
Grid Workflow for Decision Resource Scheduling

Mingsheng Hu1 2,Jianjun Zhang3,Xueguang Chen1
(Institute of Systems Engineering, Huazhong University of Science and Technology, 430074,

P.R.China)1
 (Institute of Software Science, Zhengzhou Teachers College, 450044, P.R.China) 2

(Department of computer science,Xuchang College, 461000, P.R.China)3

Abstract: With the advent of Grid and application technologies, scientists and engineers are building more and
more complex decision support applications to process large data sets, and scheduling distributed decision
resources. Such decision resource scheduling processes require means for composing and executing complex
workflows. Therefore, many efforts have been made towards the development of workflow management
systems for decision resource scheduling on Grid environment. In this paper, we investigates the emerging need
for Grid workflow to aid decision support on the Grid and proposes a Grid workflow for decision resource
scheduling that is a Petri net-based graph model and incorporates a reasoning system designed to perform such a
task.

Key-Words: Decision Resource Scheduling; Workflow; Grid

1 Introduction

Workflow is concerned with the automation of
procedures whereby files and data are passed
between participants according to a defined set of
rules to achieve an overall goal. A workflow
management system defines, manages and
executes workflows on computing resources.
Imposing the workflow paradigm for application
composition on Grids offers several advantages
such as:

· Ability to build dynamic applications which
orchestrate distributed resources.

·Utilization of resources those are located in a
particular domain to increase throughput or reduce
execution costs.

· Execution spanning multiple administrative
domains to obtain specific processing capabilities.

· Integration of multiple teams involved in
managing of different parts of the experiment
workflow – thus promoting inter-organizational
collaborations.

The Web-based Decision Support Systems
(DSS) have made information sharing on the
Internet possible, but they cannot meet the
decision-maker’s needs in the heterogeneous,
autonomic, dynamic and distributed decision
support environment, because they only link web
pages and lack global mechanism to manage and
coordinate decision support resources on the
Internet. Grids have emerged as a global
cyber-infrastructure for the next-generation of DSS
applications by integrating large-scale, distributed
and heterogeneous resources. It will improve DSS

greatly, and bring profound revolution to DSS
theory and its application [1].

In order to support complex resource scheduling,
distributed decision resources such as data,
applications, and knowledge-based database need
to be orchestrated while managing the application
workflow operations within Grid environments [2].

The existence of description languages,
semantics, service publishing methods and Grid
middleware have up to now enabled
interoperability between decision resources
available on the Grid environment. However, there
is an emerging need for the ability to dynamically
discover how available services, resources and data
could be utilized not only to process a task, but to
achieve the desired outcome in the most suitable
manner. In this paper, we investigates the emerging
need for Grid workflow to aid decision support on
the Grid and proposes a Grid workflow for decision
resource scheduling that is a Petri net-based graph
model and incorporates a reasoning system
designed to perform such a task.

2 Grid Workflow Requirements

Just like the Web service technologies aim to do,
the Grid workflow specification should allow
specific activities implemented by individual
services to be exported as activities of the
workflow. It should also allow the exported
activities to trigger a chain of other activities.
Current technologies such as WSFL address this
issue effectively. Hence, we try to incorporate
these features presented by WSFL into the Grid

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

Services Flow Language. Furthermore, the
activities exported in such a manner should also be
described in the same manner as the service itself.
In this sense, the specification should be rich
enough to describe the workflow such that the
WSDL for the workflow entity (henceforth
referred to as a workflow coordinator) can be
auto-generated from the specification. The
workflow coordinator must be able to handle the
methods that have been dynamically exported as a
composition of the various activities of the
workflow, in such a way that clients can access
them using the same standard tools that they use to
deal with the individual services. This is an
important requirement for recursive composition of
services.

Web services define their workflow in such a
way that the workflow engine has to intermediate
at each step of the application sequence, as shown
in Figure 1. This is because most of the current sets

of workflow technologies are designed for business
to business communication, where there may only
be a moderate level of data transmission across the
Web services. As a result, the workflow engine
does not end up being a real bottleneck. However,
for Grid based services, exchanging large amounts
of data is the norm. Having a central workflow
engine relay the data between the services would
be a bad idea in this case. The workflow
specification needs to be able to allow
communication between the services as depicted in
Figure 2. OGSA adds extensions to WSDL in order
to address Grid-specific needs. It addresses
communication between Grid services using
notificationSources and notificationSinks, which
allow services to carry out asynchronous delivery
of messages between each other.

