

Recovering data semantics from XML documents
into DTD Graph with SAX

HERBERT SHIU
Department of Computer

Science
City University of Hong Kong

83 Tat Chee Av., Kowloon
HONG KONG

http://www.cs.cityu.edu.hk

JOSEPH FONG
Department of Computer

Science
City University of Hong Kong

83 Tat Chee Av., Kowloon
HONG KONG

http://www.cs.cityu.edu.hk

ROBERT P. BIUK-AGHAI
Department of Computer and

Information Science
University of Macau

Av. Padre Tomás Pereira, S.J.
MACAU

http://www.fst.umac.mo

Abstract: - We propose a systematic approach to reverse engineer arbitrary XML documents to their conceptual
schema, DTD Graphs. The necessity for doing so is due to the fact that XML documents are frequently used for
storing structured data and their schemas, such as in Document Type Definition (DTD) format, are missing,
especially for those existing historical XML documents. As such, it is difficult for software developers or end
users to make use of them. Even the schemas exist, they are difficult to read and undetermined of the underlying
relationships among the elements in the documents. In view of this, it is necessary to determine the data
semantics from the XML documents. If the DTDs of the XML documents exist with the identifications of the
ID/IDREF(S) type attributes, then more data semantics can be derived. Another application of the determined
data semantics is to verify the linkages implemented by ID/IDREF(S). If the element is referring to an incorrect
XML element type, an extra data semantic will be determined as a result, and such findings can be used for
verification purposes. Furthermore, the approaches proposed in this paper use Simple API for XML (SAX) so
that the algorithms are applicable to small to huge sized XML documents.

Key-Words: - XML document, DTD Graph, reverse engineering, data semantics, ID/IDREF(S), cardinality,
SAX

1 Introduction
As Extensible Markup Language (XML) [1] has
become the standard document format on the Internet,
software developers have to deal with XML
documents in different formats. According to the
usages of the XML documents, their document sizes
vary from several kilobytes to several gigabytes. For
small XML documents, it is feasible to study their
structures with either usual text editors or XML
enabled viewers, such as a web browser like
Microsoft Internet Explorer. However, for medium to
huge sized XML documents, what people can do at
best is to read the XML document contents just by
scrolling up and scrolling down. If the schema of the
XML documents, such as in DTD [2] or XSD format,
are given or are derived from the XML documents
right away, it is easier to study the contents of the
XML documents but the formats of these schema are
hard to read, not to mention their lack of
user-friendliness.

In this paper, a methodology is proposed so that
arbitrary data-centric XML document structure can
be analyzed and reverse engineered to their
conceptual schema, which are DTD Graphs,
including cardinalities among entities implemented
by parent-child relationship and ID/IDREF type
attributes. There are mainly two categories of XML

documents, which are data-centric and narrative. As
the contents of narrative XML documents, such as
DocBook [3] documents, are mainly unstructured and
their vocabularies are basically static, the necessity
of handling them as structured contents and reverse
engineering them into conceptual models is far less
than that of handling data-centric ones. Therefore,
this paper will concentrate on data centric XML
documents.

2 Related Work
Accompanying the widespread adoption of XML for
representing many different kinds of information in
organizations world-wide, there has been
considerable interest in more fully integrating these
documents into existing systems and organizational
information infrastructures. Some XML documents
may have been created in an ad-hoc fashion, but
subsequently need to be integrated with other
documents or databases. To address this need, these
existing XML documents can be reverse engineered
to recover their semantics, then re-engineered, before
being forward engineered into the desired new
structure. This process is illustrated in Fig. 1.
Different approaches have been proposed for
individual steps shown in this process: the recovery
of data semantics from XML documents in the form

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp491-496)

of DTDs has been described in [12], while [9,13]
describe the extraction of XML schemas. The
subsequent step of recovering design semantics has
been addressed by [14,15] for deriving UML class
diagrams, by [16] for deriving EER models, and by
[17] for deriving domain ontologies. However, the
majority of research work to date has been concerned
with the task of recovering design semantics,
whereas little research exists that tackles the
extraction of data semantics.

Although there is an approach that can reverse
engineer data semantics from XML documents [7],
the algorithm maps some predefined templates of
document structures to data semantics, and the
algorithm can only be implemented with DOM,
which needs to read the entire XML document to the
memory that is inapplicable to huge sized XML
document. On the other hand, the methodology
presented in this paper determines all candidate data
semantics from arbitrary XML documents with SAX
that is applicable to XML document of any size. As
such, some of the determined data semantics may not
be the intentions of the original writer and it therefore
needs user supervision for verification.

