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Abstract: A fault-tolerant parallel implementation of the well-known Brute Force pattern matching algorithm,
using high level checkpointing, is investigated herein. The main objective is to provide reliability: the application
returns having completed its computation task correctly. Using the MPICH NT MPI library, which lacks any
internal fault tolerance support, the implementation aims at Windows based clusters. The performance of the
approach is also investigated experimentally.
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1 Introduction
Custom made clusters of workstations are more likely
to suffer from hardware or network failures compared
to standard supercomputers. To ensure the success-
ful completion of the computation process, important
information has to be saved on reliable devices, usu-
ally at regular time intervals. This data is used to roll
back, to the last known correct state, if an error oc-
curs [7] [12]. This process, known as checkpointing
(journaling), can be implemented at the system (low)
level or the application (high) level.

The fault tolerant adaptation of a relaxed-parallel
implementation of the exact Brute Force pattern
matching algorithm, using high level checkpointing,
is investigated herein. This high level approach re-
quires less storage space and induces less overhead.
Furthermore, it is easily applicable to both heteroge-
neous and homogenous environments [3]. This fault
tolerance mechanism is applied on a parallel imple-
mentation of the exact string matching problem [5],
which is an appealing area in theoretical and practical
research, as it is applied in numerous fields ranging
from computer science to biology.

2 The Fault Tolerant Approach
2.1 Pattern Matching
Assume a pattern string P [0 . . . m − 1] of length m
and a large search text T [0 . . . n− 1] of length n, with
m ≤ n, where both strings are consisted of characters

belonging to a well defined alphabet Σ. Given that, the
exact string pattern matching problem is defined as the
attempt to discover all occurrences of the pattern P in
the text T [5] [15] [14] [16].

A straightforward approach to solve the problem
is known as pattern matching sliding window mech-
anism [5] [1] and the simplest realization of it, is
the Brute Force pattern matching algorithm. It has
no initialization procedure, like the preprocessing of
the pattern or the search text, which other algorithms
might perform, and starts the scanning phase with no
delays. All positions of the search text between 0 and
n −m are scanned for occurrences from left to right
based on the sliding window. After each attempt to
find a match, the window is shifted to the right by one
position. The order in which characters are compared
within a group is immaterial to the final result. It is a
rather slow algorithm and as shown in [5] [1] it has a
worst case execution time complexity of O(m × n)
and an expected maximum number of 2n character
comparisons. Although, the Brute Force algorithm is
not an optimal pattern matching algorithm, it was se-
lected due to its simplicity and its computing power
demands, since the purpose of this study is to evaluate
the performance of the fault tolerant implementation
on the cluster. Therefore there is no actual need to be
restricted by any specific pattern matching algorithm.

2.2 The Algorithm
The fault tolerance mechanism acts as an extension
over the relaxed parallel pattern matching algorithm,
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which has a rather straightforward implementation:
it utilizes available data parallelism over the search
files, which are sent to all worker nodes before run-
ning the application. Having the search dataset local
to all nodes leads to lower execution times as no net-
work traffic is necessary during runtime. The same
approach is followed for the distribution of the pat-
tern file. Still, this imposes an overhead to the initial-
isation phase before running the application. When
data becomes available to all workers, each node of
the cluster is set to execute the same instructions over
a different data stream (or more accurately different
part of the data stream), corresponding with the Sin-
gle Program Multiple Data (SPMD) model over the
Multiple Instruction Multiple Data (MIMD) architec-
ture according to Flynn’s taxonomy [9].

Fault tolerance functionality is realized using a
thread, which interacts with the main thread on each
node. These threads aim at logging the two important
values of the file pointer and the temporarily found oc-
currences within each node and then communicating
them to the checkpoint server. The thread on the root
node builds the checkpoint table, which is used for re-
covery if needed and for pattern occurrences summa-
tion. The way the pattern matching algorithm interacts
with the rest of the code should be noted: the function
call to Brute Force can be altered with any exact pat-
tern matching algorithm. In particular, steps 5 and 6
exploit the available data parallelism of the algorithm,
while steps 5.a, 6.a and 7 are fault tolerance specific.
The fault tolerant algorithm is depicted in Figure 1 and
explained in detail in the following Sections.