in

ou
t in ou
t

ou
t in

ou
t in ou
t

ou
t

Fig. 1. Web Services Workflow Model Fig. 2. Grid Services Workflow Model

3 decision resource scheduling process
Based on Grid workflow

The Grid workflow described in this paper
incorporates the interoperability of Grid web
services. An example is given of a decision support
for multiple travel-related businesses. The
initiating business is the travel agency company.
The Travel Agency has internal services for
managing customers’ accounts and credit card
numbers. However, the travel agency uses other
third-party vendors to realize the hotel reservation
and car rental reservations. The Hotel Reservation
and Car Rental companies register their offerings
as web services in a distributed registry, such as a
UDDI registry. The Travel Agency uses these
registry services as a part of its internal workflow.
In addition, the Travel Agency has a partnership
with an on-line publishing company that publishes
the finalized itineraries. In this case, the travel

agency has a static connection with the partner
organization and is able to access services directly
over a shared network connection. Problems occur
in this domain when the online companies update
or remove their service offerings. This requires a
Grid workflow manager system that supports a
methodology for process or workflow oriented
service specification. This way would allow
workflow developers to specify the process
sequence and message exchange between local and
distributed services. The specification approach
must support both functional and nonfunctional
concerns. Therefore when the process or services
change, the specification can be updated and the
supporting architecture automatically reconfigured
[3].

Decision resource scheduling process Based on
Grid workflow, in a general sense, consists of five
steps as illustrated in Figure 3.

(1) Decision resource Discovery: Identify
characteristics, configuration, capability, and

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

suitability of Decision resource. This discovery can
occur on services in UDDI registry or locally
registered component-based services.

(2) Decision resource Capturing: Save the
Decision resource characteristics in the
service-oriented data model and then interact with
Decision resource to establish their configuration
and access cost. It creates a broker Decision
resource list and the Decision resource
performance data as predicted through the
measurement and extrapolation methodology.

(3) Scheduling Process: The scheduling flow
manager selects an appropriate scheduling
algorithm for component decision resource
depending on the user’s requirements (deadline
and budget limits, and optimization strategy—cost,
cost–time, time, and conservative-time).

(4) Process Capturing: When the resource
Scheduling Process has finished, the Decision
resource returns it to the broker’s receptor agent. It
aids in predicting the job consumption rate for
making scheduling decisions.

(5) Agent Self-Configuration and Deployment:
application layer agents access the integrated data
model and configure themselves for workflow
enactment in the Grid environment. At the end, the
agent returns updated Decision resource data back
to the user entity.

In this process, scheduling decisions are made
dynamically at runtime and are driven and directed
by the end-users requirements. While a
conventional cost model often deals with software
and hardware costs for running applications, an
economy model primarily charges the end user for
services that they consume based on the value they
derive from it. Pricing policies are based on the
demand from the users and the supply of Decision
resource is the main driver in the competitive,
economic market model. Therefore, a user
competes with other users and a resource owner
with other resource owners.

Fig. 3. Decision resource scheduling process based on Grid workflow

4 Grid workflow orchestrations

In order to enable the user to compose complex
decision support applications on distributed
heterogeneous and unreliable decision resources
within Grid environments, the concept of Grid
workflows has emerged. It describes patterns of
control and dataflow between resource, including
human actors participating in interactions. Several
techniques have been established in the Grid

community in order to define the workflow of Grid
jobs. A very promising approach for this purpose is
the use of graphs. Graphs offer a very intuitive way
of modeling abstract workflows and can be handled
easily even by non-expert users. The main
limitation of graphs is the fact that they may
become very huge if the workflow is too complex.

The OGSA working group defines a workflow as
a pattern of process interaction, not necessarily
corresponding to a fixed set of processes. All such
interactions may be between services residing

Airline Hotel Motel Taxi Car Rental Itinerary

UDDI

Local
Services

Distributed
Services

Agent Agent DSS

1. GDR Discovery

2. GDR Capturing

3. Scheduling Process

4. Process
Capturing

5. Agent
Self-Configuration and
Deployment

Grid Workflow
Coordinator

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

within a single data center or across a range of
different platforms and implementations anywhere.
The orchestration of workflows describes the ways
in which these processes are constructed from Web
Services and other processes, and how these
processes interact. Two main preconditions must
be fulfilled in order to enable the orchestration of
workflows: an adequate description of the
components for deciding which components are
functional to solve the problem, and a suitable
workflow model for defining how the components
should interact within that workflow [4].

The component model of the system supports
legacy command line programs as well as OGSI
Grid Services in a mixed way. The command line
programs may be wrapped by simple shell scripts
to fulfill the component specification, which
requires a specific format of the command line
parameters in order to enable asynchronous
communication between the programs using file
IO. The Grid Services are extended Web Services
according to OGSI specification.

