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Abstract: The firing squad synchronization problem
has been studied extensively for more than forty years,
and a rich variety of synchronization algorithms have
been proposed. In the present paper, we give a survey on
recent developments in firing squad synchronization algo-
rithms for synchronizing large-scale two-dimensional cel-
lular automata. Several new algorithms and their state-
efficient implementations are also given.
Key words: cellular automaton, firing squad synchro-
nization problem

1 Introduction

We study a synchronization problem which gives a finite-
state protocol for synchronizing a large scale of cellular
automata. The synchronization in cellular automata has
been known as a firing squad synchronization problem
since its development, in which it was originally proposed
by J. Myhill to synchronize all parts of self-reproducing
cellular automata [7]. The problem has been studied ex-
tensively for more than 40 years [1-18]. In this paper,
we give a survey on recent developments in designing
optimum-time synchronization algorithms and their im-
plementations for two-dimensional arrays. Several sim-
ple and state-efficient mapping schemes are proposed for
embedding one-dimensional (1-D) firing squad synchro-
nization algorithms onto two-dimensional (2-D) arrays,
and some new 2-D synchronization algorithms based on
the mapping scheme are presented.

2 Firing Squad Synchronization
Problem on Two-dimensional
Arrays

Figure 1 shows a finite two-dimensional cellular array
consisting of m × n cells. Each cell is an identical (ex-
cept the border cells) finite-state automaton. The array
operates in lock-step mode in such a way that the next
state of each cell (except border cells) is determined by
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Figure 1: A two-dimensional cellular automaton.

both its own present state and the present states of its
north, south, east and west neighbors. All cells (sol-
diers), except the north-west corner cell (general), are
initially in the quiescent state at time t = 0 with the
property that the next state of a quiescent cell with qui-
escent neighbors is the quiescent state again. At time
t = 0, the north-west corner cell C1 is in the fire-when-
ready state, which is the initiation signal for the array.
The firing squad synchronization problem is to determine
a description (state set and next-state function) for cells
that ensures all cells enter the fire state at exactly the
same time and for the first time. The set of states must
be independent of n. The tricky part of the problem is
that the same kind of soldier having a fixed number of
states must be synchronized, regardless of the size m×n
of the array. The set of states must be independent of m
and n.
The problem was first solved by J. McCarthy and M.
Minsky who presented a 3n-step algorithm. In 1962,
the first optimum-time, i.e. (2n − 2)-step, synchroniza-
tion algorithm was presented by Goto [1962], with each
cell having several thousands of states. Waksman [1966]
presented a 16-state optimum-time synchronization algo-
rithm. Afterward, Balzer [1967] and Gerken [1987] de-
veloped an eight-state algorithm and a seven-state syn-
chronization algorithm, respectively, thus decreasing the
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Step:0 1 2 3 4 5 6

