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Abstract: In the freeform surface design, developable surfaces have much application value. But, in 3D space, 
there is not always a regular developable surface which interpolates the given boundary of an arbitrary 
piecewise smooth closed curve. In this paper, tensor product Bézier surfaces interpolating the closed curves are 
determined and the result surface is a minimum of the functional defined by the 2L -integral norm of the 
Gaussian curvature. The Gaussian curvature of the surfaces is minimized by the method of solving nonlinear 
optimization problems. An improved approach is proposed: the Pseudo-Newtonian method. A simple 
application example is also given. 
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1 Introduction 
A ruled surface is generated by continuous motion 
of a straight line in 3D-space along a spatial curve 
called a directrix. These straight lines are called 
generators, or rulings, of the surface. A developable 
surface is a special ruled surface which has the same 
tangent plane at all points along a generator. The 
Gaussian Curvature of a developable surface is zero, 
and vice versa. There is only a developable surface 
that can be isometrically mapped onto a plane. 
Therefore developable surfaces are particularly 
interesting and appealing, owing to the simplicity in 
the manufacturing process required to fabricate 
them. It plays an important role in the geometric 
design and modeling. It can be conveniently formed 
by bending or rolling a planar surface without any 
stretching or contraction. Based on these, 
developable surfaces are widely used in 
manufacturing items from materials that are not 
amenable to stretching, such as ship hulls, ducts, 
shoes, clothing, and automobiles parts. Thereby 
developable surfaces have been widely used in 
CAD/CAM systems. Many papers presented 
application of developable surfaces in industry [1-
4]. 
     When a piecewise-smooth closed curve is given 
as a boundary curve, there is not always a regular 
developable surface interpolating the boundary in 
theory [5-6]. There is still not a simple and effective 
method for constructing a developable surface in 
Computer Graphics (CG) and Computer Aided 
Geometric Design (CAGD). In this paper, when the 

boundary control points of a Bézier surface are 
given, we’ll determine the interior control points in 
order where the resulting surface has a minimum of 
the functional defined by the 2L -integral norm of 
the Gaussian curvature. There are approximations to 
the extremals of the functional defined by the Gauss 
curvature. The key is how to solve the extreme 
value problem. The parameter domain can be 
subdivided into small ones and the continuous 
functional becomes a concrete one. We adopt a 
well-known optimization algorithm (the BFGS 
method) to the concrete functional in order to get 
the approximations. The Pseudo-Newtonian method 
is improved and corrected for this special problem 
[7-11]. Examples show that computation of the 
approximation is simple and fast. 

  In Section 2, the definition of an approximate is 
presented. The algorithm of designing an 
approximate developable surface is given in Section 
3. In Section 4, some examples are given in detail. 
An important application is described in Section 5. 
Finally, conclusions are drawn. 
 
 
2 Approximate developable surfaces 
In this section, the definition of an approximate 
developable surface is presented. 
Definition: In 3D space, a piecewise-smooth closed 
space curve : ( , )u vΓ ϕ  is given. Ω  is the domain 
enclosed by ∂Ω , the projection of Γ  in parameter 
plane. For any ( , )u v ∈Ω , there is a surface set: 
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where ,a b  denotes the inner product of two 

vectors ,a b  and n  is the unit normal vector of r . 
    In this paper, the discussed problem is that given 
a piecewise-smooth closed curve : ( , )u vΓ ϕ  in 3D, 
an approximate developable surface with the curve 
Γ as its boundary is constructed and the surface is 
smooth or at least 1-order smooth. In the definition 
of an approximate developable surface, the key is 
how to minimize the norm of the Gaussian 
Curvature and this is a nonlinear optimization 
problem. To overcome this, the problem can be 
simplified. Supposed that Γ  is composed of four 
end-to-end curves{ }4

1i i=
Γ , and the norm of Gaussian 

Curvature K  is 2 ( )L Ω  
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The problem becomes a minimization problem in a 
function space: 
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* Y∈r is a minimizer and called an approximate 
developable surface when 2L

K is a minimum 
value.  
     By variation principles, an Euler-Lagrange 
equation can be gained. It is a partial differential 
equation (PDE). The problem further becomes how 
to solve a PDE. But the Euler-Lagrange equation is 
nonlinear and has 4-order partial derivatives. The 
form of the PDE is complex and difficult to solve 
[12]. In this paper, the optimization method is 
presented to solve the problem directly. 
 
