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Abstract: -In this paper, testable design techniques for variable block size motion estimators used in H. 264/AVC 
are proposed. The whole motion estimator can be viewed as an iterative logic array (ILA) consisting of basic cells 
(modules). Design-for-testability techniques are applied for the cell (module) function such that the M-testability 
conditions proposed in previous works can be met for the motion estimation array. The goal of the DFT 
techniques is to make the cell (module) function bijective. The M-testability conditions guarantee 100% single-
cell (module)-fault testability with a minimum number of test patterns. The hardware overhead and the number of 
test patterns are 4.22% and 128, respectively.  
 

Index Terms—variable block size, M-testable, design for testability, motion estimation, H.264  
 

 

1 Introduction 
Motion estimation (ME) techniques are used to remove 
temporal redundancy for video coding systems [1, 2, 3]. The 
computation complexity of ME is from 50% to 90% for a 
typical video coding system. Moreover, in H.264/AVC, 
variable block size motion estimation is adopted to further 
increase the coding efficiency.  Motion estimation is the 
most important part of video compression coding algorithm. 
It can reduce most redundant information of video sequence, 
but ME will lead to huge computations due to a large 
number of block matching and SADs (Sum of Absolutely 
Difference). The ME of H.264/AVC is much complex than 
that of MPEG1/2/4. However, in average, The H.264/AVC 
compressed video bitstream is only 50% of that compressed 
by MPEG-4 at the same quality. H. 264/AVC divides one 16 
× 16 macro block (MB) into kinds of sub-macro-blocks 
(sub-MBs), result in more precise prediction and higher 
compression efficiency. There are 41 SADs (Sum of 
Absolute Difference) produced in a single 16 × 16 MB-
matching, unlike previous standards, only the last one (the 
SAD of whole MB) should be calculated. Therefore, the 
H.264/AVC ME circuit is divided into several small and 
piecemeal circuits. This will complicate the complexity of 
DFT (design for testability) circuits. 
 

In general, high-speed implementation of the ME 
algorithms is required. There are several architectures [1-3] 
proposed for motion estimation. One of the most popular 

architectures is the iterative logic arrays due to their locality 
and regularity. The computation parallelism of each 
processing element can achieve very high throughput. 

However, integrating a large number of processing elements 
on a single chip results in the increase in the logic-per-pin 
ratio, which drastically reduces the controllability and 
observability of the logic on the chip. Consequently, testing 
such highly complex and dense circuits becomes very 
difficult and expensive [4]. Therefore, in this paper, testable 
design techniques for variable block size motion estimators 
are proposed. The previous M-testability [5] conditions can 
be applied for the motion estimation array if some design-
for-testability techniques are used to make the basic cell 
(module) function bijective. The M-testability conditions 
guarantee 100% single-cell (module)-fault testability with a 
minimum number of test patterns. The hardware overhead 
and the number of test patterns are 4.22% and 128, 
respectively.  

 
The organization of this paper is described as follows. 

Section 2 introduces the all-binary ME algorithm and its 
architecture. Section 3 reviews the M-testability conditions 
and some definitions are given. Section 4 proposes the 
testable ME designs. Analyzed results are shown in Section 
5. Finally, some conclusions are given in Section 6. 

 
2 All-Binary ME Algorithm 
Fig. 1 shows the motion estimation between successive 
frames. According to the all-binary ME method [6], the 
features (eFrame) of each frame are extracted. This method 
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will lead to huge reduction of arithmetic logics without 
almost negligible PSNR drop. The ME algorithm is based on 
the block matching of 16 × 16 macroblocks (MBs). 
Therefore, the eFrame should be divided into several eMBs 
with the size of 16 × 16. 

 
 Fig. 1: The extracted eFrame which contains only 1-bit 

information per pixel from the original frame. The 
eFrame is divided into 16 × 16 eMBs. 