1 G L L L L L

2 L L L L L L

3 L L L L L L

4 L L L L L L

Step:1 1 2 3 4 5 6

1 A Q L L L L

2 C L L L L L

3 L L L L L L

4 L L L L L L

Step:2 1 2 3 4 5 6

1 G Q L L L L

2 B Q L L L L

3 A L L L L L

4 L L L L L L

Step:3 1 2 3 4 5 6

1 G Q L L L L

2 C Q L L L L

3 G Q L L L L

4 C L L L L L

Step:4 1 2 3 4 5 6

1 G Q L L L L

2 B Q L L L L

3 G Q L L L L

4 B Q L L L L

Step:5 1 2 3 4 5 6

1 G Q L L L L

2 G Q L L L L

3 G Q L L L L

4 G Q L L L L

Step:6 1 2 3 4 5 6

1 G2 Q L L L L

2 G2 Q L L L L

3 G2 Q L L L L

4 G2 Q L L L L

Step:7 1 2 3 4 5 6

1 A C L L L L

2 A C L L L L

3 A C L L L L

4 A C L L L L

Step:16 1 2 3 4 5 6

1 F F F F F F

2 F F F F F F

3 F F F F F F

4 F F F F F F

Step:8 1 2 3 4 5 6

1 G2 B A L L L

2 G2 B A L L L

3 G2 B A L L L

4 G2 B A L L L

Step:9 1 2 3 4 5 6

1 G2 C G2 G2 L L

2 G2 C G2 G2 L L

3 G2 C G2 G2 L L

4 G2 C G2 G2 L L

Step:10 1 2 3 4 5 6

1 G2 B A B C L

2 G2 B A B C L

3 G2 B A B C L

4 G2 B A B C L

Step:11 1 2 3 4 5 6

1 G2 C G2 L C G2

2 G2 C G2 L C G2

3 G2 C G2 L C G2

4 G2 C G2 L C G2

Step:12 1 2 3 4 5 6

1 G2 B A L G2 A

2 G2 B A L G2 A

3 G2 B A L G2 A

4 G2 B A L G2 A

Step:13 1 2 3 4 5 6

1 G2 C G2 C G2 C

2 G2 C G2 C G2 C

3 G2 C G2 C G2 C

4 G2 C G2 C G2 C

Step:14 1 2 3 4 5 6

1 G2 B G2 B G2 B

2 G2 B G2 B G2 B

3 G2 B G2 B G2 B

4 G2 B G2 B G2 B

Step:15 1 2 3 4 5 6

1 G2 G2 G2 G2 G2 G2

2 G2 G2 G2 G2 G2 G2

3 G2 G2 G2 G2 G2 G2

4 G2 G2 G2 G2 G2 G2

Figure 2: Snapshots of the synchronization process on
4 × 6 array.

number of states required for the synchronization. Ma-
zoyer [1987] developed a six-state synchronization algo-
rithm which, at present, is the algorithm having the
fewest states. Several synchronization algorithms on
2-D arrays have been proposed by Beyer [1969], Gras-
selli [1975], Kobayashi [1977], Shinahr [1974], Szwerinski
[11982] and Umeo, Maeda and Fujiwara [2002].

3 Orthogonal Mapping: A Sim-
ple Linear-time Algorithm A1

In this section, we give a very simple synchronization al-
gorithm for 2-D arrays. The overall of the algorithm is
as follows: First, synchronize the first column cells us-
ing optimum-step 1-D algorithm with a general at one
end, thus requiring 2m − 2 steps. Then, start the row
synchronization operation on each row simultaneously.
Additional 2n−2 steps are required for the row synchro-
nization. Totally, its time complexity is 2(m + n) − 4
steps. We refer the implementation as orthogonal map-
ping. It is shown that s + 2 states are enough for the
implementation of the algorithm above, where s is the
number of internal states of the 1-D base algorithm. In
Fig. 2, we show snapshots of our 8-state synchronization
algorithm running on a rectangular array of size 4 × 6.

[Theorem 1] There exists an (s + 2)-state protocol for
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Figure 3: An optimum-time synchronization scheme for
rectangular arrays.

synchronizing any m×n rectangular arrays in 2(m+n)−4
steps, where s is number of states of any optimum-time
one-dimensional synchronization protocol.

4 L-shaped Mapping: Shinar’s
Optimum-time Algorithm A2

The first optimum-time synchronization algorithm was
developed by Shinar [1974] and Beyer [1969]. The rect-
angular array of size m × n is regarded as min(m, n) L-
shaped 1-D arrays, where they are synchronized indepen-
dently using the generalized firing squad synchronization
algorithm. The configuration of the generalized firing on
1-D arrays can be mapped on 2-D array. Thus, an m×n
array synchronization problem is reduced to min(m, n)
independent 1-D generalized synchronization problems:
P(m, m + n − 1), P(m − 1, m + n − 3),..., P(1, n − m).
Beyer [1969] and Shinahr [1974] presented an optimum-
time synchronization scheme in order to synchronize any
m × n arrays in steps.

[Theorem 2] There exists an optimum-time (2s±O(1))-
state protocol for synchronizing any m × n rectangular
arrays in m+n+max(m, n)−3 steps, where s is number
of states of any optimum-time one-dimensional synchro-
nization protocol.

Shinahr [1974] has given a 28-state implementation.
[Theorem 3]Shinahr[1974] There exists an optimum-time
28-state protocol for synchronizing any m×n rectangular
arrays in m + n + max(m, n) − 3 steps.