 
3 The algorithm of designing an 
approximate developable surface  
Next, the space Y can be appointed as a space of 
m n×  tensor product polynomial surfaces. The task 
is how to solve a nonlinear optimization problem. In 
this section, how to construct an optimization object 
function and choose an initial value is discussed in 
detail. Then two methods are also given to solve the 
optimization problem. At last, the process of solving 
the model is presented. 
 
3.1 m n×  tensor product polynomial 
surfaces as approximate developable 
surfaces 
When an approximate developable surface is 
constructed, it is smooth and not too complex. So it 
is a better choice to appoint the space Y  as a space 
of m n×  tensor product polynomial surfaces. A 
tensor product polynomial is smooth and easy to 
design. The Bézier form of an m n×  tensor product 
polynomial surface is usually used. 
   Supposed that Γ  is composed of four end-to-end 
Bézier curves { }4

1i i=
Γ , that is, 1 0: ( ),uΓ c  

2 0: ( ),vΓ d  3 1: ( ),uΓ c  4 1: ( ),vΓ d ( )0 , 1u v≤ ≤  

and the parameter domain is   [0,1] [0,1]Ω = ⊗ . 
The approximate solution of the minimum 
optimization problem can be expressed as: 

0 0
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are Bernstein basis functions and 
( 0,1, , ; 0,1, , )ij i m j n= =L LP  are control points 

in 3D. The control points 0 , ( 0,1, , )i in i m= LP P  
and 0 , ( 0,1, , )j mj j n= LP P  are determined by the 
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boundary curve Γ . Another control points 
( 1, , 1; 1, , 1)ij i m j n= − = −L LP  are 

undetermined. The process of determining control 
points ijP  is a nonlinear optimization problem. 
 
3.2 Forming object functions and choosing 
initial values 
A nonlinear optimization object function is formed. 
The surface ( , )u vr  is undetermined and the 
expression of the Gaussian Curvature is complex. It 
is difficult to express explicitly the integral of the 
object function 2L

K . The parameter domain Ω  is 
uniformly divided p q×  small sub-patches. The 

integral of 
22
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If the domain is divided more densely, the norm of 
2L

K is more accurate. But the computation work 
increases quickly. In this paper, the 20 20×  division 
is adopted.  
    For a nonlinear optimization problem, iteration 
method is often adopted. The initial value 0X  is 
given and the optimal point is gained as certain 
iteration form. The common iteration form 
is 1 , 0,1i i i i iλ+ = + = LX X D , where iλ  is the step 
length and iD is the descent direction. It is fairly 
important to construct an iteration form and choose 
an initial value. These determine the speed of the 
algorithm and the result. In Computer Aided 
Geometric Design (CAGD), a Coons surface 
interpolating boundary curves is simply constructed 
and is smooth. Especially, it has been proved that if 
a pair of opposite boundary curves are straight lines, 
then the corresponding Coons surface is a ruled 
surface or if the degree of the curves is not more 
than 3 and there exists a ruled surface interpolating 
these boundary curves (the directions of the rulings 
are not always parallel to a parameter direction), 
then the corresponding Coons surface is also a ruled 
surface. So it is a better choice to choose a Coons 
surface as an initial surface. Hoschek expressed a 
Coons surface as [13]: 

1 2 3( , ) ( , ) ( , ) ( , )u v u v u v u v= + −p p p p  
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0 1 0 1( ), ( ), ( ), ( )u u v vc c d d are end-to-end boundary 
curves, that is 