Besides, some existing works concern the
extraction of schema, such as DTD, from XML
document [9] [10] whereas the algorithms proposed
in this paper concern the determination of data
semantics among the XML element instances rather
than simply schema among XML elements. Besides,
compared with the approach proposed by Goldman
and Widom [11] that directly manipulates
semi-structured databases, such as a XML
documents, the algorithm proposed here enables the
user to have a clear picture of the data semantics
among the XML element instances before further
manipulating them.

3 Approaches of Implementing
Various Data Semantics

3.1 Cardinalities – one-to-many/one-to-one
One-to-many cardinalities within an XML document
can be realized by both explicit and implicit
referential linkages [6][7]. By implicit referential
linkages, a parent element can have child elements of
the same type, such as:
<PURCHASE_ORDER>
 <PURCHASE_ORDER_LINE .../>
 <PURCHASE_ORDER_LINE .../>
</PURCHASE_ORDER>

The parent element PURCHASE_ORDER and the
child elements PURCHASE_ORDER_LINE are
implicitly in a one-to-many relationship. If the
occurrences of child element
PURCHASE_ORDER_LINE are at most one for all
PURCHASE_ORDER elements, they are in a one-to-one
relationship instead.

If the schema of the XML document is given, it
can specify the ID/IDREF(S) type attributes. If an
XML element defines an IDREF attribute and all
such elements refer to the same element type, there is
a one-to-many relationship between the referred and
referring XML elements. For example, sample DTD
and XML documents are shown in Fig. 2.

<!ATTLIST PURCHASE_ORDER
 PO_ID ID #REQUIRED
 ...
>
<!ATTLIST PURCHASE_ORDER_LINE
 PO_ID IDREF #REQUIRED
 ...
>

Fig. 1 XML Reverse-Forward Engineering Cycle

Recover
Data

Semantics

XML
Doc.

DTD XML
Schema

DTD
Graph

Re-Engineer
Design

Data
Implement.

XML
Doc.

DTD XML
Schema

DTD
Graph

Reverse
Engineering

Forward
Engineering

UML
Class

Diagram

Domain
Ontology

EER
Model

UML
Class

Diagram

Domain
Ontology

EER
Model

Data
Design

Recover
Design

Semantics

Recover
Data

Semantics

XML
Doc.

DTD XML
Schema

DTD
Graph

Re-Engineer
Design

Data
Implement.

XML
Doc.

DTD XML
Schema

DTD
Graph

Reverse
Engineering

Forward
Engineering

UML
Class

Diagram

Domain
Ontology

EER
Model

UML
Class

Diagram

Domain
Ontology

EER
Model

Data
Design

Recover
Design

Semantics

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp491-496)

<PURCHASE_ORDER PO_ID="PO001" ... />
...
<PURCHASE_ORDER_LINE
 PO_ID="PO001"
 ... />
<PURCHASE_ORDER_LINE
 PO_ID="PO001"
 ... />

Fig. 2 A many-to-one cardinality implemented by
an IDREF type attribute

In Fig. 2, a PURCHASE_ORDER element is

referred by one or more PURCHASE_ORDER_LINE
elements, and then there is a one-to-many
relationship between these two element types. If the
attribute definition of the PO_ID attribute of
PURCHASE_ORDER_LINE is #IMPLIED instead of
#REQUIRED, it is optional for a
PURCHASE_ORDER_LINE element to refer a
PURCHASE_ORDER element or not, and they can be
considered to be partial participation. In the above
example, as the PO_ID attribute definition of the
PURCHASE_ORDER_LINE is #REQUIRED, they are
considered to be total participation.

Besides IDREF, element with IDREFS type
attribute can be used to implement one-to-many
cardinality. As IDREFS type attribute can refer more
than one XML element in the document, if the
referred elements are of the same type and each
referred element is referred once, the referring
element and the referred elements can be considered
to be in a one-to-many relationship. For example,
consider the sample DTD and XML documents
shown in Fig. 3.