2
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5 Diagonal Mapping I: Six-state
Linear-time Algorithm A3

The proposal is a simple and efficient mapping scheme
that enables us to embed any one-dimensional firing
squad synchronization algorithm onto two-dimensional
arrays without introducing additional states. We con-
sider a 2-D array of size m×n, where m, n ≥ 2. We divide
mn cells into m + n − 1 groups gk, 1 ≤ k ≤ m + n − 1,
defined as follows.

gk = {Ci,j |(i − 1) + (j − 1) = k − 1}, i.e.,

g1 = {C1,1}, g2 = {C1,2,C2,1}, g3 = {C1,3,C2,2,C3,1}, . .
. , gm+n−1 = {Cm,n}.
Figure 4 shows the division of the two-dimensional array
of size m×n into m+n−1 groups. For convenience, we
define g0 = {C0,0} and gm+n = {Cm+1,n+1}.
Let M = (Q, δ1, w) be any one-dimensional CA that fires
� cells in T (�) steps, where Q is the finite state set of M,
δ1 : Q3 → Q is the transition function, and w ∈ Q is the
state of the right and left ends. We assume that M has
m+n− 1 cells, denoted by Ci, where 1 ≤ i ≤ m+n− 1.
For convenience, we assume that M has a left and right
end cells, denoted by C0 and Cm+n, respectively. Both
end cells C0 and Cm+n always take the end state w(∈ Q).
We consider the one-to-one correspondence between the
ith group gi and the ith cell Ci on M such that gi ↔ Ci,
where 1 ≤ i ≤ m+n−1 (see Fig. 4). We can construct a
2-D CA N = (Q, δ2, w) such that all cells in gi simulate
the ith cell Ci in real-time and N can fire any m × n
arrays at time t = T (m + n − 1) if and only if M fires
1-D arrays of length m+n−1 at time t = T (m+n−1),
where δ2 : Q5 → Q is the transition function, and w ∈ Q
is the border state of the array. Note that the set of
internal states of N is the same as M . For the details
of the construction of the transition rule set, see Umeo,
Maeda and Fujiwara [13].
Now let M have m + n− 1 cells. Here we show that the
construction of 2-D CA N can generate the configuration
of M in real-time. Specifically, for any i, 1 ≤ i ≤ m+n−
1, the state of any cell in gi at any step is the same and is
identical to the state of Ci at the corresponding step. Let
St

i , St
i,j and St

gi
denote the state of Ci, Ci,j at step t and

the set of states of the cells in gi at step t, respectively.
Then, we can establish the following lemma.

[Lemma 4] Let i and t be any integers such that 1 ≤
i ≤ m + n− 1, 0 ≤ t ≤ T (m + n− 1). Then, St

gi
= {St

i}.
Umeo, Maeda and Fujiwara [2002] presented a 6-state
two-dimensional synchronization algorithm that fires any
m×n arrays in 2(m + n)− 4 steps. An m×n 2-D array
synchronization problem is reduced to one 1-D synchro-
nization problem with the general at the left end. The
algorithm is slightly slower than the optimum ones, but
the number of internal states is considerably smaller.
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Figure 4: A correspondence between 1-D and 2-D arrays.