 
      The block matching is performed by calculating the 
absolute difference between the current and reference eMBs 
(AD-eMB). The AD-eMB can be obtained by simply 
performing 16 × 16 bitwise XOR operations (Fig. 2). In 
order to increase the compression efficiency, the sub-block 
with variable block sizes (VBS) is adopted in H.264/AVC 
standard. There are 41 VBS blocks for each eMB (Fig. 3). 
We can use the absolute differences of the smallest sub-
blocks to derive the SADs of larger sub-blocks. According 
to the VBS blocks, H.264/AVC encoder can choose the 
lowest SAD to achieve the highest compression ration. 
 

 
Fig. 2: The derivation of the AD-eMB. 

 
The architecture for the variable block size ME is shown 

in Fig. 4. In this figure, p+1 parallel block matching 
modules (BMM) are used to perform motion estimation. 
Each BMM also includes one 16 × 16-bit current eMB 
register buffer (Cur-eMB) and one 16 × (16+p)-bit reference 
eMB register buffer (Ref-eMB).  

 
A single BMM performs block matching for a 16 × 16 

eMB and output 41 SADs. The number of BMMs can be 
increased until the sufficient throughput is achieved. The 
internal architecture of a BMM is shown in Fig. 5. It 

consists of 16 SAD4×4 modules and 25 AccSAD modules for 
the calculation of the SADs of 16 4 × 4 sub-blocks and 25 
accumulative SADs, respectively.   

 

 
 

Fig. 3: There are 41 VBS blocks in one eMB. 
 

 
Fig. 4: The parallel architecture of H.264/AVC motion  

estimation. 
 
3. Review of M-Testability and Definitions 
In order to ease our discussion, some definitions are defined 
first. They are also used in [5].  

 
Definition: A cell in an ILA with function f is a 
combinational machine (Σ, ∆, f), where f: Σ→ ∆ is the cell 
function, and Σ = ∆ = {0, 1}w, w denotes the word length of 
a cell.  An ILA is an array of cells.  
Definition: We say that the function f of a cell is bijective 
when ∀θ1 ≠ θ2, f(θ1) ≠ f(θ2), θ1, θ2 ∈ Σ. 
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Fig. 5: Internal architecture of a BMM. 
 
Definition: We say that an ILA is M-testable if it can be 
tested with 2w test patterns regardless of the array size.  
 
    M-testability conditions can be found in [5]. Thanks to the 
array architecture and DFT techniques. The M-testable 
techniques can also be applied to the motion estimator.  
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Fig. 6: (a) 1-bit half adder; (b) Testable HA (tHA), and (c) Testable 
n-bits HA (tnHA). 

 
Fig. 6(a) shows an original HA and its input/output mapping is 

not bijective. In Fig. 6(b), four transistors are added, and then we 
can see that the tHA’s input and output are 1-to-1 mapped 
(bijective) and all the gates are fully tested in test mode (tm = 1). 
The normal function is kept in the normal mode (tm = 0). Although 
the bijective property is achieved, the hardware overhead is too 
high to be acceptable (4/18 = 22.22%). In Fig. 6(c), there are n 
HAs in the tnHA cell, but the highest HA is replaced with the tHA 
cell. Notice that the !si0 signal is connected from the inside-XOR 
of the lowest HA. We can all prove the bijective property of tnHA.  
TnFA, TWFS and TWFA cells can be defined analogously. 

 

4. Testable ME Architectures 

4.1 Testing Register Buffers (tRegBuf)  
Basically, the Cur-eMB and Ref-eMB register buffers are 
parallel shifters for storing the extracted features. The inputs 
and outputs of the register buffers are 1-to-1 mapped in 
nature (Fig. 4). Therefore, we can first test the tRegBuf by 
shifting in the test patterns line by line to the bottom lines of 
all eMBs and then get the output patterns line by line from 
the top lines of the register buffers. Each current and 
reference line has 16+(16+p) = 32+p DFFs, and the number 
of exhaustive input patterns is 232+p. This number is too large 
for practical applications. Fortunately, each vertical line is 
independent to the other vertical lines. Therefore, we can 
separate each (32+p)-bit line into several n-bit sub-lines.  
The number of test patterns will be reduced greatly to 2n. 
Obviously, test patterns could be generated by an n-bit 
counter and the output responses are predictable.  

