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Abstract: - A wing rock system is manifested by a limit cycle oscillation predominantly as an aircraft operating 
at subsonic speeds and high angles of attack. The dynamic characteristic of the wing rock is nonlinear and the 
precise dynamic model of the wing rock is difficult to obtain, so that a model-free design method referred to as 
hybrid control system is developed in this paper. The design of the hybrid control system contains three parts: an 
adaptive indirect controller (AIC), an adaptive direct controller (ADC) and a robust controller. A weighting 
factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum 
together from the AIC and the ADC. Moreover, the robust controller is designed to compensate the 
approximation error caused by the AIC and the ADC. Finally, simulation results demonstrate that the proposed 
hybrid control system can achieve a favorable tracking performance for unknown the dynamics of the wing rock 
systems. 
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1   Introduction 
Most current techniques for designing control 
systems are based on a good understanding of the 
plant dynamics and even its working environment. 
However, in a number of instances, the controlled 
plant is too complex and the basic physical processes 
in it are not fully understood. To tackle this problem, 
adaptive control techniques are developed to control 
these kinds of dynamic systems [1]. It is a model-free 
approach based on the idea of on-line estimating the 
plant parameters or the controller parameters using 
on the measured system signals. If the adaptive 
algorithm is used to estimate the model of the plant, it 
is referred to as the adaptive indirect control (AIC). If 
the adaptive algorithm is used to estimate the 
controller of the plant, it is referred to as the adaptive 
direct control (ADC).  
     Besides the adaptive control techniques, the 
neural network control approaches are other 
model-free design methods for control of unknown 
dynamic systems [2]-[4]. The success key element is 
the neural network can capable of approximating 
mapping through choosing adequately learning 
method. Because of this property, many neural 
network controllers have been developed for the 
compensation for the effects of nonlinearities and 
system uncertainties in control system so that the 
system performance such as the stability, 
convergence, and robustness can be improved. 
Recently, the cerebellar model articulation control 
(CMAC) have been adopted widely for the control of 
complex dynamical systems owing to its fast learning 
property, good generalization capability, and simple 

computation compared with the neural network [5], 
[6] 
     Some combat aircraft often require operating at 
subsonic speeds and high angles of attack. At 
sufficiently high angles of attack, these aircraft 
become unstable due to oscillation, mainly a rolling 
motion known as wing rock [7]. This wing rock is a 
concern because it may have adverse effects on 
maneuverability, tracking accuracy, and operational 
safety. Because the modern combat aircraft is 
difficult to isolate the various flow phenomena 
created by the forebody, strake, wing and their 
relationship to the wing rock, the behavior of the 
wing rock system is not clearly understood. Recently, 
several theoretical and experimental studies have 
been performed to understand the dynamics of the 
wing rock and to predict the amplitude and frequency 
of limit cycle oscillation. 
     A series of papers have considered the control of 
the wing rock system based on output feedback 
linearization theory and adaptive control technique 
[8]-[10]. In the feedback linearization design 
approaches, the feedback control gain should be 
pre-selected to achieve the design performance by 
trial-and-error procedure; however, this tuning 
procedure is time-consuming [8]. In the adaptive 
control techniques, controller requires the knowledge 
of the structure of the aerodynamic functions; 
however, this structure is difficult to obtain [9], [10]. 
In addition, neural network control approaches also 
have been proposed to control the wing rock system 
[9]. However, the structure of the neural network 
must be selected with a sufficiently large number of 
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neurons in the hidden layer, which consumes a large 
amount of learning processing time. 
     In this paper, a hybrid control system is developed 
for the wing rock system. The hybrid control system 
is comprised of an AIC, an ADC, and a robust 
controller. In the AIC design, a CMAC neural 
network is used to approximate the plane dynamics, 
and in the ADC design, the CMAC neural network is 
used to approximate the controller behavior. A 
weighting factor is adjusted by the tradeoff between 
the plant knowledge and the control knowledge from 
the AIC and the ADC. In the robust controller design, 
the robust controller is designed to compensate the 
approximation error caused by the AIC and the ADC. 
Moreover, an error estimation mechanism is 
investigated to estimate the bound of approximation 
error so that the chattering phenomenon of the 
control effort can be reduced. Additionally, the 
parameters of the hybrid control can be on-line tuned 
in the sense of the Lyapunov stability theorem; thus 
the stability of the control system can be guaranteed. 
Finally, the simulation results demonstrate that the 
proposed hybrid control system can achieve 
favorable tracking performances for unknown the 
wing rock dynamics. 
 