Step:0
1 2 3 4 5 6 7

1 G L L L L L L

2 L L L L L L L

3 L L L L L L L

4 L L L L L L L

5 L L L L L L L

Step:1
1 2 3 4 5 6 7

1 A C L L L L L

2 C L L L L L L

3 L L L L L L L

4 L L L L L L L

5 L L L L L L L

Step:2
1 2 3 4 5 6 7

1 G B A L L L L

2 B A L L L L L

3 A L L L L L L

4 L L L L L L L

5 L L L L L L L

Step:3
1 2 3 4 5 6 7

1 G C G G L L L

2 C G G L L L L

3 G G L L L L L

4 G L L L L L L

5 L L L L L L L

Step:4
1 2 3 4 5 6 7

1 G B A B C L L

2 B A B C L L L

3 A B C L L L L

4 B C L L L L L

5 C L L L L L L

Step:5
1 2 3 4 5 6 7

1 G C G L C A L

2 C G L C A L L

3 G L C A L L L

4 L C A L L L L

5 C A L L L L L

Step:6
1 2 3 4 5 6 7

1 G B A L A A G

2 B A L A A G L

3 A L A A G L L

4 L A A G L L L

5 A A G L L L L

Step:7
1 2 3 4 5 6 7

1 G C G L A B B

2 C G L A B B C

3 G L A B B C L

4 L A B B C L L

5 A B B C L L L

Step:8
1 2 3 4 5 6 7

1 G B A L L B C

2 B A L L B C C

3 A L L B C C A

4 L L B C C A L

5 L B C C A L L

Step:9
1 2 3 4 5 6 7

1 G C G G L L C

2 C G G L L C A

3 G G L L C A A

4 G L L C A A G

5 L L C A A G L

Step:10
1 2 3 4 5 6 7

1 G B A B C L A

2 B A B C L A A

3 A B C L A A B

4 B C L A A B B

5 C L A A B B A

Step:11
1 2 3 4 5 6 7

1 G C G L C L A

2 C G L C L A B

3 G L C L A B B

4 L C L A B B A

5 C L A B B A C

Step:12
1 2 3 4 5 6 7

1 G B A L C L L

2 B A L C L L B

3 A L C L L B A

4 L C L L B A C

5 C L L B A C B

Step:13
1 2 3 4 5 6 7

1 G C G L C A L

2 C G L C A L G

3 G L C A L G C

4 L C A L G C B

5 C A L G C B L

Step:14
1 2 3 4 5 6 7

1 G B A L A A C

2 B A L A A C G

3 A L A A C G B

4 L A A C G B L

5 A A C G B L L

Step:15
1 2 3 4 5 6 7

1 G C G L A C B

2 C G L A C B G

3 G L A C B G C

4 L A C B G C L

5 A C B G C L L

Step:16
1 2 3 4 5 6 7

1 G B A L G B L

2 B A L G B L G

3 A L G B L G B

4 L G B L G B A

5 G B L G B A L

Step:17
1 2 3 4 5 6 7

1 G C G C G C L

2 C G C G C L G

3 G C G C L G C

4 C G C L G C G

5 G C L G C G C

Step:18
1 2 3 4 5 6 7

1 G B G B G B G

2 B G B G B G G

3 G B G B G G B

4 B G B G G B G

5 G B G G B G B

Step:19
1 2 3 4 5 6 7

1 G G G G G G G

2 G G G G G G G

3 G G G G G G G

4 G G G G G G G

5 G G G G G G G

Step:20
1 2 3 4 5 6 7

1 F F F F F F F

2 F F F F F F F

3 F F F F F F F

4 F F F F F F F

5 F F F F F F F

Figure 5: Snapshots of the proposed 6-state linear-time
firing squad synchronization algorithm on rectangular ar-
rays.

3

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp596-600)



[Theorem 5]Umeoetal.[2006] Let A be any s-state firing
synchronization algorithm operating in T (�) steps on 1-D
� cells. Then, there exists a 2-D s-state cellular automa-
ton that can synchronize any m×n rectangular array in
T (m + n − 1) steps.

[Theorem 6]Umeoetal.[2006] There exists a 6-state 2-D
CA that can synchronize any m×n rectangular array in
2(m + n) − 4 steps.

[Theorem 7]Umeoetal.[2006] There exists a 6-state 2-D
CA that can synchronize any m × n rectangular array
containing isolated rectangular holes in 2(m+n)−4 steps.

[Theorem 8]Umeoetal.[2006] There exists a 6-state firing
squad synchronization algorithm that can synchronize
any 3-D m×n× � solid arrays in 2(m + n + �)− 6 steps.

[Theorem 9] There exists a 14-state 2-D CA that can
synchronize any m × n rectangular array in m + n +
max(r + s, m + n− r − s + 2)− 4 steps with the general
at an arbitrary initial position (r, s).
Szwerinski [12] also proposed an optimum-time general-
ized 2-D firing algorithm with 25,600 internal states that
fires any m×n array in m+n+max(m, n)−min(r, m−
r + 1) − min(s, n − s + 1) − 1 steps, where (r, s) is the
general’s initial position. Our 2-D generalized synchro-
nization algorithm is max(r + s, m + n − r − s + 2) −
max(m, n)+min(r, m−r+1)+min(s, n−s+1)−3 steps
larger than the optimum algorithm proposed by Szwerin-
ski [12]. However, the number of internal states required
to yield the firing condition is the smallest known at
present. Snapshots of our 14-state generalized synchro-
nization algorithm running on a rectangular array of size
6 × 8 with the general at C2,3 are shown in Fig. 6.

