
 Testable Design Techniques for Variable Block Size Motion Estimator
Used in H.264/AVC

Po-Yu Yeh, Bo-Yuan Yeh, In-Yi Cheng*, Sy-Yen Kuo, and Shyue-Kung Lu**

Dep. of Electrical Engineering, National Taiwan University, Taipei, Taiwan
Dep. of Information Management, National Taipei University of Science and Technology*

Dep. of Electronic Engineering, Fu Jen Catholic University, Taipei, Taiwan**

Abstract: -In this paper, testable design techniques for variable block size motion estimators used in H. 264/AVC
are proposed. The whole motion estimator can be viewed as an iterative logic array (ILA) consisting of basic cells
(modules). Design-for-testability techniques are applied for the cell (module) function such that the M-testability
conditions proposed in previous works can be met for the motion estimation array. The goal of the DFT
techniques is to make the cell (module) function bijective. The M-testability conditions guarantee 100% single-
cell (module)-fault testability with a minimum number of test patterns. The hardware overhead and the number of
test patterns are 4.22% and 128, respectively.

Index Terms—variable block size, M-testable, design for testability, motion estimation, H.264

1 Introduction
Motion estimation (ME) techniques are used to remove
temporal redundancy for video coding systems [1, 2, 3]. The
computation complexity of ME is from 50% to 90% for a
typical video coding system. Moreover, in H.264/AVC,
variable block size motion estimation is adopted to further
increase the coding efficiency. Motion estimation is the
most important part of video compression coding algorithm.
It can reduce most redundant information of video sequence,
but ME will lead to huge computations due to a large
number of block matching and SADs (Sum of Absolutely
Difference). The ME of H.264/AVC is much complex than
that of MPEG1/2/4. However, in average, The H.264/AVC
compressed video bitstream is only 50% of that compressed
by MPEG-4 at the same quality. H. 264/AVC divides one 16
× 16 macro block (MB) into kinds of sub-macro-blocks
(sub-MBs), result in more precise prediction and higher
compression efficiency. There are 41 SADs (Sum of
Absolute Difference) produced in a single 16 × 16 MB-
matching, unlike previous standards, only the last one (the
SAD of whole MB) should be calculated. Therefore, the
H.264/AVC ME circuit is divided into several small and
piecemeal circuits. This will complicate the complexity of
DFT (design for testability) circuits.

In general, high-speed implementation of the ME
algorithms is required. There are several architectures [1-3]
proposed for motion estimation. One of the most popular

architectures is the iterative logic arrays due to their locality
and regularity. The computation parallelism of each
processing element can achieve very high throughput.

However, integrating a large number of processing elements
on a single chip results in the increase in the logic-per-pin
ratio, which drastically reduces the controllability and
observability of the logic on the chip. Consequently, testing
such highly complex and dense circuits becomes very
difficult and expensive [4]. Therefore, in this paper, testable
design techniques for variable block size motion estimators
are proposed. The previous M-testability [5] conditions can
be applied for the motion estimation array if some design-
for-testability techniques are used to make the basic cell
(module) function bijective. The M-testability conditions
guarantee 100% single-cell (module)-fault testability with a
minimum number of test patterns. The hardware overhead
and the number of test patterns are 4.22% and 128,
respectively.

The organization of this paper is described as follows.

Section 2 introduces the all-binary ME algorithm and its
architecture. Section 3 reviews the M-testability conditions
and some definitions are given. Section 4 proposes the
testable ME designs. Analyzed results are shown in Section
5. Finally, some conclusions are given in Section 6.

2 All-Binary ME Algorithm
Fig. 1 shows the motion estimation between successive
frames. According to the all-binary ME method [6], the
features (eFrame) of each frame are extracted. This method

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp34-38)

will lead to huge reduction of arithmetic logics without
almost negligible PSNR drop. The ME algorithm is based on
the block matching of 16 × 16 macroblocks (MBs).
Therefore, the eFrame should be divided into several eMBs
with the size of 16 × 16.

 Fig. 1: The extracted eFrame which contains only 1-bit

information per pixel from the original frame. The
eFrame is divided into 16 × 16 eMBs.

 The block matching is performed by calculating the
absolute difference between the current and reference eMBs
(AD-eMB). The AD-eMB can be obtained by simply
performing 16 × 16 bitwise XOR operations (Fig. 2). In
order to increase the compression efficiency, the sub-block
with variable block sizes (VBS) is adopted in H.264/AVC
standard. There are 41 VBS blocks for each eMB (Fig. 3).
We can use the absolute differences of the smallest sub-
blocks to derive the SADs of larger sub-blocks. According
to the VBS blocks, H.264/AVC encoder can choose the
lowest SAD to achieve the highest compression ration.