2.2.1 Workload Management
Workload management is static and predeter-
mined based on MPI world size and the dataset
size and is given by the following formula:
(search file size/cluster size) + 1. It ignores
specific workstation performance characteristics and
assigns roughly the same amount of work to all nodes
based on their MPI identifiers. Hence, the implemen-
tation is targeted at homogeneous configurations for
best performance. On heterogeneous systems the exe-
cution time is determined by the speed of the slowest
node leading to rather unacceptable performance,
especially if there are significant differences in the
performance capacity of some nodes [16].

Fault tolerance functionality requires that each
node is appointed with the task of sending its key val-
ues to the root at a predefined interval. The root acts
also as a checkpoint server and is responsible for as-
signing recovery work to nodes. During possible re-
covery cycles this version may repeatedly add more
workload to some nodes, in addition to the workload

Figure 1: Fault Tolerant Brute Force Text Matching
Algorithm

given at startup, depending on the number of failed
and remaining nodes. The amount of work depends
on the progress made by the failed nodes to which
the work was originally assigned. Again, note that
no data is transferred to nodes involved in the recov-
ery process, since a local copy of the entire dataset is
already available.

During the computation phase, each workstation
only accesses its appointed part, based on a partition-
ing technique derived from the cluster node numbers
assigned by MPI. Segregating the data file introduces
a problem in the pattern matching technique: if an oc-
currence is to appear at the cut point, it will not be
found because the first part will be in one node and
the last in the following one. Thus, the partitioned
data must be overlapped by pattern length−1 char-
acters [17]. Excluding the last pattern character guar-
antees that an occurrence will not be counted twice
among two different nodes.
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Furthermore, data is not only split between work-
stations but also internally within every node. This
provides the ability to handle input files of huge sizes
by not being restricted by RAM during the read/load
process (signed 64bit addressing support implemented
through the WIN32 API). Hence, the internal parti-
tioning to data packets of size read factor within every
node. The read factor has been tested and selected
so that it minimally affects read performance. Again
there is an overlapping of pattern length − 1 char-
acters to avoid loosing occurrences, which by design
does not incur additional I/O overhead.

2.2.2 Checkpoint Mechanism
Concerning the fault tolerance support, checkpoint-
ing occurs within every node participating in the scan
process, with the exception of the root. It is accom-
plished independently with no synchronization be-
tween nodes, according to their processing capacity
and a minimal checkpoint interval threshold. The re-
covery data is not stored locally but is transmitted to
the root node which is responsible for the manage-
ment of the entire system and acts as a single check-
point server. The root receives the restore information
from all nodes, one at a time and ignores repeated data
that may be sent by a slow node. As data from vari-
ous nodes are received a checkpoint table (also called
journal or log) is built and stored in memory. If not all
nodes have finished and no data is received at the same
time, the fault manager retries for a given amount of
time and if there is still no incoming data, the node (or
nodes) is considered as failed and thus has to be re-
covered. That node will also be ignored in all further
operations until termination. The retry time should be
between 5 and 10 seconds in order to compensate for
any network delays.

Obviously, the root node is the single point of fail-
ure for the system. If it fails the entire system will
also fail. To avoid this limitation the system may be
extended with a replica of the root node. This will pro-
vide high availability functionality for the checkpoint
server [6].

Internally within every node the checkpoint
mechanism is implemented with the utilization of
threads. Therefore, the performance of the search
process is minimally affected and also remains inde-
pendent of the fault tolerance mechanism. This is also
the reason why the same data may be sent twice from
a node: since the two threads are not synchronized
at this point, the thread responsible for checkpointing
might end up sending the same data if the scanning
process advances slower than the checkpoint thresh-
old. As mentioned previously such data is simply
ignored by the checkpoint server. Furthermore, the

checkpoint process in the root is also implemented us-
ing a thread. To either terminate the application or
start recovering, the checkpoint thread must first ter-
minate. Then the checkpoint data table is accessed
to determine appropriate action. If no failures have
occurred the information in the table is utilized to cal-
culate the total number of occurrences of the pattern.

Two vital values are of interest for the pattern
matching problem and must be periodically logged to
successfully restore the state of a node in case of a
failure. They are the file pointer position in the search
file and the number of occurrences currently found.
The number of occurrences found depends on the per-
centage of the search file that has been scanned, thus
both values are interrelated and must be synchronized
at the time of snapshot. Logging frequency depends
on how fast the search file is scanned and what kind
of journaling detail is required. Smaller intervals lead
to greater accuracy and improved recovery times but
induce greater communication and computation over-
head and might result in network congestion for large
world sizes (as seen in the experimental phase).