6 Diagonal Mapping II: Twelve-
state Time-optimum Algorithm
A4

An m × n 2-D array synchronization problem is re-
duced to one 1-D generalized synchronization problem:
P(m, m + n − 1). The proposal is a simple and effi-
cient mapping scheme that enables us to embed a spe-
cial class of one-dimensional generalized synchronization
algorithm onto two-dimensional arrays without introduc-
ing additional states.
We divide mn cells into m + n − 1 groups gk defined as
follows, where k is any integer such that −(m−1) ≤ k ≤
n − 1.

gk = {Ci,j |j − i = k}, −(m − 1) ≤ k ≤ n − 1

Figure 7 shows the correspondence between 1-D and 2-D
arrays.

Step:0
1 2 3 4 5 6 7 8

1 Q Q Q Q Q Q Q Q

2 Q Q R Q Q Q Q Q

3 Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:1
1 2 3 4 5 6 7 8

1 Q Q < Q Q Q Q Q

2 Q < G > Q Q Q Q

3 Q Q > Q Q Q Q Q

4 Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:2
1 2 3 4 5 6 7 8

1 Q < Q G Q Q Q Q

2 < Q G Q > Q Q Q

3 Q G Q > Q Q Q Q

4 Q Q > Q Q Q Q Q

5 Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:3
1 2 3 4 5 6 7 8

1 W Q Q G Q Q Q Q

2 Q Q G Q Q > Q Q

3 G1 G Q Q > Q Q Q

4 Q G2 Q > Q Q Q Q

5 Q Q > Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:4
1 2 3 4 5 6 7 8

1 W ] Q G Q Q Q Q

2 ] Q G Q Q Q > Q

3 Q G Q Q Q > Q Q

4 G Q Q Q > Q Q Q

5 Q Q Q > Q Q Q Q

6 Q Q > Q Q Q Q Q

Step:5
1 2 3 4 5 6 7 8

1 W ] ] G Q Q Q Q

2 ] ] G Q Q Q Q >

3 ] G Q Q Q Q > Q

4 G Q Q Q Q > Q Q

5 Q Q Q Q > Q Q Q

6 Q Q Q > Q Q Q Q

Step:6
1 2 3 4 5 6 7 8

1 W ] A N Q Q Q Q

2 ] A N Q Q Q Q Q

3 A N Q Q Q Q Q >

4 N Q Q Q Q Q > Q

5 Q Q Q Q Q > Q Q

6 Q Q Q Q > Q Q Q

Step:7
1 2 3 4 5 6 7 8

1 W ] H ] H Q Q Q

2 ] H ] H Q Q Q Q

3 H ] H Q Q Q Q Q

4 ] H Q Q Q Q Q >

5 H Q Q Q Q Q > Q

6 Q Q Q Q Q > Q Q

Step:8
1 2 3 4 5 6 7 8

1 W ] H ] R > Q Q

2 ] H ] R > Q Q Q

3 H ] R > Q Q Q Q

4 ] R > Q Q Q Q Q

5 R > Q Q Q Q Q >

6 > Q Q Q Q Q > Q

Step:9
1 2 3 4 5 6 7 8

1 W ] H Q R H > Q

2 ] H Q R H > Q Q

3 H Q R H > Q Q Q

4 Q R H > Q Q Q Q

5 R H > Q Q Q Q Q

6 H > Q Q Q Q Q W

Step:10
1 2 3 4 5 6 7 8

1 W ] R H R H N >

2 ] R H R H N > Q

3 R H R H N > Q Q

4 H R H N > Q Q Q

5 R H N > Q Q Q [

6 H N > Q Q Q [ W

Step:11
1 2 3 4 5 6 7 8

1 W ] R H R ] H H

2 ] R H R ] H H >

3 R H R ] H H > Q

4 H R ] H H > Q [

5 R ] H H > Q [ [

6 ] H H > Q [ [ W

Step:12
1 2 3 4 5 6 7 8

1 W ] R H H ] H H

2 ] R H H ] H H N

3 R H H ] H H N [

4 H H ] H H N [ H

5 H ] H H N [ H [

6 ] H H N [ H [ W

Step:13
1 2 3 4 5 6 7 8

1 W ] R H H ] H Q

2 ] R H H ] H Q [

3 R H H ] H Q [ Q

4 H H ] H Q [ Q A

5 H ] H Q [ Q A [

6 ] H Q [ Q A [ W

Step:14
1 2 3 4 5 6 7 8

1 W ] R H H ] R [

2 ] R H H ] R [ H

3 R H H ] R [ H A

4 H H ] R [ H A R

5 H ] R [ H A R [

6 ] R [ H A R [ W

Step:15
1 2 3 4 5 6 7 8

1 W ] R H H Q W Q

2 ] R H H Q W Q A