Fig. 2: The derivation of the AD-eMB.

The architecture for the variable block size ME is shown

in Fig. 4. In this figure, p+1 parallel block matching
modules (BMM) are used to perform motion estimation.
Each BMM also includes one 16 × 16-bit current eMB
register buffer (Cur-eMB) and one 16 × (16+p)-bit reference
eMB register buffer (Ref-eMB).

A single BMM performs block matching for a 16 × 16

eMB and output 41 SADs. The number of BMMs can be
increased until the sufficient throughput is achieved. The
internal architecture of a BMM is shown in Fig. 5. It

consists of 16 SAD4×4 modules and 25 AccSAD modules for
the calculation of the SADs of 16 4 × 4 sub-blocks and 25
accumulative SADs, respectively.

Fig. 3: There are 41 VBS blocks in one eMB.

Fig. 4: The parallel architecture of H.264/AVC motion

estimation.

3. Review of M-Testability and Definitions
In order to ease our discussion, some definitions are defined
first. They are also used in [5].

Definition: A cell in an ILA with function f is a
combinational machine (Σ, ∆, f), where f: Σ→ ∆ is the cell
function, and Σ = ∆ = {0, 1}w, w denotes the word length of
a cell. An ILA is an array of cells.
Definition: We say that the function f of a cell is bijective
when ∀θ1 ≠ θ2, f(θ1) ≠ f(θ2), θ1, θ2 ∈ Σ.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp34-38)

Fig. 5: Internal architecture of a BMM.

Definition: We say that an ILA is M-testable if it can be
tested with 2w test patterns regardless of the array size.

 M-testability conditions can be found in [5]. Thanks to the
array architecture and DFT techniques. The M-testable
techniques can also be applied to the motion estimator.

ci

HA

si so

co

Normal Mode
ci si co so
 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 0

12T

4T

so

co

Total 18 transistors

2T

ci
si

cn

(a)

Normal Mode(tm=0)
ci si co so
 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 0
Test Mode(tm=1)
ci si /si cn co so
 0 0 1 1 0 0
 0 1 0 1 1 1
 1 0 1 1 0 1
 1 1 0 0 1 0

ci
tHA

si so
co

 tm

(b)

12T

4T 4T

so

co
tm

Total 22 transistors

ci
si

/si
1

cn

2T

sw
sw

/tm

(c)

In Test Mode(tm=1):
 co=NAND(/si0,cnn-1)

HA

HA

HA

tHA

si0

si1

sin-2

sin-1 son-1

son-2

so1

so0

ci

tm

co

Fig. 6: (a) 1-bit half adder; (b) Testable HA (tHA), and (c) Testable
n-bits HA (tnHA).

Fig. 6(a) shows an original HA and its input/output mapping is

not bijective. In Fig. 6(b), four transistors are added, and then we
can see that the tHA’s input and output are 1-to-1 mapped
(bijective) and all the gates are fully tested in test mode (tm = 1).
The normal function is kept in the normal mode (tm = 0). Although
the bijective property is achieved, the hardware overhead is too
high to be acceptable (4/18 = 22.22%). In Fig. 6(c), there are n
HAs in the tnHA cell, but the highest HA is replaced with the tHA
cell. Notice that the !si0 signal is connected from the inside-XOR
of the lowest HA. We can all prove the bijective property of tnHA.
TnFA, TWFS and TWFA cells can be defined analogously.

4. Testable ME Architectures

4.1 Testing Register Buffers (tRegBuf)
Basically, the Cur-eMB and Ref-eMB register buffers are
parallel shifters for storing the extracted features. The inputs
and outputs of the register buffers are 1-to-1 mapped in
nature (Fig. 4). Therefore, we can first test the tRegBuf by
shifting in the test patterns line by line to the bottom lines of
all eMBs and then get the output patterns line by line from
the top lines of the register buffers. Each current and
reference line has 16+(16+p) = 32+p DFFs, and the number
of exhaustive input patterns is 232+p. This number is too large
for practical applications. Fortunately, each vertical line is
independent to the other vertical lines. Therefore, we can
separate each (32+p)-bit line into several n-bit sub-lines.
The number of test patterns will be reduced greatly to 2n.
Obviously, test patterns could be generated by an n-bit
counter and the output responses are predictable.

