

Bypassing Proxy: a Solution to Overloaded Web Caching Systems

K. Y. Wong
Computer Studies Program
Macao Polytechnic Institute

Av. de Luis Gonzaga Gomes, Macao, China

K. H. Yeung
Department of Electronic Engineering

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong, China

eeayeung@cityu.edu.hk

Abstract: - This paper presents a technique to solve the overloading conditions of HTTP proxy servers. It is
achieved by eliminating the unnecessary requests reaching the proxy servers. These unnecessary requests are
the miss requests which cause the proxy to store copies of requested objects, but the copies will not be accessed
again. To identify this kind of requests, we construct a list, called hot-site list, to store the most popularity web
sites. For those requests not on the list will be directly forwarded to the remote Web sites without passing
through the proxies. Our analytical and simulation results show that our proposed technique can reduce the
proxy load by 48% and give a 1.75 system throughput gain.

Key-Words: Web proxy, Web caching, Internet systems, overloaded systems, application level routing

1 Introduction
As the need for caching WWW information is clear,
many networks have installed proxy servers (or
Web caches). While WWW traffic is continuously
growing, so does the number of client requests
reaching the proxy servers. This in turn increases
the workload of the proxies. As a result,
overloading conditions of proxy servers occur
frequently.

Overloaded proxies cause many performance
problems. Liu et al. [1] shown that proxy server
performance is sensitive to traffic load, and when a
proxy is overloaded, its performance will degrade
quickly. On the other hand, Almeida and Cao [2]
shown that when a proxy is overloaded, there are a
lot of connection time-outs which are reported as
errors.

A standard solution is to install cooperating
proxy servers for improving the overall caching
performance. However, researchers following this
line have to face one major problem -- extra load
and traffic. It has been reported by Krishnan and
Sugla [3] that the extra load could cause up to
300% overhead.

Instead of following the line of using
cooperating proxies to solve the problem, in this
paper, we introduce another direction in tackling
the problem of overloaded proxies.

By studying the internal operations of a proxy,
we found that some requests should not be sent to
the proxy. If these requests can be redirected to
bypass the proxy and be sent to the Internet directly,
the workload of the proxy can be reduced

significantly without affecting the proxy’s
performance.

To achieve this, we introduce a technique which
allows the client sides to decide whether send a
request to the proxy or not. Since these decisions are
based on the site name statistics, it is called the site-
based dispatching (SBD) technique.

There are two types of miss requests. Requests in
the first type will cause the proxy to keep copies of
the miss objects and the copies will be accessed
again by other users later on. We call these requests
good-miss requests. Requests in the second type are
those requests that also cause the proxy to keep
copies of the miss objects but the copy will not be
accessed again before it is being evicted from the
cache. We call these requests bad-miss requests. The
corresponding stored copies of the bad-miss requests
are called one-timer objects [4]. The caching of the
good-miss requests reduces both network load and
the response delay apparent to the users. However,
bad-miss requests causes cool objects to remain in
the cache for a certain period of time without being
referenced again. They could considerably waste
system resources and degrade the cache performance.
The SBD technique aims at improving the above
situation by pulling out the bad-miss requests.

2. The SBD Technique
Consider a typical local area network which consists
of an Internet gateway, a proxy server and user
workstations as shown in Fig. 1. The Internet
gateway can be a router or a firewall which provides
the Internet access to the internal clients. The proxy
acts as a cache server storing frequently requested

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp750-755)

2

Web objects locally. The workstations run
browsers that are configured to go through the
proxy first when asking for Web objects.

Fig. 1. A typical network connected to the Internet.

The design principle of the SBD technique is
that if the bad-miss requests are known in advance,
they can be forwarded to the remote Web sites
directly, and the workload to the proxy by these
requests can thus be saved. To do this, the client
sides need to know whether the current request is a
bad-miss one or not.

In the SBD technique, a hot-site list is used to
identify the bad-miss requests. The hot-site list
contains the site names of the most popular Web
sites, and is updated at regular intervals. Each
browser holds a hot-site list. Every time a browser
receives a URL issued by a user, it will check the
list first. If the requested Web site appears in the
list, it forwards the request to the proxy; otherwise,
forwards to the Internet and retrieves the object
from the corresponding remote Web server directly.