In Fig. 3, the PURCHASE_ORDER is referring to
two PURCHASE_ORDER_LINE elements with its
IDREFS type POL_IDS attribute. If each
PURCHASE_ORDER_LINE element is referred by one
PURCHASE_ORDER element only, the
PURCHASE_ORDER and the
PURCHASE_ORDER_LINE can be considered to be in
a one-to-many relationship. For explicit referential
linkages, to determine the cardinality is one-to-one or
one-to-many, it is necessary to scan the entire XML
document to determine the maximum count of
referring elements referring of that type referring to
the same referred XML element.

3.2 Cardinality – many-to-many
An XML element type may be involved in more than
one one-to-many relationship. In other words, all
elements of such XML element type define more
than one linkage. For example, if an XML element
type defines an IDREF(S) type attribute, all elements
of such XML element type actually defines two
linkages, one implicit linkage by the nested structure
and one explicit linkage by IDREF(S) type attribute.

If the two linkages are both one-to-many
relationships, the two referred element types by such
referring element type can be considered to be in a
many-to-many relationship. For example, the XML
document in 3 illustrates a many-to-many
relationship.

<!ATTLIST PURCHASE_ORDER
 POL_IDS IDREFS #REQUIRED
 ...
>
<!ATTLIST PURCHASE_ORDER_LINE
 POL_ID ID #REQUIRED
 ...
>
<PURCHASE_ORDER
POL_IDS="POL001,POL002" ... />
...
<PURCHASE_ORDER_LINE

POL_ID="POL001"
... />

<PURCHASE_ORDER_LINE
 POL_ID="POL002"
 ... />

Fig. 3 A one-to-many cardinality implemented by
an IDREFS type attribute

For an XML element type that defines two

linkages and hence two one-to-many relationships,
the two referred XML element types can be
considered to be in a many-to-many relationship that
is consistent with existing approach of exporting
XML elements for many-to-many relationships [4].
Take a step further. If the XML element type defines
three or more linkages and it is therefore involved in
more than two one-to-many relationships, the
referred XML element types are considered to be in
an n-ary relationship.

Many-to-many relationship can be implemented
with IDREFS type attribute as well, since an IDREFS
type attribute can refer to more than one instance of
the same XML element types. For example, consider
the DTD and XML documents as shown in Fig. 4.

Such co-existence relationship specified in the
schema can be extended to more than one nested
level. For example, if the existence of a course
element must be accompanied by a lecturer
element and a tutor element, that is:
<!ELEMENT course (lecturer, tutor)>
the elements, enrollment, student, course,
lecturer and tutor, must exist as a whole. Then,
we can consider all these elements are in an
aggregation relationship.

4 Algorithms for Determining
Cardinality Relationships

The data structure of the algorithms are:

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp491-496)

1. MNG: The maximum number of elements of the
same element type that are referred by a single
referring element with the same linkage type.
The value must be one for IDREF type attribute
and implicit linkages, and can be greater than one
for IDREFS type attribute.

<!ATTLIST KEYWORD
KEYWORD_ID ID #REQUIRED
 ...
>
<!ATTLIST TOPIC
TOPIC_ID ID #REQUIRED
 ...
>
<!ATTLIST MESSAGE
MSG_ID ID #REQUIRED
TOPIC_ID IDREF #REQUIRED
KEYWORD_ID IDREF #REQUIRED
 ...
>
<KEYWORD KEYWORD_ID="KW001"
NAME="..."/>
<KEYWORD KEYWORD_ID="KW002"
NAME="..."/>
...
<TOPIC TOPIC_ID="TP001" NAME="..."/>
<TOPIC TOPIC_ID="TP002" NAME="..."/>
...
<MESSAGE MSG_ID="MG001"

TOPIC_ID="TP001"
KEYWORD_ID="KW001"
.../>

<MESSAGE MSG_ID="MG002"
TOPIC_ID="TP002"
KEYWORD_ID="KW002"

.../>
Fig. 4 A many-to-many cardinality implemented

by an element type with two IDREF type
attributes

2. MND: The maximum number of the referring

elements of the same element type that are
referring to the same referred element with the
same linkage type.

3. NL: The number of referring elements that
possess the linkage.

Besides the above information, it is necessary to

obtain the counts of all referring elements (NE) in the
XML document.

According to the combination of the values of
the four attribute, it is possible to determine the
cardinality data semantics for the involved elements.
The rules are shown in Table 1.

