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Abstract: A class of cubic polynomial blending functions with a shape parameter is presented. It is an extension 
of cubic uniform B-spline basis functions. Piecewise polynomial curves with a shape parameter are constructed 
from these blending functions. The generated curves have second geometric continuity for any fixed shape 
parameter and have the same terminal properties as the cubic uniform B-spline curves. If the value of the shape 
parameter is changed, the approaching degree of the curves to their control polygon is adjusted accordingly and 
the curves are manipulated to approximate the cubic uniform B-spline curve from its both sides. In comparison 
with the existing results, the degree of blending functions is lower and the domain of the shape parameter is 
larger in this paper. A new method using cubic polynomial curves with a shape parameter is also proposed to 
solve interpolation problem without solving global systems of equations. Finally some computing examples of 
the curve design are also given. 
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1 Introduction 
As we all know, polynomial B-spline curves, 
especially quadratic and cubic B-spline curves, are 
widely used in computer aided geometric design 
(CAGD). Piecewise continuous curves with four 
control points for each curve segment are flexible 
and can be used conveniently [1]. To improve the 
shape of a curve or the extent which a curve 
approaches its control polygon, the method of 
constructing curves by using tension parameter was 
presented in CAGD [2-4]. The weights of rational 
Bézier curves and rational B-spline curves have the 
function to adjust the shapes of curves [1,5]. The 
shapes of some other high-order rational curves can 
also be adjusted to meet different needs [6,7].  
It is good to provide a more utilizable method of 
generating curves with a shape parameter. A C-B 
spline curve [8] is one of the curves with a shape 
parameter, and its basis functions contain triangle 
functions. The shape parameter is represented as 
triangle functions, but using triangle functions is not 
as easy as using polynomial functions. When values 
of the shape parameter are changed, C-B spline 
curves are away from the control polygon. 
Quadratic and cubic trigonometric polynomial 
curves with a shape parameter were proposed 
successively [9,10]. The range of the shape 
parameter is the interval[ 1,1]− . Another method of 
generating a cubic uniform B-spline curve with a 
shape parameter was introduced [11]. The degree of 

its four blending functions is 4, and the blending 
functions are not basis functions. The parameter 
value can change on the interval[ 8,1]− . The curve 
generated is 2C  continuous, but it can't approximate 
its control polygon arbitrarily. The method was also 
generalized to th( 1)n n ≥  order uniform B-spline 
curve case. 
     Analogously to the cubic B-spline curves, the 
purpose of this paper is to present practical 
piecewise polynomial curves. The method of 
constructing a cubic polynomial curve with a shape 
parameter is obtained, and the degree of its four 
blending functions is 3. The value of its shape 
parameter can change on the interval[ 8, )− +∞ . The 
curve generated by this method is 2GC  continuous, 
and it can approximate its control polygon 
arbitrarily by increasing the value of its shape 
parameter. The curve is an extension of a cubic 
uniform B-spline curve. It has some good properties 
as a cubic uniform B-spline curve does. This paper 
also presents new interpolation method that can 
produce 2C  continuous cubic polynomial curves 
with a shape parameter without solving global 
systems of equations [12-14], while providing 
slackness control capabilities. With the low-degree 
polynomials and direct computation of control 
vertices, the method is computationally simple, and 
thus useful for interactive interpolation shape design 
and computer graphics applications. 
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The paper is organized as follows. In Section 2, 
the blending functions are proposed and the 
properties are described. In Section 3, the cubic 
polynomial curve with a shape parameter is given. 
Open and closed piecewise cubic polynomial curves 
are described. The approximation of the 

2GC continuous polynomial curve to a cubic B-
spline curve and to the given control polygon are 
shown in Section 4. A new interpolation method is 
also described in Section 4. Some conclusions can 
be drawn in Section 5. 
 
 
2 Cubic basis functions with a shape 
parameter  
Definition 1. Supposed [0,1],t λ∈ ∈R , the 
associated blending functions are defined to be the 
following functions: 
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Theorem 1. The blending functions have the 
following properties:  
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polynomial basis functions. 
Proof:  
(i) Property (1), (2) and (4) are straightforward.  
(ii)Property (3) is proved according to (4). For 
any j , ( ; )j tφ λ  can be represented as convex linear 

combinations of 3( )( 0,1,2,3)iB t i = , and the 

combination coefficients are non-negative, so 
( ; )j tφ λ ( 0,1,2,3)j =  are non-negative. 