The operations of the SBD technique is
illustrated in Fig. 2. It is noted that the operations
discussed with the figure may vary from different
implementations. To apply the SBD technique, we
introduce a hot-site manager which can run in any
host in the local network. Whenever a browser is
launched, it retrieves the hot-site list from the hot-
site manager and stores it locally (see process (1) in
Fig. 2). Having received a URL from the user, the
browser first checks the list. If the list contains the
requested Web site, the browser will forward the
request to the proxy (see (2)). Otherwise, it will
forward the request to the remote Web site directly
through the Internet gateway (see (3)). Besides
dispatching requests, the browser also maintains a
log file recording all Web sites have been requested
(see (4). When the browser is going to be
terminated, the log file will be sent to the hot-site
manager for calculating site popularity (see (5)).

Note that, depending on the implementation, the
process (1) and (5) can be performed at other time,
not limited at the start and termination of the browser.

At predefined times, the hot-site manager will
generate a new hot-site list which reveals the latest
popularity of the Web sites being accessed. To do
that, the manager first merges all the log files it has
received from the browsers. It then calculates the hit
frequency of each site and ranks the sites according
to their access frequencies. After that, it includes a
number of the hottest Web sites in the new hot-site
list. Note that the update interval and the contents of
the list can be determined in various ways. As will be
shown in Simulation section, we user different
configuration to explore the hot-site list idea.

The operations of the SBD technique is
transparent to the proxy server. It simply reduces the
number of requests reaching the proxy.

Fig. 2. Illustration of the operations of the SBD
technique.

3 Performance Analysis
In this section, we first introduce methods to estimate
the proxy load reduction and the proxy throughput
gain when the SBD technique is used. We then
analyze the response time of the conventional and the
SBD caching system. Numerical results will be given
in Section VI.

3.1 Estimated Proxy Load Reduction
Let R={r1, r2, …, rN} be the set of requests arrived to
the system, and O={o1, o2, … oN} be the
corresponding requested objects. In a cache hit case,
when the proxy receives ri from a client, it responds
with sending oi which is retrieved from the cache to
the client. We denote Li be the amount of workload

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp750-755)

3

offered to the proxy by a cache hit of ri. On the
other hand, when a cache miss occurs, the proxy
needs to perform an extra work of making another
request ri to the remote server and then receiving oi
from the remote server. By using a similar
approach for load estimation as suggested in [5],
we assume that the extra workload offered to the
proxy is also equal to Li.

Define also HR, HOT, PHRSBD, and HRSBD (see
Fig. 3) as:

HR: the proxy hit ratio of the conventional

caching system.
 = total hits in the proxy

 total requests

HOT: the probability that a request belongs to a
hot site (or the portion of total requests
reaching the proxy).

 = total requests sent to the proxy
 total request

PHRSBD: the hit ratio of the proxy after reducing

the bad-miss traffic being sent to it.
 = total hits in the proxy .

 total requests sent to the proxy

HRSBD: the overall hit ratio in the SBD caching

system.
 = total hits in the proxy

 total requests

Fig. 3. Illustration of performance metrics.

In the following derivations, consider any

request ri arrived to the system. For a conventional
caching system which does not use the SBD
technique, the probability that the requested object
oi is present in the cache is HR. In this case, the

proxy can serve the request ri locally with a load Li.
The probability that ri is a miss request is 1-HR. In
this case, oi is not in the cache and the proxy must
fetch it from the remote server, giving a total load of
2Li. Therefore, the expected load to the proxy by any
request ri, denoted as Load, is therefore,

()
ii
LHRLHRLoad 21 !"+!=

 (1)
When the SBD technique is used, a request ri will

only reach the proxy when it targets on a hot site.
The expected load offered to the proxy by a request ri
is thus

()[]
iSBDiSBDSBD
LPHRLPHRHOTLoad 21 !"+!=

 (2)
Therefore, the normalized load reduction for

request ri when the SBD technique is used, denoted
as LRi, can be obtained by

Load

LoadLoad
LR

SBD

i

!
=

() ()
HR

PHRHOTHR
SBD

!

!!!
=

2

22
 (3)

Equation (3) gives the normalized load reduction
for any request ri, which is the same for all ri. The
overall proxy load reduction, denoted as LR, is
therefore simply

 ()!
=

=
N

i

i
LR

N
LR

1

1

() ()
!
"

#
$
%

&

'

'''
=(

= HR

PHRHOTHR

N

SBD

N

i
2

221

1

 (4)
() ()

HR

PHRHOTHR
SBD

!