0 0 0 0 1 1 1 1(0) (0), (1) (1), (0) (0), (1) (1).= = = =c d c d c d c d
 
3.3 An optimization algorithm  
In this section, the Pseudo-Newtonian method is 
presented to solve the optimization problem. The 
method is mature and efficient in optimization 
theory. But some details need to be improved 
appropriately in order to match the optimization 
problem in this paper. 
   Let 

(
)

11 12 1, 1 21 22 2, 1

1,1 1,2 1, 1

, , , , , , , ,

, , ,
n n
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be a one dimension vector, and  
22
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be the object function. The fundamental idea is that 
a quadric function approximates origin optimization 
problem in the iteration point kX . 
   The object function ( )F X  can be approximated in 
the iteration point kX by a quadric function 

T T( ) ( )k k k kQ F= + +d X g d d G d , where 

( ),k kF= ∇g X ( )( ) ,k kF= ∇ ∇G X ∇  is Hamilton 

operator, defined as
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

i j k . 

Because there are so many unknowns and the object 
function is complex, the gradient ( )kF∇ X  
becomes complex and the Hessian 
matrix ( )( )kF∇ ∇ X  is hard to compute. It is not 

sure the matrix ( )( )kF∇ ∇ X  is semi-positive 
definite. Here, the Hessian matrix is approximated 
with the method BFGS in Pseudo-Newtonian 
method. The formula was proposed by Broyden, 
Fletcher, Goldfarb and Shanno in 1970. About this, 
you can refer to in the reference [10, 11]. 
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where BFGS
1 1, ,k k k k k k+ += − =y g g s d G  is the 

approximate matrix of the Hessian matrix kG and 
BFGS

1k+H  is the approximate matrix of the inverse 
matrix of the Hessian kG , I is an identity matrix. 
BFGS rank-one correction makes sure the Hessian 
matrix is semi-positive definite and it only depends 
on the rank-one information, and makes 
computation simple.  

The descent direction is the direction 
BFGS

k k k= −d H g  used in the Newtonian method.  
The step length is  

T BFGS

T BFGS BFGS BFGS
k k k

k
k k k k k

α =
g H g

g H G H g
. 

Where ( )k kF= ∇g X , BFGS BFGS,k kH G  are corrected 
Hessian matrix respectively. 
  The final algorithm is presented as following. 
Algorithm: 
(1) Initialization, set 

0 0 0 0, ,0 1, 0, , , 0kµ β ε< < > = = =X G I H I . 

(2) kX are known, compute kg  and BFGS BFGS,k kG H . 

If k ε<g , then stop. 

(3) Compute BFGS
k k k= −d H g  and  

T BFGS

T BFGS BFGS BFGS
k k k

k
k k k k k

α =
g H g

g H G H g
. 

(4) Let k k kα= +X X d and compute ( )F X  and 
( )kF X . 

(i)If ( ) ( )kF F≥X X : if ( )F ε<X , stop; 

otherwise, 1 ,k kα βα+ = 1 ,k k+ =d d  1 ,k k+ =X X  
1k k← + , go to step (4); 

(ii) If ( ) ( )kF F<X X , 1k k k kα+ = +X X d  
(5) Let 1k k← + , go to step (2). 
The algorithm has the global convergence property 
and the detail analysis of Pseudo-Newtonian method 
convergence can be found in the reference. The 
algorithm has the global convergence property and 
the detail analysis of Pseudo-Newtonian method 
convergence can be found in Reference [10] and 
Reference [11]. 
 

3.4 The algorithm of solving the model    
After some discussion about optimization 
problem, a new method for constructing an 
approximate developable surface is presented. 
The following are the steps. 
(1) Determine the boundary curves, that is the 

control points 0 , ( 0,1, , )i in i m= LP P and 

0 , ( 0,1, , )j mj j n= LP P . 
(2) Determine the object function 

2( ) ,
L

F K=X  where  

(
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1,1 1,2 1, 1

, , , , , , , ,

, , ,
n n

m m m n

− −
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L

X P P P P P P

P P P
 

(3) Give the initial 0X which is gained from a 
Coons surface interpolating 

0 1 0 1( ), ( ), ( ), ( )u u v vc c d d . 
(4) Solve the optimization problem 

min ( )F X and get the points 
( 1, , 1; 1, , 1)ij i m j n= − = −L LP . 