2.2.3 The Recovery Procedure
The recovery procedure is controlled by the root node.
When the information for one or more nodes in the
checkpoint table is found to be incomplete (no finish
message received) the recovery process begins. This
may be due to any kind of failure either hardware,
software, network or their combination. At the first
step of the recovery the domain of the search file orig-
inally assigned to the failed node is resolved. The
last reported progress in the search file is then added
to the beginning of that part. At this point overlap-
ping and the temporarily found occurrences are taken
under consideration in order not to loose any occur-
rence. Next is the assignment process of (recovery)
tasks to remaining nodes: the checkpoint table is ex-
amined and nodes that were last found working are
selectively assigned with the recovery work.

The root node can be involved in this process in a
twofold manner: it always engages in recovering one
node and again acts as the checkpoint server if more
than one node is being recovered. Thus, paralleliza-
tion is achieved when more than one node fail. It is
important to note that the recovery process is also fault
tolerant and even if nodes that are recovering fail, the
work will be eventually completed by other nodes or
by the root alone, the last being considered as highly
available.

2.2.4 Orchestration & Mapping
The implementation of the pattern matching algorithm
is relaxed: no communication occurs between nodes
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for processing purposes. However, fault tolerance re-
quirements necessitate the addition of point to point
communication of key values between the checkpoint
server and all other nodes. Furthermore, in the re-
covery process the root can dynamically map more
work to non failed nodes via network communication.
Mapping of tasks to nodes is based on node numbers
provided by MPI. Nodes are chosen by searching the
checkpoint table and selecting the first available one.
Afterwards, details concerning the work to complete
are sent to each selected node. If no errors have oc-
curred or when the recovery stage fully completes the
root sends a halt message to all nodes, which termi-
nates the application.

3 Experimental Results
3.1 The Cluster Configuration
The cluster that was setup as dedicated [8], has 20
workstations equipped with Intel Pentium 4 2.40GHz
CPUs with 512MB of RAM and 20 workstations with
Intel Celeron 2.20GHz CPUs with 256MB RAM.
Hence, the cluster is either homogeneous or heteroge-
neous [8] depending on system configuration in each
experiment.The interconnection infrastructure of the
cluster is a 100Mbit/s Ethernet.

3.2 Development Environment
For implementation purposes, the Argonne National
Laboratory MPICH NT Message Passing Interface
(MPI) library version 1.2.5 [2] is used, to provide
the underlying communication infrastructure between
cluster nodes. Although, there exist many implemen-
tations of the MPI standard [19], this specific ver-
sion was chosen mainly due to the fact that it sup-
ports Microsoft Windows NT based operating sys-
tems, installed on all workstations of the cluster.
The application is written in C++ in order to utilize
threads under the MPICH NT 1.2.5 message passing
library [2] [11] [19]. Note that this library lacks built
in failure handling support.

3.3 The Dataset
The application area is genomic research, in which
the DNA nucleic acid is scanned for occurrences of
sequences. It is currently an active field, with data-
bases that constantly evolve containing a increasing
amount of data [14]. Publicly available files from
GenBank, a genetic sequences database that belongs
to the National Institutes of Health and is part of the
International Nucleotide Sequence Database Collabo-
ration [10], were utilized as the search context for this
work. Nontheless, dealing with a text database should

not be considered a limitation, as only slight modifi-
cations are required in order for the implementation to
work in any field of pattern matching.

3.4 Results Analysis
The fault tolerant pattern matching implementation is
evaluated and compared with the non fault tolerant
one when no failures occur, using two search files of
size 2GB and 3.5GB respectively and a search pattern
of 12 bytes. Note the use of only one pattern, based
on the fact that the impact of pattern size in the execu-
tion time is rather small as found experimentally and
supported by [16].

Figure 2: Comparison of Fault Tolerant and Non
Fault Tolerant versions using a search file of 1994MB

Figure 3: Comparison of Fault Tolerant and Non
Fault Tolerant versions using a search file of 3575MB

The checkpoint interval threshold was set to a
minimum of 1 second, to provide enough journaling
detail for each node without inducing excessive over-
head. Consequently, a comparison between the two
implementations is possible and the overhead of the
checkpoint mechanism can be determined. Note that
the times reported in Figure 2 and Figure 3 are based
on the total execution time which is affected by the
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read performance (I/O) of every node and mostly by
the read ahead caching of the operating system which
at some points may present a superlinear performance
behaviour. Such results are achieved when the seg-
ment of the search file is small enough so that it fits
in the read-ahead cache. This occurs in the case of
16 and 32 nodes for the 2GB file and in the case of
32 nodes for the 3.5GB search file. The examination
of pure computation times indicated only the normal,
expected linear speedup, without superlinearity.