 

3.2 Testable SAD4x4HA Cells  
Fig. of a SAD4x4HA. It mainly consists of HA cells and 
XOR gates The inputs c0~c15 and r0~r15 are connected to 
Cur-eMB and Ref-eMB registers, respectively. The XOR 
gates compute the 4 × 4 ADs between the two 4 × 4 sub-
blocks of Cur-eMB and Ref-eMB. The HA array sums up 
the 4 × 4 ADs. Each column of the HA array can be 
regarded as an incremental stage. However, the original 
circuit needs 232 input test patterns. For reducing the test 
patterns and testability, only four n-bits HA stages should be 
replaced by tnHA cells (n = 1, 2, 3 and 4) due to their carry 
outs that cannot be neglected in the next stage. We can 
predict that the modified circuit needs at lease five 
independent inputs due to the five inputs of the last eight 
stages. We can control the two buses {c15…c0} and {r15…r0} 
at all-zeros or all-ones independently (there would be 2 × 2 
= 4 cases), and then multiplexed with {ti4…ti0} as shown in 
Fig. 7(b).  
 
Lemma: The mapping from {ti4…ti0} to {to4…to0} is bijective as 
shown in Fig. 7(b). 

Proof: The proof is omitted for simplicity. 
 
Even though each stage of the SAD4x4HA cell has 

different wordlength, the bijective property can be preserved  
from the first stage to the 15th stage. That is similar to an 
ILA. Although the number of SAD4x4HA cells increases 
rapidly, we can test all SAD4x4HA cells by cascading all of 
them since the function of the SAD4x4HA cell is bijective. 
 

There will be 25 patterns for each case, so we need a total of 25 

× 4 = 27 test patterns for fully testing the 16*(p+1) cells) is quite 
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Fig. 7: (a) The original SAD4x4HA cell, and (b) the testable 
SAD4x4HA cell. 

 
simple because we can just connect each cell’s outputs 
{to4…to0} to the next cell’s inputs {ti4…ti0}. 
 

4.3 Testable AccSAD Cells  
In Fig. 5, 25 wFA cells of the original AccSAD part have 
unbalanced number of input/output SADs and the testability 
is hard to achieve due to lots of independent and small area 
logics. Before proposing the testable AccSADModule network, 
we should introduce the bijective tAccSADModule cell first. 
Fig. 8(a) and (b) describe the normal mode and test mode of 
tAccSADModule cell, respectively. There are four w-bit twFA 
and one w-bit twFS cells in the tAccSADModule cell. The 
subtraction operation is almost the same as the addition 
operation in hardware implementation except the extra 
inverters and the bijective property is also kept. When we 
input the four w-bit SADs {Ia, Ib, Ic, Id} of 4 × 4 sub-blocks 
in normal mode, the tAccSADModule cell will output the five 
w-bit accumulative SADs {Oa, Ob, Oc, Od, Oe}. We will 
show that the mapping from {Tia, Tib} to {Toa, Tob} is still 
bijective in test mode. 
Oservation: The mapping from {Tia, Tib} to {Toa, Tob} is 
bijective. 
Proof: The proof is omitted for simplicity.  

 
In fact, if we replace twFS cells with twFA, the 

tAccSADModule cell is still bijective. This can be proved by 
similar manner. 

 
Fig. 8: (a) tAccSADModule (normal mode); (b) tAccSADModule 
(test mode); and (c) Butterfly-like tAccSADModule network 
(tAccSADModule-NW). 