Fig. 4. Architecture of Grid workflow

orchestrations
The distinct characteristic is to use the grid

workflow as the foundation of the grid service
composition and scheduling, which can benefit
from the workflow architecture in the composition,
visualization, verification, scheduling, execution
and monitoring (Figure 4). So the architecture of
grid workflow orchestrations shares the
components of grid workflow architecture. The
paper focuses on the method addressing semantic
issues and the composition of grid service, and the
algorithm improving scheduling efficiency when
the composite grid service execution in the grid
environment.

The architecture can be divided into two primary
parts. The first part is the left component of Figure
4 which comprises “Semantic processor”,
“Composition processor” and “Grid workflow
model constructor”, and deals with the grid service
composition. The second part is the right
component of Figure 4 which deals with the grid
service scheduling through the grid workflow.
According to the architecture, it is very convenient
to visualize and verify the composition and to
schedule the grid services.

For specifying the interactions between the
components, it is mandatory to have an adequate
workflow model and a corresponding workflow
description language. We detected the following
main requirements within the context of a Grid
computing architecture:

• The user must be able to define the Grid
workflow on an abstract level without knowledge
about the infrastructure.

• The Grid workflow model should be mostly
universal (e.g., Turing complete) in order to cover a
broad range of workflow patterns.

• At the same time, the Grid workflow model
must be simple and easy to use.

• It should support the modeling of data as well as
control flow.

• Due to the dynamic and unreliable nature of
GDRs, dynamic workflows are required that may
change their structure during runtime.

Petri nets are well established as a model for the
analysis and the design of complex discrete
systems. Here, we extended this model to be usable
directly for the automatic execution of workflows
on common Grid middleware as well. Therefore,
the abstract Petri net elements are linked to
component descriptions that themselves can be
mapped onto real Grid resources.

The Petri net model is a powerful modeling tool.
A very complex activity can often be quickly and
easily translated to a Petri net representation. Petri
net models have proved effective in net analysis for
deadlock detection and behavior trends in
asynchronous systems, thus for determining the
correctness and efficiency of proposed systems. A
Petri net model consists of a set of places and a set
of transitions. The places and transitions are
connected by a set of directed arcs. A transition is
said to be enabled if there are enough tokens in
each of the input places as specified by the arcs
connecting the input places to the transition. An
enabled transition can fire if the other conditions
associated with the transition are satisfied. We
model above algorithms and verify their
correctness with Petri nets. In the models, the

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

places (denoted by circles) correspond to the states
and the transitions (denoted by lines) represent the
actions related to the states. For the purpose of
intuition, we express the coordinator states with
corresponding messages. Petri nets allow the
graphical definition of arbitrary workflows with
only few basic graph elements – just by connecting
data (files, parameters) and software components
(command line programs, Grid Service method
calls). Petri nets belong to a special class of
directed graphs. The type of Petri nets we introduce
here, are Petri nets with individual tokens (colored
Petri nets) and constant arc expressions which are
composed of places, denoted by circles (○),
transitions, denoted by boxes (□), arcs from places
to transitions (○→□), arcs from transitions to
places (□→○), individual and distinguishable
objects that flow through the net as tokens (●), an
initial marking that defines the tokens which each
place contains at the beginning, and an expression
for every arc that denotes an individual object. A
place p is called input place (output place) of
transition t if an arc from p to t (from t to p) exists.
A brief introduction to the theoretical aspects of
colored Petri nets can be found. Petri nets are
suitable to describe the sequential and parallel
execution of tasks with or without synchronization;
it is possible to define loops and the conditional
execution of tasks.

A Petri net is an abstract and formal modeling
tool for representation and analysis of scheduling
processes. It is able to represent most coordination
problems, easy to use and understand, and shares
common properties, such as bounded-ness,
liven-ness, deadlock-freeness, proper termination
and completeness. It can model systems’ events,
conditions and the relationships among systems.
The occurrence of these events may change the
state of the system, causing some of the previous
conditions to cease holding and other conditions to
begin to hold. In most cases, the workflow within
Grid jobs is equivalent to the dataflow, i.e., the
decision when to execute a software component is
taken by means of availability of the input data.
Therefore, the tokens of the Petri net represent real
data that is exchanged between the software
components. In this case, we use Petri nets to
model the interaction between software resources
represented by software transitions, and data
resources represented by data places. In other
cases, however, the workflow should be
independent from the dataflow, if you want to
synchronize several activities – and in addition to
the data places and software transitions behave to
introduce control places and control transitions.