!!!
=

2

22 . (4)

3.2 Estimated System Throughput Gain
We consider a scenario that the proxy is the
performance bottleneck limiting the overall
throughput in a caching system. Assuming a proxy
server is capable of serving up to a user request rate
λ. In a conventional caching system, since all
requests must be sent to the proxy, the overall system
throughput is therefore limited to λ. However, when
the SBD technique is used, the system throughput
can be increased to λSBD, where λSBD>λ (as the
number of requests sent to proxy is reduced). Since
the total request rate sent to the proxy is λSBD×HOT,
λSBD can be approximated by,

(HOT) N

 Proxy

Browser
s

Remote sites

Total requests,

N

PHRSB

D

(1-HOT) N

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp750-755)

4

HOT
SBD

!= ""

HOT
SBD

!
! = . (5)

Therefore, the system throughput gain, denoted as
TG, can be obtained by

TG=
HOT

SBD
1

=
!

! (6)

Note that this system throughput gain is only an

estimation with the assumption that the throughput
of the proxy itself remains constant in both cases.

4 Simulation and Numerical Results
To study the performance of SBD technique,
simulations based on real proxy access traces were
run. The aims of the simulations are to find out
how many miss requests reaching a proxy server
can be reduced, and to obtain empirical data (i.e.,
HOT, PHRSBD, HRSBD and HR) so that numerical
studies can be performed later on.

4.1 Simulation Design
In our simulations, we used two real access traces
obtained from the two proxies both at the National
Lab of Applied Network Research [6]. One of the
proxies is located at the NCSA at Urbana-
Champaign, Illinois (UC) while another is located
at the MAE West Exchange Point in San Jose,
California (SJ). For these traces, we accept only
HTTP GET requests and URLs that do not include
query strings. Both logs are 7-day long.

In the simulations, we assume the proxy is using
the least-recently-used replacement policy as it is
widely used. And we consider all static objects as
cacheable for simplicity of analysis. To obtain the
sensitivity analysis on the update interval and the
content of the hot-site list, we construct the list in
various ways -- we update it on both daily and
hourly basis, and for each basis, we use the
following types of list:

EverTopN : Site popularity analysis will be
performed on all sites that have been ever requested.
The list includes the N most popular sites among
them.

RecentTopN : Site popularity analysis will be
performed only on the sites that have been

requested in the previous interval. The list includes
the N most popular sites among them.

RecentAll : The list simply includes all the sites
that appeared in the last interval. It is the special case
of RecnetTopN, and the merit of it is that no
popularity analysis is needed.

To simulate the SBD caching mechanism, a

traffic generator reads record by record from an
access trace, and decides whether each request is
forwarded to the proxy or to the remote server
directly by checking the hot-site list. To study the
proxy performance, the number of requests sent to
the proxy, and the number of hit requests are
recorded for each interval. Before gathering statistics,
we use the first interval of the log to initialize the
cache and create the hot-site list for use in the second
interval. The performance metrics used in the
simulation are HOT, PHRSBD, HRSBD and HR, as
defined in section IIIA and illustrated in Fig. 3.

4.2 Estimated proxy load reduction and
system throughput gain
We first consider the simulation results for UC traces
using RenewAll list with daily updated interval.
Table 1 compares the performance of the SBD
system to that of the conventional system. Looking at
the row of HOT, there are on the average 57% of
total requests reaching the proxy using the SBD
technique. The proxy therefore saves the work
caused by the remaining 43% traffic. Comparing the
rows of HRSBD and HR, the SBD system provides
similar performance in overall hit rate to that of the
conventional one. It can be seen that, in each time
interval, the SBD technique also effectively pull out
miss requests from the proxies, and hence reduce the
traffic reaching the proxy without sacrificing the
overall hit rate at all.

System Metric Value

All systems N 3400000

Without using SBD HR 0.258
HOT 0.573
PHRSBD 0.422

The system using SBD

HRSBD 0.243
Table 1. Simulation results for UC trace using
RenewAll hot-site list.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp750-755)