The proof is completed. 
    

If 0λ = , ( ;0)( 0,1,2,3), [0,1]j t j tφ = ∈  are the 
basis functions of cubic uniform B-spline curve on 
the interval [0,1] . The blending functions are the 
generalized basis functions of cubic uniform B-
spline. Fig. 1 shows the images of the basis 
functions for different shape parameters. 

 

 

 
Fig.1 The image of the basis functions with 
different shape parameters λ  
 
 
3 Cubic spline curve with a shape 
parameter  
Definition 2. Given control points 

( 0,1, , )i i n= LP , ( 3)n ≥  a knot vector 

0 1 1nt t t +< < <L , and a parameter ( )4 ,λ λ ≥ −  

then for any 1[ , ],k kt t t +∈  3, 4, ,k n= L , the curve 
segment of polynomial is defined as follows: 
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The piecewise cubic polynomial curve is defined 

as follows: 
1( ; ) ( ; ), [ , ], 3, 4, , ,k k kt t t t t k nλ λ += ∈ = LC C  

The curve ( ; )t λC  is a piecewise cubic 
polynomial curve with a shape parameter defined on 
the interval 3 1[ , ]nt t + , and it is generalized from the 
cubic uniform B-spline curve. For any 

1[ , ), 3, 4, ,k kt t t k n+∈ = L , the curve segment lies 
in the convex hull kH of 3 2 1, , ,k k k k− − −P P P P . The 
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total curve ( ; )t λC  lies in 
3

n

k
k

H
=
U . The shape of 

( ; )t λC  can be adjusted when the parameter value 
λ  is changed.  

For 1[ , ), 3, 4, ,k kt t t k n+∈ = L , ( ; )k t λC  can be 
transformed into a Bézier curve with its variable 

parameter 
1

k

k k

t tu
t t+

−
=

−
 and its control points are 
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So de Casteljau corner cutting algorithm of a 
Bézier curve can be applied to the computation of 
the curve ( ; )t λC  for speed and stable computation. 

 
Theorem 2. The curve ( ; )t λC  has 2nd geometric 
continuity, i.e., it is a 2GC continuous curve.  

Proof: Let 1 , 3, 4, , .k k kh t t k n+= − = L  
Straightforward computation is shown as: 
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For 4,5, ,k n= L , the following can be obtained 
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     According to the proof of Theorem 2, the curve 
( ; )t λC  and the cubic uniform B-spline curve have 

similar properties on the endpoint location and 
endpoint tangent vector.  

If let 1 0 12− −P = P P  and 1 12n n n+ −−P = P P  and 

1 0 1n n− +LP P P P  be the control polygon of the curve 
( ; )t λC , then 0P  and nP  are its start and terminal 

points respectively. ( )1 0
12

12 λ
−

+
P P  and 

( )1
12

12 n nλ −−
+

P P  are its tangent vectors at 0P  and 

nP  respectively. If let 0nP = P , 1 1n+P = P , 

2n n+P = P  and 0 1 1 2n n+ +LP P P P  be the control 
polygon of the curve ( ; )t λC , then the curve 

( ; )t λC  is a closed curve. Fig.2 depicts open and 
closed cubic polynomial curves for 1,0,1.λ = −  

  

 
 

Fig.2 Open and closed 2GC continuous cubic 
spline curves with 1,0,1λ = −  

 
In Fig.2, the curve ( ; )t λC  gradually 

approximates its control polygon if the shape 
parameter λ  gradually increases. The property is 
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common. In fact, if t  is fixed, 0 ( )tφ  and 3( )tφ are 
monotone decreasing with respect toλ , so for any 

( ; )k t λC , the weights of points 3k−P  and kP  
become smaller if λ  becomes larger. The curve 
segment ( ; )k t λC approximates the line segment 

2 1k k− −P P  because the weights of points 2k−P  and 

1k−P  increase. 
 