3.2 Testable SAD4x4HA Cells
Fig. of a SAD4x4HA. It mainly consists of HA cells and
XOR gates The inputs c0~c15 and r0~r15 are connected to
Cur-eMB and Ref-eMB registers, respectively. The XOR
gates compute the 4 × 4 ADs between the two 4 × 4 sub-
blocks of Cur-eMB and Ref-eMB. The HA array sums up
the 4 × 4 ADs. Each column of the HA array can be
regarded as an incremental stage. However, the original
circuit needs 232 input test patterns. For reducing the test
patterns and testability, only four n-bits HA stages should be
replaced by tnHA cells (n = 1, 2, 3 and 4) due to their carry
outs that cannot be neglected in the next stage. We can
predict that the modified circuit needs at lease five
independent inputs due to the five inputs of the last eight
stages. We can control the two buses {c15…c0} and {r15…r0}
at all-zeros or all-ones independently (there would be 2 × 2
= 4 cases), and then multiplexed with {ti4…ti0} as shown in
Fig. 7(b).

Lemma: The mapping from {ti4…ti0} to {to4…to0} is bijective as
shown in Fig. 7(b).

Proof: The proof is omitted for simplicity.

Even though each stage of the SAD4x4HA cell has

different wordlength, the bijective property can be preserved
from the first stage to the 15th stage. That is similar to an
ILA. Although the number of SAD4x4HA cells increases
rapidly, we can test all SAD4x4HA cells by cascading all of
them since the function of the SAD4x4HA cell is bijective.

There will be 25 patterns for each case, so we need a total of 25

× 4 = 27 test patterns for fully testing the 16*(p+1) cells) is quite

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp34-38)

Fig. 7: (a) The original SAD4x4HA cell, and (b) the testable
SAD4x4HA cell.

simple because we can just connect each cell’s outputs
{to4…to0} to the next cell’s inputs {ti4…ti0}.

4.3 Testable AccSAD Cells
In Fig. 5, 25 wFA cells of the original AccSAD part have
unbalanced number of input/output SADs and the testability
is hard to achieve due to lots of independent and small area
logics. Before proposing the testable AccSADModule network,
we should introduce the bijective tAccSADModule cell first.
Fig. 8(a) and (b) describe the normal mode and test mode of
tAccSADModule cell, respectively. There are four w-bit twFA
and one w-bit twFS cells in the tAccSADModule cell. The
subtraction operation is almost the same as the addition
operation in hardware implementation except the extra
inverters and the bijective property is also kept. When we
input the four w-bit SADs {Ia, Ib, Ic, Id} of 4 × 4 sub-blocks
in normal mode, the tAccSADModule cell will output the five
w-bit accumulative SADs {Oa, Ob, Oc, Od, Oe}. We will
show that the mapping from {Tia, Tib} to {Toa, Tob} is still
bijective in test mode.
Oservation: The mapping from {Tia, Tib} to {Toa, Tob} is
bijective.
Proof: The proof is omitted for simplicity.

In fact, if we replace twFS cells with twFA, the

tAccSADModule cell is still bijective. This can be proved by
similar manner.

Fig. 8: (a) tAccSADModule (normal mode); (b) tAccSADModule
(test mode); and (c) Butterfly-like tAccSADModule network
(tAccSADModule-NW).

In Fig. 8(c), the wFA cells are replaced by five

tAccSADModule cells and the bijective property of
tAccSADModule cell is also preserved. In normal mode, the
sixteen input SADs of 4 × 4-subblocks will be fed to the
first stage and then output eight SADs of 4 × 8-subblocks
(as the illustrated gray squares on twFA and twFS cells in
the Fig. (b), and each square indicates one 4 × 4 sub-block).
The second stage will calculate the four SADs for 8 × 8 sub-
blocks and four SADs for 8 × 4 subblocks. The third stage
will perform four subtractions for the 4 SADs of 8 × 4
subblocks between 8x8 and 8x4 subblocks. The 4th, 5th and
6th stages will calculate the spared SADs for larger VBS
blocks in the same manner.