3 R H H Q W Q A A

4 H H Q W Q A A R

5 H Q W Q A A R [

6 Q W Q A A R [ W

Step:16
1 2 3 4 5 6 7 8

1 W ] R H Q [ W ]

2 ] R H Q [ W ] Q

3 R H Q [ W ] Q A

4 H Q [ W ] Q A R

5 Q [ W ] Q A R [

6 [ W ] Q A R [ W

Step:17
1 2 3 4 5 6 7 8

1 W ] R ] [ [ W ]

2 ] R ] [ [ W ] ]

3 R ] [ [ W ] ] [

4 ] [ [ W ] ] [ R

5 [ [ W ] ] [ R [

6 [ W ] ] [ R [ W

Step:18
1 2 3 4 5 6 7 8

1 W ] H W H [ W ]

2 ] H W H [ W ] H

3 H W H [ W ] H W

4 W H [ W ] H W A

5 H [ W ] H W A [

6 [ W ] H W A [ W

Step:19
1 2 3 4 5 6 7 8

1 W ] [ W ] [ W ]

2 ] [ W ] [ W ] [

3 [ W ] [ W ] [ W

4 W ] [ W ] [ W ]

5 ] [ W ] [ W ] [

6 [ W ] [ W ] [ W

Step:20
1 2 3 4 5 6 7 8

1 W W W W W W W W

2 W W W W W W W W

3 W W W W W W W W

4 W W W W W W W W

5 W W W W W W W W

6 W W W W W W W W

Step:21
1 2 3 4 5 6 7 8

1 F F F F F F F F

2 F F F F F F F F

3 F F F F F F F F

4 F F F F F F F F

5 F F F F F F F F

6 F F F F F F F F

Figure 6: Snapshots of our 14-state linear-time general-
ized firing squad synchronization algorithm on rectangu-
lar arrays.

Property A: Let St
i denote the state of Ci at step t. We

say that a generalized firing algorithm has a property A,
where any state St

i appearing in the area A(See Fig. 8)
can be computed from its left and right neighbor states
St−1

i−1 and St−1
i+1 but it never depends on its own previous

state St−1
i .

The one-dimensional generalized firing squad synchro-
nization algorithm with the property A can be easily em-
bedded onto two-dimensional arrays without introducing
any additional states.
Let St

i and St
k,� denote the state of Ci and Ck,� at step

t, respectively, where −(m − 1) ≤ i ≤ n − 1, 1 ≤ k ≤ m,
1 ≤ � ≤ n. We define the following set of cells. Let S,
St, St be set of cells such that:
S = {Ck,�|1 ≤ k ≤ m, 1 ≤ � ≤ n},
St = {Ck,�|2 ≤ k + � ≤ t + 2, 1 ≤ k ≤ m, 1 ≤ � ≤ n},
St = S − St, where 0 ≤ t ≤ T (m, m + n − 1).
Let St

gi
denote a set of states of the cells in gi∩St at step

t and S
t

gi
be a set of states of the cells in gi∩St at step t,

where 0 ≤ t ≤ T (m, m+n−1) and −(m−1) ≤ i ≤ n−1.

[Lemma 10] Let i and t be any integers such that −(m−
1) ≤ i ≤ n − 1, 0 ≤ t ≤ T (m, m + n − 1).

1. For any t such that 0 ≤ t ≤ m + n − 1, || St
gi

||=||
S

t

gi
||= 1. That is, the set St

gi
and S

t

gi
are singletons
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Figure 7:
Correspondence between 1-D and 2-D cellular arrays.

t=k -1

t=2 -2

t=k+ n-2

t=k+n

     +max(k,n)-3

C-(k-1 ) C0 Cn-1

t=n-1

1

1

1

1

Area A

t = 0

Area  B

Area  C
Area  C

k

Figure 8: Time-space diagram for generalized optimum-
step firing squad synchronization algorithm.

and all cells in gi ∩ St and gi ∩ St at step t, respec-
tively, are in the same state. We denote those states
as St

gi
and S

t

gi
, respectively.