Control transitions evaluate logical conditions. In
the case that a software transition is linked to a
command line program, the tokens on the output
places contain the exit status of the process (e.g.,
done, failed), whereas in the case of Grid Services,
the tokens store the output parameter returned by
the method call.

5 Coordinate Scheduling Strategies
based on workflow

Given the complexity of the grid workflow
execution, we have designed a decentralized
scheduling system which supports just in-time
planning and allows the decisions of the resource
allocation to be made and changed at run-time.

We believe that decentralized scheduling
architecture is more efficient over the centralized
scheduling for complex workflow processing,
which handles all tasks by one scheduler. In our
system, every task has its own scheduler called task
manager (TM) which implements a scheduling
algorithm and handles the processing of the task,
including resource selection, resource negotiation,
task dispatcher and failure processing. The
lifetimes of TMs, as well as the whole workflow
execution, are controlled by a workflow
coordinator (WCO).Each TM has its own monitor
which is responsible for monitoring the health of
the task execution on the remote node. Every TM
maintains a resource group which is a set of
resources that provided services required for the
execution of an assigned task. TMs and WCO
communicate through a event service server (ESS).

In the system, the behaviors of task managers and
workflow coordinator are driven by events. A task
manager is not required to handle communication
with others and only generates events according to
task’s processing status. At the same time, the task
managers take actions only according to occurred
events without concern for details of other task
managers [5].

The event notification is based on
subscription-notification model. WCO and TMs
just subscribe the events of interest after activation,
and then they can do whatever they want. When a
subscribed event occurs, they will be informed.

The benefit of the event-driven mechanism is it
provides a loosely-coupled control; hence the
design and development of the system are very
flexible.

Interaction sequence in Workflow Scheduling is
illustrated in Figure 5. System Firstly, WCO needs
to register to ESS and subscribe the events of task
execution status. And then WCO activates task

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

managers of first level tasks, in the example, only
one TM1. After TM1 finishes the preprocessing of
the task execution, it sends a message to ESS
saying “I am executing the task”. ESS informs the
WCO and WCO activates TMs of children tasks of
TM1, namely TM2 and TM3 in this example. The
inputs of the task of TM2 and TM3 rely on the
output of the task of TM1, so TM2 and TM3
register to ESS and listen to its output events. Once
TM1 identifies a suitable resource, it submits task
to that resource. As soon as TM1 knows the output

of the task, it informs TM2 and TM3 through ESS.
If all input data of the task of TM2 and TM3 are
ready, TM2 and TM3 reports execution status to
ESS, and then proceeds to the execution of their
tasks. After WCO receives the notification of the
execution of TM2 and TM3, WCO will activate
their children task managers, so they can begin to
listen to their inputs and prepare task execution.
This process will be continued until the end of
workflow execution.

 Fig. 5. Interaction sequence in Workflow Scheduling System

6 Conclusions and Future Work
There still are broad areas of application and

enhancement that are possible in the Grid
Workflow. This is still a work in progress, and the
language will continue to evolve depending upon
the requirements of the Grid community. The
innovation in respect to former work in this domain
is the incorporation of a Petri net-based workflow
model for orchestrating Grid Service method calls
as well as legacy command line applications within
a single workflow. This approach allows the
definition of arbitrary workflows, including
conditions and loops, with only three different
abstract graph elements: transitions, places, and
arcs. Grid Services and legacy command line
programs can be integrated easily to a single,

loosely coupled Grid application, regarding the
dataflow as well as the control flow.

Our future work will focus on workflow
execution optimization. We will be extending
resource allocation algorithms to support optimal
and QoS (Quality of Service) requirements based
scheduling, using computational economy. In
addition, we will assist its users in composing
powerful grid workflows by means of a
self-adapting expert system.

References:
[1] Xueguang Chen�a study on the framework of

Grid based Decision Support Systems �
proceedings of 2003 International Conference
on Management Science & Engineering �
Atlanta

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

[2] Mingsheng Hu,Xueguang Chen,Zhijuan Jia.
Decision Resource Management and
Scheduling on the Grid. Greece:1st WSEAS
International Symposium on GRID
COMPUTING, 2005:3-5

[3] Mingsheng Hu,Xueguang Chen. AGBODSS�
Agent Grid-Based Open Decision Support
System. WSEAS transacyions on information
science and applications[J],2005,8:2-8

[4] Falk Neubauer, Andreas Hoheisel , Joachim
Geiler , Workflow-based Grid applications.
Future Generation Computer Systems,2006,
22:6–15

[5] Mingsheng Hu, Application of PBS Based on
Grid Computing. MICROCOMPUTER & ITS
APPLICATIONS, China, Vol.24 No.6, 2005,
P.7-10

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp533-539)