 
In Fig. 8(c), the wFA cells are replaced by five 

tAccSADModule cells and the bijective property of 
tAccSADModule cell is also preserved. In normal mode, the 
sixteen input SADs of 4 × 4-subblocks will be fed to the 
first stage and then output eight SADs of 4 × 8-subblocks 
(as the illustrated gray squares on twFA and twFS cells in 
the Fig. (b), and each square indicates one 4 × 4 sub-block). 
The second stage will calculate the four SADs for 8 × 8 sub-
blocks and four SADs for 8 × 4 subblocks. The third stage 
will perform four subtractions for the 4 SADs of 8 × 4 
subblocks between 8x8 and 8x4 subblocks. The 4th, 5th and 
6th stages will calculate the spared SADs for larger VBS 
blocks in the same manner. 

 
In test mode, all the tAccSADModule cells of p+1 BMMs 

are cascaded one after one (total cascaded cells c = 5*(p+1)). 
According to the bijective property of tAccSADModule cell, 
exhaustive input test patterns (22w test patterns) can be 
propagated to the next cell and then all cells can be tested 
simultaneously. Fortunately, the output responses can be 
predicted according the input test patterns. If the input test 
pattern of the first cell is {A0, B0}, and assume the expression 
{Ak ,Bk} denotes the output of the kth cell, where k = 1~c: 
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�{A1, B1} = { (3A0+2B0)mod2w, (2A0+B0)mod2w} 
�{A2, B2} = { (3A1+2B1)mod2w, (2A1+B1)mod2w} 

= { (13A0+8B0)mod2w, (8A0+5B0)mod2w} 
�{A4, B4} = { (13A2+8B2)mod2w, (8A2+5B2)mod2w} 

= {(233A0+144B0)mod2w, (144A0+89B0)mod2w} 
…… 
�{Ac, Bc} = { (pA0+qB0)mod2w, (rA0+sB0)mod2w} 
 
Therefore, we can calculate the final output constant p, q, 

r and s in advance with about log2(c) iterations. Note that p, 
q, r and s are constants and the hardware implementation 
can be done by just arithmetic shift and addition operations.  

 

4 Analyzed Results and Comparisons 
Table 1 shows the required test patterns for ach of the 
proposed testable designs. The most important feature is that 
the test patterns can be generated by a binary counter. Table 
1 shows the number of test patterns for the proposed testable 
designs. Table 2 compares the hardware overhead and the 
number of test patterns for each design technique. From this 
table, we can see that the proposed approaches are better 
than the traditional DFT and ATPG tools. 

 
Table 1: The number of test patterns 

 @p=8 tRegBuf tSAD4x4HA tSAD4x4Hybrid tAccSADModule-NW tAccSADn-bi ts-NW
Test

Patterns
(TP)

2n

 = 256@n=8
27

 = 128
28

 = 256
22w

65536@w=8

22n+1+(w/n)*23

528@(w,n)=(8,4)
131088@(w,n)=(16,8)

 
Table 2: Comparisons with the traditional ATPG method 

 @p=8 tME-I tME-II tME-III tME-IV ATPG
Registers tRegBuf tRegBuf tRegBuf tRegBuf N/A

SAD4x4-part tSAD4x4Hybrid tSAD4x4Hybrid tSAD4x4HA tSAD4x4HA N/A
AccSAD-part tAccSADn-bits-NW tAccSADModule-NW tAccSADn-bits-NW tAccSADModule-NW N/A

Max. TP 528@(w,n)=(8,4) 65536@w=8 528@(w,n)=(8,4) 65536@w=8 >>100k@w=
8

Total HO 9.14%@(w,n)=(8,
4) 7.54% 5.50%@(w,n)=(8,4) 4.22% 15%~20%  

6. Conclusions 
In this paper, testable design techniques are proposed for all-
binary variable block size motion estimators. As compared 
with traditional DFT and ATPG tools, the proposed 
techniques have lower hardware overhead. Moreover, the 
required test patterns can be greatly reduced. The hardware 
overhead and the number of test patterns are 4.22% and 128, 
respectively.  
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