2. Then, St
gi

= St
i and S

t

gi
=q, where q is the quiescent

state of N .

3. For any t such that m + n ≤ t ≤ T (m, m + n − 1),
|| St

gi
||= 1, || S

t

gi
||= 0 and St

gi
= St

i .

[Theorem 11] Let M be any s-state generalized syn-
chronization algorithm with the property A operating in
T (k, �) steps on 1-D � cells with a general on the k-th cell
from the left end. Then, based on M , we can construct a
2-D s-state cellular automaton that can synchronize any
m × n rectangular array in T (m, m + n − 1) steps.

Moore and Langdon [1968], Szwerinski [1982] and Var-
shavsky, Marakhovsky and Peschansky [1970] developed
a generalized optimum-time firing algorithm with 17, 10
and 10 internal states, respectively, that fires 1-D n cells
in n − 2+max(k, n − k + 1) steps, where the general is
located on Ck. Recently, Settle and Simon [2002] and
Umeo, Hisaoka, Michisaka, Nishioka and Maeda [2002]
have proposed a new 9-state generalized synchronization
algorithm operating in optimum-step. The next theorem
is a 12-state implementation of the generalized optimum-
time synchronization algorithms having the property A.
Figure 9 shows the Snapshots for a 12-state implemen-
tation of generalized firing squad synchronization algo-
rithm with the property A on 15 cells with a general on
C7.

[Theorem 12] There exists a 12-state 1-D cellular au-
tomaton with the property A that can synchronize � cells
with a general on the k-th cell from the left end in opti-
mum � − 2 + max(k, � − k + 1) steps.

Based on [Theorems 11, 12] we can get a 12-state
optimum-time synchronization algorithm for rectangular
arrays.
[Theorem 13] There exists a 12-state firing squad syn-
chronization algorithm that can synchronize any m × n
rectangular array in optimum m + n + max(m, n) − 3
steps.

7 Conclusions

We have given a survey on recent developments of
optimum-time algorithms that can synchronize any
m × n two-dimensional rectangular arrays in m + n +
max(m, n) − 3 steps. Those algorithms are based on
an efficient mapping schemes for embedding a special
class of generalized one-dimensional optimum-time fir-
ing squad synchronization algorithms onto 2-D rectan-
gular arrays. We progressively reduce the number of
internal states of each cellular automaton operating in
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Q Q Q Q Q Q < Q Q Q Q Q Q Q Q

1 Q Q Q Q Q < G > Q Q Q Q Q Q Q

2 Q Q Q Q < < G > > Q Q Q Q Q Q

3 Q Q Q < A < G > H > Q Q Q Q Q

4 Q Q < A < < G > > H > Q Q Q Q

5 Q < A < A < G > H > H > Q Q Q

6 W A < A < < G > > H > H > Q Q

7 W ] A < A < G > H > H > H > Q

8 W ] ] A < < G > > H > H > H W

9 W ] H ] A < G > H > H > H [ W

10 W ] H Q ] < G > > H > H [ [ W

11 W ] R H H ] G > H > H [ A [ W

12 W ] R H H Q N > > H [ Q A [ W

13 W ] R H Q H R R H [ A A R [ W

14 W ] R ] H H R ] [ Q A A R [ W

15 W ] H ] H H H W H A Q A R [ W

16 W ] H ] H H [ W ] A A [ R [ W

17 W ] H ] H [ [ W ] ] A [ A [ W

18 W ] H ] [ A [ W ] H ] [ A [ W

19 W ] H W W A [ W ] H W W A [ W

20 W ] [ W W ] [ W ] [ W W ] [ W

21 W W W W W W W W W W W W W W W

22 F F F F F F F F F F F F F F F

Figure 9: Snapshots for a 12-state implementation of
generalized firing squad synchronization algorithm with
the property A on 15 cells with a general on C7.

optimum-step on rectangular arrays, achieving six and
twelve states. These are the smallest number of states
reported to date for synchronizing rectangular arrays in
linear- and optimum-step, respectively.
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4 Q Q Q Q Q Q Q Q Q
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Step:9
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Step:10
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Step:11
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