The algorithm is composed of a two passes of
parsing of the same XML document. The first pass
assigns a synthetic element identity to each XML
element in the document and determines all ID type
attribute values and their corresponding element

types. For the second pass, the XML document is
traversed again and the linkages of each XML
element are investigated and their attributes are
stored. Finally, the stored linkage attributes are
consolidated to give the four linkage attributes
mentioned above and in Table 1. The complete
algorithm is presented in Fig. 5.

Table 1 Matrix for determining cardinality &
participation based on the determined linkage

attributes
Participation Cardinality

Total Partial
One-to-one MNG = 1

MND = 1
NL = NE

MNG = 1
MND = 1
NL < NE

One-to-many MNG = 1
MND > 1
NL = NE

MNG = 1
MND > 1
NL < NE

Many-to-one MNG > 1
MND = 1
NL = NE

MNG > 1
MND = 1
NL < NE

Many-to-many MNG > 1
MND > 1
NL = NE

MNG > 1
MND > 1
NL < NE

Given Relation ElementIDName (ID, RDE)
 Relation ElementNameCount (RGE, NE)
 Relation RawReferedInfo (RGE, RDE,
 LINK_NAME, LINK_VALUE, ND)
 Relation ReferringInfo (RGE, RDE,
 LINK_NAME, MNG, NL)
 Relation ReferredInfo (RGE, RDE,
 LINK_NAME, MND)

Pass One:
Let element ID (EID) = 1
Traverse the XML document with SAX
Whenever the start element E is encountered
 Select the record from ElementNameCount for the

 element name of E
 If the record exists
 Increment NE by 1 and update the record to

 the table ElementNameCount
 Else
 Insert a new record (element name, 1) to the

 ElementNameCount table
 Insert a new record (EID, element name) to the

 ElementIDName table
 If E defines an ID type attribute A
 Insert a new record (Value of A, element

 name of E) to the ElementIDName table
 End If
 Increase the value of EID by 1

Pass Two:
Traverse the XML document with SAX
Whenever the start element (the referring element, RGE)
 is encountered
 For each linkage, L, of RGE
 For each linkage value, Lvalue
 Get referred element (RDE) from

 ElementIdName table by attribute
 value of L, Lvalue

 Select record from the RawReferredInfo
 table for primary key (RGE, RDE, L,

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp491-496)

 Lvalue)
 If the record exists
 Increase ND by 1 and update the

 record to the table
 Else
 Insert a record (RGE, RDE, L,

 Lvalue, 1) to the table
 RawReferredInfo

 For each referred element type, RDE
 Let NG be the number of RDE referred

 by this linkage, L
 Select the record from the table

 ReferringInfo for (RGE, RDE, L)
 If the record exists
 Update MNG with maximum of

 (MNG, NG) and increment NL
 by 1

 Update the record to the table
 ReferringInfo

 Else
 Insert a new record (RGE, RDE,

 L, NG, 1) to the table
 ReferringInfo

Upon the completion of traversing the XML:
Consolidate the records with the same combination of
 (RGE, RDE, L) in the table RawReferredInfo

let MND to be the maximum of the ND values of all
 records
insert a record (RGE, RDE, L, MND) to the table
 ReferredInfo

Fig. 5 The table structures and algorithm for
determining linkage information by traversing

the XML document with SAX
5 Case Study and Prototype
To illustrate the applicability and correctness of the
algorithms mentioned in this paper, a prototype was
built that implements the algorithms that are
proposed in this paper. With such prototype, a
sample XML document with DTD file as shown in
Fig. 6 are provided to the prototype and the data
semantics are determined as shown in Fig. 4-Error!
Reference source not found..

<?xml version="1.0"?>

<test>
 <element1 id="id1"/>
 <element1 id="id2"/>
 <element2 id="id3"/>
 <element2 id="id4"/>
 <element3 id="id5" idref1="id1" idref2="id3"/>
 <element3 id="id6" idref1="id2" idref2="id4"/>
 <element3 id="id7" idref1="id1" idref2="id4"/>
 <element3 id="id8" idref1="id2" idref2="id3"/>
</test>
<!ELEMENT test (element1*,element2*,element3*)>
<!ELEMENT element1 EMPTY>
<!ELEMENT element2 EMPTY>
<!ELEMENT element3 EMPTY>

<!ATTLIST element1
 id ID #REQUIRED>
<!ATTLIST element2
 id ID #REQUIRED>
<!ATTLIST element3

 id ID #REQUIRED
 idref1 IDREF #REQUIRED
 idref2 IDREF #REQUIRED>

Fig. 6 test.xml and test.dtd

The sample XML and DTD file, test.xml and test.dtd,
are supplied to the prototype software and the
determined findings are shown in Fig. 7-Fig. 9.