(5) Depict the pictures. 
 
 
4 Some examples 
A bi-quadric tensor product surface and a bi-cubic 
one are constructed. Developable surfaces and non-
developable ones are presented as examples. 
Approximate developable surface approximate these 
two types and the approximation errors are given. 

As depicted in Fig.1 and Fig.2, the approximate 
developable surface whose boundary curves are 
given is in the left and the Gaussian Curvature is in 
the right. In Fig.1, the surface is a part of a cylinder, 
which is developable. The Gaussian Curvature of 
the approximate developable surface is 1810− . In 
Fig.2, there is not certain whether there exists a 
developable surface interpolating the boundary 
curves. The Gaussian Curvature of the approximate 
developable surface is 210− . So there isn’t an 
accurate developable surface interpolating the 
boundaries. An approximate has been constructed. 
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Fig.1 an approximate developable surface in the left,  
the Gaussian Curvature distribution in the right,  

2
18max 10

L
K −≈  

 

 
Fig.2 an approximate developable surface in the left, 
the Gaussian Curvature distribution in the right, 

2
2max 10

L
K −≈  

 
A bi-cubic tensor product has more free control 

points than a bi-quadric one. There are 16  control 
points ( , , )( , 0,1, 2,3)ij ij ij ijx y z i j= =P  in bi-cubic 
control mesh where the points 

0 3 0 3, , , ( , 0,1, 2,3)i i j j i j =P P P P  are determined by 
the boundary curves and the left points 

11 12 21 22, , ,P P P P  are undetermined. There are 12  
variables to be solved by optimization algorithm. 

Let four end-to-end curves in a cone as boundary 
curves and the Coons surface interpolating the 
boundaries as an initial, and then iterate it. In Fig.3, 
the result is obtained using the Pseudo-Newtonian 
method and the order of magnitude of the Gaussian 
Curvature is 810− . In Fig.4, the four boundary curves 
are common smooth curves. There is not certain 
whether there exists a developable surface 
interpolating the boundary curves. An approximate 
has been constructed and the maximum of the 
Gaussian Curvature is 0.0134 . It is trivial that there 
isn’t a developable surface interpolating the four 
curves. 

 
Fig.3 an approximate developable surface in the left, 
the Gaussian Curvature distribution in the right, 

2
8max 10

L
K −≈  

 

Fig.4 an approximate developable surface in the left, 
the Gaussian Curvature distribution in the right, 

2
2max 10

L
K −≈  

 
 
5. Application 
  In this section, an approximate developable surface 
is applied to texture mapping. A surface can be 
approximated by an approximate developable 
surface. Then some information in a texture can be 
defined in the approximate developable surface. 
Finally, the approximate developable surface maps 
to an appointed surface. The result has less 
distortion because the texture information lies in an 
approximate developable. In Fig.5, texture 
information is defined in parameter domain and then 
mapped to the appointed surface. In Fig.6, texture 
information is defined in the approximated 
developable surface and then mapped to the 
appointed surface. The result adopted the latter 
method has better view effect. 
 

 
Fig.5 ‘B’ character as texture information defined in 
the parameter domain in the left, texture is mapped 
to an appointed surface in the right 
 

 
Fig.6 ‘B’ character as texture information defined in 
the approximate developable surface in the left, 
texture is mapped to an appointed surface in the 
right  
 
 
6. Conclusion 
   In this paper, the definition of an approximate 
developable surface is given. Then how to 
construct a surface using improved Pseudo-
Newtonian method is also presented. An 
important application to texture mapping as an 
example is depicted. Theory and practice show 
that the optimization method in this paper for 
designing an approximate developable surface 
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is simple to compute. This is a new algorithm 
for surface modelling. In the future, there is still 
a hard task to construct a developable B-Spline 
surface interpolating B-Spline curves. 
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