 
4 Application of cubic spline curve 
with a shape parameter 
λ  can be used as a shape parameter in order to 
construct curves locating at different positions. The 
range for the shape parameter in this paper is the 
interval [ 8, )− +∞ . In References [11], the shape 
parameter is the interval [ 8,1]− . The curves 
generated by the two methods can approximate their 
control polygon when the values of their shape 
parameter increase. So our method has more 
abundant modeling functions than that in References 
[11]. It is fatal that the blending functions 
constructed in References [11] are degree 4 and not 
basis functions. Fig. 3 and Fig. 4 show examples of 
curve design. 

 
(a) Using method in Reference [11] 

 
(b) Using our method 

Fig.3 Open 2GC continuous cubic spline curves 
interpolating endpoints with different λ  
 

 
 

 
Fig.4 Open and closed 2GC continuous cubic spline 
curves with 3, 2.5, 1.5,0,4λ = − − −  
 
     If [ 4,0]λ∈ − , the curve ( ; )t λC  approaches 
more to the cubic uniform B-spline having the same 
control polygon with ( ; )t λC . If [0, )λ∈ +∞ , the 
curve approaches more to the control polygon of 

( ; )t λC . 
The interpolating problem is considered in the 

following. Given a set of data points 

{ } 3
0

n
i i=

∈RP , 4n ≥ , our goal is to construct a low-
degree interpolating polynomial curve without 
solving any global system to find its control vertices 
and its global slackness controlled. In order to 
interpolate the two endpoints, we introduce two 
auxiliary data points 1 0 12− −P = P P  and 

1 12n n n+ −−P = P P  if the control polygon is open 

( )0 n≠P P , or 1 1n− −P = P  and 1 1n+P = P  if the 

control polygon is closed ( )0 n=P P . The knot 
vector is obtained by accumulating chord-length. 

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp265-270)



The cubic singular blending function [14] is defined 
to be 
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The cubicα -spline curve is defined to be  
( ; , )k t λ αQ  

( ) 2 1(1 ) ( ; ) 1 ( ) ( )k k k k kt S t S tα λ − −= − + − +C P P  

( )3 2 1
1 4
6 k k k

α λ
λ − − −

−
− + + +⎡ ⎤⎣ ⎦+

P P P  

( ) [ ]3 2 1

( ) 1
(3 ) (3 ) ,

6
k

k k k k

S t α
λ λ

λ − − −

−
+ + + − + −

+
P P P P  

1, 2,3, , 1.k kt t t k n+≤ ≤ = +L             

1( ; , ) ( ; , ), , 2,3, , 1,k k kt t t t t k nλ α λ α += ≤ ≤ = +LQ Q
     It is clear that, for any blending factor α , the 
resulting curve ( ; , )t λ αQ is 2GC  continuous and 

2( ; , ) , 2,3, , 2.k kt k nλ α −= = +LQ P  So the 
constructed curve ( ; , )t λ αQ  interpolates the data 

points { } 0

n
i i=

P . For the purpose of practical shape 
modeling, we shall restrict [0,1]α ∈ , and call these 
curves the standard α cubic spline curve with a 
shape parameter λ . If 0α = , the α cubic spline 
curve is reduced to the cubic spline curve ( ; )t λC . 
The blending factor α  can be used to control the 
slackness of the α cubic spline curve ( ; , )t λ αQ .  
Note that changing the blending factor α does not 
affect the continuity of ( ; , )t λ αQ and the 
interpolation features at the data points. Thus there 
are two parameters that can influence the shape of 
the cubic spline curve. Fig.5 and Fig.6 describe 

open and closed α cubic spline curves with two 
different parameters. 
 

 

 
Fig.5 Open curves interpolating data points with 
different shape parameters and blending factors 
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Fig.6 Closed curves interpolating data points with 
different shape parameters and blending factors 
 
 
5 Conclusions 
In this paper, a type of cubic piecewise polynomial 
curve with a shape parameter is presented. The 
cubic uniform B-spline curve is its special case, and 
this cubic curve can locate different places on both 
sides of the cubic uniform B-spline curve. By 
changing the value of the shape parameter, we can 
adjust the approaching degree of the curves to their 
control polygon and manipulate the curves to 
approximate the cubic uniform B-spline curves from 
both sides. The curve is 2GC continuous, and it can 
arbitrarily approximate its control polygon by 
increasing the value of its shape parameter. It can 
also be used to solve an interpolation problem. The 
constructed α cubic spline curve interpolates the 
given data points. Some computing examples show 
that the method of constructing curves has important 
use value. 
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