) represents PSA learning algorithm that 
is fully homogeneous from the point of view of 
individual neuron. Also it represents special case of 
GSA where Θ (i)=-y(i)y(i)T . Applying TOHM we 
have a new PCA algorithm 
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or in compact notation 
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It can be shown [8] that α should be selected in such 
way that  -1 < α < 0.  
 We shall consider small-scale numerical 
simulation which results are given in Table 1. A PCA 
algorithm derived from the SLA by the TOHM is 
denoted by the TOHM SLA. The number of inputs 
was K = 5 and the number of output neurons was N = 
3. Artificial zero-mean vectors with uncorrelated 
elements were generated by the following equations: 
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( )
( )( )
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where rem() represents remainder after division and 
rand() represents generator of uniformly distributed 
random numbers. In such case, the three principal 
eigenvectors are c1 = (00100)T, c2 = (10000)T and c3 = 
(01000)T. Results of simulation are presented in 
Table 1. The results were obtained after 20000 
iterations where α was -0.1. Initial value for W was 
Winit = 0.1*rand(5,3), while learning rate was  γ =  
1.2/(1.4+i/1000). 
 
 

Table 1 Weight vectors of the TOHM SLA   
learning algorithm after 20000 iterations; α=-0.1 

 
W 

0.9947     0.0039    -0.0757    
-0.0155    1.0006    -0.0113   
0.0177    -0.0014    -0.9954   
0.0764     0.0374    0.0264    
-0.0646 -0.0015 -0.0355 

 
 
6 Conclusion 
In this paper, a new class of parallel PCA learning 
algorithms is presented and mathematically 
investigated. A class of PSA algorithms known as 
GSA, has been transformed to a class of PCA 
algorithms, by implementation of time-oriented 
hierarchical method (TOHM). It is shown that fully 
homogenous algorithm from the point of view of 
individual neuron can be achieved, without 
introduction of nonlinearities or asymmetry. 
Proposed method uses two distinct time scales. This 
indirectly means that possible biological 
implementation of the network requires two types of 
the neurotransmitters. On a faster time scale, the PSA 
algorithm is responsible for the “behaviour” of all 
output neurons. On a slower scale, output neurons 
compete to fulfil their “own interests”. On this scale, 
basis vectors in the principal subspace are rotated 
toward the principal eigenvectors. Some simulation 
results are presented.  
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