5

We then study the performance of the SBD
technique when different list types and update
intervals are used. Fig. 4 and Fig. 5 show HOT, HR
and HRSBD together with its corresponding LR
(obtained by equation (4)) for each type of hot-site
list. The x-axis of the figures shows the list size
(i.e., the values of N), and the parenthesis besides
RecentAll indicates the average number of sites
appears in the previous interval. From the figures,
some observations can be made. First, it can be
seen that, in general, smaller size of the hot-site list
forwards lesser requests to the proxy (HOT is
smaller), resulting in higher proxy load reduction,
but at the expense of overall hit ratio (compare
HRSBD to HR). Deterioration of cache hit
performance is undesirable no matter how much
the proxy load can be reduced. Therefore, small
hot-site list should not be used. Second,
RecentTopN provides similar results to that of
EverTopN when the list is daily updated (see Fig.
4). It implies that calculating site popularity based
on the previous interval is generally enough.
However, it is not the same for hourly update
interval. Fig. 5 reveals that RecentTopN provides
poorer results (lower HRSBD) than that of EverTopN.
It is owing to the number of sites appear within an
hour is relatively small (on average, 208 for SJ and
1314 for UC) so that a small hot-site list is obtained.
Third, as shown in Fig. 4, RecentAll provides
satisfactory results. Although, it cannot give the
highest HRSBD among the types of list, as
mentioned earlier, the merit of it is that no site
popularity analysis is needed. This would much
simplify the process of creating new hot-site list. At
last, when EverTopN is used, update hourly
provides similar results to that of update daily. It is
reasonable because even a site becomes very hot in
the previous hour, it may not be hot enough to be
one of the top N hottest sites and the list contents
for both update intervals are hence similar. (The
RecentTopN list with hourly update interval is
originally expected to tackle the sites that suddenly
become popular in the previous hour, however
since the list will also ignore the historical hot sites,
it gives unsatisfactory results.) Based on the
discussion above, a rule of thumb to construct the
hot-site list is that RecentAll list should be used
and update daily; if the list is too large,
RecentTopN is preferable to EverTopN.

Based on the simulation results, we can find the
estimated system throughput gain (TR) using

equation (6). Table 2 shows both LR and TR for
RecentAll list with daily update interval (as this
configuration is recommended).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 500 1000 2000 3000 10000 20000
EverTopN

LR

HOT
HR

HR SBD

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 500 1000 2000 3000 10000 All(16906)

RecentTopN

LR

HOT

HR

HR SBD

(a) UC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 500 1000 2000 3000

EverTopN

LR

HOT

HR

HR SBD

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 500 1000 2000 All(2343)

RecentTopN

LR

HOT

HR

HR SBD

(b) SJ

Fig. 4. Daily update.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp750-755)

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LR

HOT

HR

HR SBD

200 500 1000 2000 3000 10000 20000

EverTopN

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RecentTopN

200 500 1000 All(1341)

LR

HOT
HR

HR SBD

(a) UC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 500 1000 2000 3000

EverTopN

LR

HOT

HR

 HRSBD

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 All(208)

RecentTopN

LR

HOT
HR

HR SBD

(b) SJ

Fig. 5. Hourly update.

Table 2. LR and TG for the RecentAll list with
daily update interval.

5 Conclusion
In this paper, we have proposed a Site-Based
Dispatching (SBD) technique to alleviate the
overloaded proxy in a Web caching system.
Considering that bad-miss requests are unnecessary
burdens to the proxy, the technique aims at bypassing
the unnecessary requests reaching the proxy. Using
the site popularity statistics, the cient sides can
decide whether forward a request to the proxy or the
remote server directly. The performance of the SBD
system has been compared to that of the conventional
systems. Our analytical and simulation results show
that by using the SBD technique, not only the load of
the proxy can be reduced substantially, but also the
response time and system throughput can be
improved.

References
[1] B. Liu, G. Abdulla, T. Johnson, and E.A. Fox,

“Web Response Time and Proxy Caching,”
WebNet98, Orlando, Nov. 1998.

[2] J. Almeida, and P. Cao, “Measuring proxy
performance with the Wisconsin proxy
benchmark,” Computer Networks and ISDN
Systems, vol. 30, issue 22-23, Nov. 1998, pp.
2179-2192.

[3] P. Krishnan and B. Sugla, “Utility of co-operating
Web proxy caches,” Computer Networks and
ISDN Systems, vol. 30, issue 1-7, 1998, pp. 195-
203.

[4]B. Guangwei and C. Williamson, “Workload
characterization in Web caching hierarchies,”
Proc. of 10th IEEE International Symposium on
Modeling, Analysis and Simulation of Computer
and Telecommunications Systems, MASCOTS
2002, 11-16 Oct. 2002, pp. 13-22 .

[5] S. G. Dykes, and K. A. Robbins, “Limitations and
benefits of cooperative proxy caching,” IEEE
Journal on Selected Areas in Communications,
vol. 20, iss. 7, Sep 2002, pp.1290-1304

[6] National Lab of Applied Network Research.
Sanitized access log. Available at
ftp://ircache.nlanr.net/Traces/.

 UC SJ
proxy load reduction (LR) 0.48 0.48
system throughput gain (TG) 1.75 1.72

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp750-755)