The average fault tolerance mechanism overhead
on the total execution time, concerning all search files
and all cluster sizes utilized is 1.33 seconds. More
than 30 repeated executions were conducted for each
test set on the fault tolerant and non fault tolerant ver-
sions. The overhead becomes visible as the number
of nodes increases, supporting the theory. This in-
tensifies as the search file size decreases, for smaller
files are characterized by shorter computation times.
This is noticeable for the 2GB file in the case of 32
nodes: while cluster size doubles the performance re-
mains roughly the same as the processing task be-
comes rather small and is overlapped by the fault tol-
erance mechanism overhead.

3.5 Fault Tolerance Tests
The fault tolerant behavior of the system was tested
by having a consecutively increasing number of nodes
fail, starting from one and up to half of the cluster
nodes. To further exhibit the notable speed reduction
of the recovery process when more than half nodes
fail, a relevant test was also conducted. Finally, a node
that was recovering the work of a previously failed
node also failed in order to show the full extent of the
reliability of the system.

Table 1: Fault Tolerance Results (Random Failures)
Nodes That Fail Total Time (sec)

0 21,251
1 49,288236
2 54,365266
3 65,430271
4 55,20731
5 93,620795

4+1 74,540199

Workstations of the cluster were deliberately made to
fail by abruptly cutting off their power supply and by
disconnecting them from the network, while compu-
tation was in progress, for the purposes of the exper-
imental phase. Obviously, this is not the only type of
failure the system can handle: if there is no communi-
cation between one or more workers and the root node

for the set threshold, then the fault tolerance mecha-
nism will begin the recovery process anyway.

It should be noted that the data that appears in Ta-
ble 1 may vary even when the same number of nodes
fail, because the failure cannot be accurately repro-
duced, meaning that different nodes can fail at differ-
ent points of the process and that it is impossible to
achieve the same failure type at the same point repeat-
edly. Nonetheless, the obtained results remain a good
indication of the system performance and show that it
is reliable and operational as expected.

As the test set, a small cluster size of 8 nodes and
the largest search file of 3.5GB were chosen, so that
computation would be relatively slow in order to have
time to make nodes fail. A pattern of 12 bytes with
enough occurrences in the search file was chosen to
increase the possibility of an occurrence loss as nodes
fail and to clearly show that this does not occur. The
number of pattern occurrences in the search file were
3270, all of which were correctly found in all failure
cases. The results are reported in Table 1.

Note that in the reported execution times there
is an overhead of 10 seconds, which was the chosen
retry time during which the checkpoint server waits
for communication with nodes that have not transmit-
ted their key values and have apparently failed. Taking
that under consideration, the time to recover from up
to four (4) node failures (half the cluster size) does ap-
proximate well the theoretically set time limit. In the
case of five (5) node failures and in the last case where
one node fails during recovery, the overhead becomes
twenty (20) seconds. This happens because the check-
point server waits twice for a node to respond, first in
normal execution and then after the recovery. Thus,
results still indicate a good system response time.

4 Conclusion Remarks
A fault tolerant parallel implementation of the Brute
Force pattern matching algorithm was investigated
herein. Core objective of the implementation is to
provide reliable computation results without any user
intervention, regardless of the proportion of worksta-
tion failures and in an acceptable time frame. The re-
sulting system has a single point of failure which is
the root - checkpoint server. Stability for the root can
be ensured with additional hardware and software ap-
proaches that offer high availability functionality on
mission critical systems [13].

The experimental phase showed an adequate sys-
tem performance when any number of nodes of the
cluster fail (excluding the root node). The scan
process successfully completed in all conducted tests,
reliably returning all existing occurrences and with-
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out any user activity. Furthermore, the execution time
in all cases was roughly within expected time limits.
Compared to the non fault tolerant version, when no
faults occur, the performance of the system is slightly
inferior, due to the checkpoint mechanism overhead
and communication requirements. Still, the imple-
mentation shows excellent speedups as the system
scales up to sixteen nodes.

Further work aims in the application of a load bal-
ancing technique [12] for the checkpoint server which
could also noticeably improve performance. More-
over, high availability approaches (such as replication
of the checkpoint server) and dynamic workload al-
location (for heterogeneous configurations) are under
investigation.
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