In test mode, all the tAccSADModule cells of p+1 BMMs

are cascaded one after one (total cascaded cells c = 5*(p+1)).
According to the bijective property of tAccSADModule cell,
exhaustive input test patterns (22w test patterns) can be
propagated to the next cell and then all cells can be tested
simultaneously. Fortunately, the output responses can be
predicted according the input test patterns. If the input test
pattern of the first cell is {A0, B0}, and assume the expression
{Ak ,Bk} denotes the output of the kth cell, where k = 1~c:

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp34-38)

�{A1, B1} = { (3A0+2B0)mod2w, (2A0+B0)mod2w}
�{A2, B2} = { (3A1+2B1)mod2w, (2A1+B1)mod2w}

= { (13A0+8B0)mod2w, (8A0+5B0)mod2w}
�{A4, B4} = { (13A2+8B2)mod2w, (8A2+5B2)mod2w}

= {(233A0+144B0)mod2w, (144A0+89B0)mod2w}
……
�{Ac, Bc} = { (pA0+qB0)mod2w, (rA0+sB0)mod2w}

Therefore, we can calculate the final output constant p, q,

r and s in advance with about log2(c) iterations. Note that p,
q, r and s are constants and the hardware implementation
can be done by just arithmetic shift and addition operations.

4 Analyzed Results and Comparisons
Table 1 shows the required test patterns for ach of the
proposed testable designs. The most important feature is that
the test patterns can be generated by a binary counter. Table
1 shows the number of test patterns for the proposed testable
designs. Table 2 compares the hardware overhead and the
number of test patterns for each design technique. From this
table, we can see that the proposed approaches are better
than the traditional DFT and ATPG tools.

Table 1: The number of test patterns

 @p=8 tRegBuf tSAD4x4HA tSAD4x4Hybrid tAccSADModule-NW tAccSADn-bi ts-NW
Test

Patterns
(TP)

2n

 = 256@n=8
27

 = 128
28

 = 256
22w

65536@w=8

22n+1+(w/n)*23

528@(w,n)=(8,4)
131088@(w,n)=(16,8)

Table 2: Comparisons with the traditional ATPG method

 @p=8 tME-I tME-II tME-III tME-IV ATPG
Registers tRegBuf tRegBuf tRegBuf tRegBuf N/A

SAD4x4-part tSAD4x4Hybrid tSAD4x4Hybrid tSAD4x4HA tSAD4x4HA N/A
AccSAD-part tAccSADn-bits-NW tAccSADModule-NW tAccSADn-bits-NW tAccSADModule-NW N/A

Max. TP 528@(w,n)=(8,4) 65536@w=8 528@(w,n)=(8,4) 65536@w=8 >>100k@w=
8

Total HO 9.14%@(w,n)=(8,
4) 7.54% 5.50%@(w,n)=(8,4) 4.22% 15%~20%

6. Conclusions
In this paper, testable design techniques are proposed for all-
binary variable block size motion estimators. As compared
with traditional DFT and ATPG tools, the proposed
techniques have lower hardware overhead. Moreover, the
required test patterns can be greatly reduced. The hardware
overhead and the number of test patterns are 4.22% and 128,
respectively.

REFERENCES
[1] C. M. Ou, C. F. Le, and W. J. Hwang, “An efficient VLSI

architecture for H.264 variable block size motion estimation,”
IEEE Trans. Consumer Electronics, vol. 51, no. 4, pp. 1291-
1299, Nov. 2005.

[2] L. Deng, W. Gao, M. Z. Hu and Z. Z. Ji, “An efficient
hardware implementation for motion estimation of AVC

standard,” IEEE Trans. Consumer Electronics, vol. 51, no. 4,
pp. 1360-1366, Nov. 2005.

[3] C. C. Yeh, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C.
Wang, and L. G. Chen, “Analysis and Architecture Design of
Variable Block Size Motion Estimation for H.264/AVC,”
IEEE Trans. Circuits and Systems, vol. pp, no. 99, 2005. (to
appear)

[4] H. Fujiwara and S. Toida, “The complexity of fault detection
problems for combinational logic circuits,” IEEE Trans.
Computers, vol. C-31, no. 4, pp. 555-560, June 1982.

[5] C. W. Wu and P. R. Cappello, “Easily Testable Iterative Logic
Arrays,” IEEE Trans. Comput., vol. 39, no. 5, pp. 640-652,
May 1990.

[6] J. H. Luo, C. N. Wang and T. Chiang; “A novel all-binary
motion estimation (ABME) with optimized hardware
architectures,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 12, no. 8, pp. 700-712, Aug. 2002.

[7] H. Chung and A. Ortega, “Analysis and Testing for Error
Tolerant Motion Estimation,” in Proc. DFT 2005, pp. 514-522,
Oct. 2005.

[8] D. Li., and M. Hu, “Built-in self-test design of motion
estimation computing array,” in Proc. NEWCAS, pp. 349-352,
June 2004.

[9] W.P. Marnane and W. R. Moore, “Testing a motion estimator
array,” in Proc. Application-Specific Array Processors. Pp.
734-745, Sept. 1990

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp34-38)