6 Conclusion

This paper provides algorithms to help the users
to understand the relationships among the elements
by reverse engineering data semantics from the
document. Furthermore, the algorithms apply SAX
for processing the XML documents so that even huge
XML documents can be processed without reading
the documents entirely into the computer memory.
Moreover, the data structures to be used can be
supported by most programming language, or tables
in a relational database, and it is therefore feasible to
apply the algorithms to XML documents of any size.
Acknowledgement: This paper is funded by
Strategic Research Grant 7001839-540 of City
University of Hong Kong
References:
[1] T. Bray, J Paoli, C. M. Sperberg-McQueen, E.

Maler, F. Yergeau, Extensible Markup
Language (XML) 1.0 (Third Edition),
http://www.w3.org/TR/2004/REC-xml-200402
04/

[2] J. Bosak, T. Bray, D. Connolly, E. Maler, G.
Nicol, C.M. Sperberg-McQueen, L. Wood, J.
Clark, Guide to the W3C XML Specification
(XMLspec) DTD, Version 2.1,
http://www.w3.org/XML/1998/06/xmlspec-rep
ort-v21.htm

[3] DocBook, http://www.docbook.org/
[4] C. Kleiner, U. Lipeck, Automatic Generation of

XML DTDs from Conceptual Database
Schemas, Workshop Web Databases of
Conference of German and Austrian Computer
Societies, Session III, Vienna, 2001.

[5] J. Fong, et al., Converting relational database in
XML documents with DOM, Information and
Software Technology 45 (2003) 335-355.

[6] J. Ryan, Modeling One-to-Many Relationships
with XML, Retrieved June 27, 2005,
http://www.developer.com/xml/article.php/157
5731

[7] J. Fong, H.K. Wong, XTOPO, An XML-based
Technology for Information Highway on the
Internet, J. Database Management, 15(3),
18-44 (2004)

[8] Schema for Object-oriented XML,
http://www.w3.org/TR/1998/NOTE-SOX-1998
0930/

[9] Boris Chidlovskii, Schema Extraction from
XML Data: A Grammatical Inference

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp491-496)

Approach, KRDB’01 Workshop (Knowledge
Representation and Databases)

[10] Jun-Ki Min, Jae-Yong Ahn, Chin-Wan Chung,
Efficient extraction of schemas for XML
documents, Information Processing Letters,
Volume 85, Issue 1 (January 2003)

[11] Roy Goldman, Jennifer Widom, DataGuides:
Enabling Query Formulation and Optimization
in Semistructured Databases, Proceedings of
the 23rd International Conference on Very
Large Data Bases (1997).

[12] Chuang-Hue Moh, Ee-Peng Lim, Wee-Keong
Ng, DTD-Miner: a tool for mining DTD from
XML documents, Second International
Workshop on Advanced Issues of E-Commerce
and Web-Based Information Systems,
pp.144-151, 2000

[13] Jan Hegewald, Felix Naumann, Melanie Weis,
XStruct: Efficient Schema Extraction from
Multiple and Large XML Documents, ICDE

International Workshop on XML Schema and
Data Management (XSDM), 2006

[14] F.D. Salim, R. Price, S, Krishnaswamy, M.
Indrawan, UML documentation support for
XML schema, Proceedings 2004 Australian
Software Engineering Conference, pp. 211-220,
2004

[15] A. Yu, R. Steele, An overview of research on
reverse engineering XML schemas into UML
diagrams, Third International Conference on
Information Technology and Applications,
vol.2, pp. 772-777, 2005

[16] Ronaldo dos Santos Mello, Carlos Alberto
Heuser, A Rule-Based Conversion of a DTD to
a Conceptual Schema, Lecture Notes in
Computer Science, vol. 2224, pp. 133-48, 2001

[17] Ronaldo dos Santos Mello, Carlos A. Heuser, A
Bottom-Up Approach for Integration of XML
Sources, Workshop on Information Integration
on the Web, pp. 118-124, 2001

Fig. 7 The determined linkage information

Fig. 8 The determined data semantics

Fig. 9 DTD Graph based on DTD with two one-to-many cardinalities (one many-to-many cardinality)

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp491-496)