2   Problem Statement 
The delta wing for a wing rock system is represented 
schematically in Fig. 1. This wing has one degree of 
freedom, and the dynamical system includes the wing 
(a flat uniform plate) and the parts of the sting that 
rotate with it. The differential equation describing the 
wing rock is given by [7] 
 uCISbpU lxx += ∞ )2/( 2φ��  (1) 
where φ  is the roll angle, an over-dot denotes a 
derivative with respect to time, u  is the control effort, 
p  is the density of air, ∞U  is the freestream velocity, 

S  is the wing reference area, b  is the chord, xxI  is 

the mass moment of inertia, and lC  is the roll 
moment coefficient written as 

 3
543210 φφφφφφφ ccccccCl +++++= ���� . 

  (2) 
The aerodynamic parameters ic , 5...,,1,0=i  are 
nonlinear functions of the angle of attack. The 
numerical values of the parameters have been 
provided for different values of angle of attack. By 

defining the state vector φ T],[ φφ �=  and substituting 
(2) into (1), the dynamic equation can be rewritten in 
a state variable form as 

 uf += )(φφ��  (3) 
where 

 3
543210)( φφφφφφφ bbbbbbf +++++= ����φ  

  (4) 
and the parameters ib , 5...,,1,0=i  are given by 

 ixxi cISbpUb )2/( 2
∞= . (5) 

For observing the qualitative natural behavior of the 
wing rock system, the open-loop system time 
response with 0=u  was simulated for two initial 
conditions: a small initial condition ( deg6)0( =φ , 

secdeg/3)0( =φ� ) and a large initial condition 

( deg30)0( =φ , secdeg/10)0( =φ�  shown is Fig. 2. 
For the small initial condition, a limit cycle is 
obtained; and for the large initial condition, the roll 
angle is divergent. Thus, it is shown that the 
uncontrolled wing rock system will be unstable for 
some initial conditions. 
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Fig. 1. Scheme of the delta wing:  

(a) plan view; (b) end view; (c) side view. 
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Fig. 2. Phase-plane portraits of the uncontrolled wing 

rock system. 
 

3   Description of CMAC 
A cerebellar model articulation controller (CMAC) is 
depicted in Fig. 3 which can be considered as 
“1”-layer feedforward neural network with input 
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preprocessing element [5]. If )(⋅σ  is a continuous 
discriminant function, the CMAC output performs 
the mapping according to 

 )(
1

i

N

i
ii pwy ∑

=

= σ  (6) 

where iw  are the output layer weight values, ip  are 
the network input to the ith neuron, RR →⋅ :)(σ  is 
the activation function, and N is the number of units 
(also called nodes and neurons) in the hidden layer. 
Note that the activation functions )(⋅σ  for each 
neuron are not necessarily the same. For ease of 
notation, the CMAC equation (6) can be expressed in 
a compact vector form as 
 σwTy =  (7) 

where T
Nwww ],,,[ 21 …=w  and T

N ],,,[ 21 σσσ …=σ . 
It has been proven that there exists a approximator in 
(7) such that it can uniformly approximate any 
nonlinear even time-varying function Ω  [5]. By the 
universal approximation theorem, there exists an 
ideal approximator *y  such that 

 εε +=+=Ω σw Ty **  (8) 

where *w  is the optimal vector of w  and ε  denotes 
the approximation error. In fact, the optimal vector 
that is needed to best approximate a given nonlinear 
function Ω  is difficult to determine and might not 
even be unique. Thus, a estimator is defined as 
 σwTy ˆˆ =  (9) 

where T
Nwww ]ˆ,,ˆ,ˆ[ˆ

21 …=w  is the estimated vector 

of *w . Define the estimated error y~  as 

 ε+−=−Ω= yyyy ˆˆ~ * ε+= σwT~  (10) 

where www ˆ~ * −= . In the followings, an update law 
will be derived to on-line tune the estimated vector to 
achieve favorable estimation. 
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Fig. 3.  Network structure of a CMAC neural 

network. 
 

4   Hybrid Control Design 
The control objective of the wing rock system is to 
find a control law so that the roll angle φ  can track a 

desired command mφ . Define the tracking error as 

 φφ −= me .  (11) 
If the system parameters in (3) are well known, an 
ideal controller can be obtained [11] 

 ekekfu m 21
* )( +++−= �

��φφ . (12) 
Substituting (12) into (3) gives 
 021 =++ ekeke ��� . (13) 

If 1k  and 2k  are chosen to correspond to the 
coefficients of a Hurwitz polynomial, it is imply that 

0)(lim =
∞→

te
t

. However, the system dynamics )(φf  in 

(3) is a nonlinear time-varying function and it cannot 
be exactly obtained, so the ideal controller *u  cannot 
be implemented.  
     To overcome this drawback, the block diagram of 
the design concept of the hybrid controller for the 
wing rock system is shown in Fig. 4. The control law 
is designed as 
 RCADAIhc uuuu +−+= )1( αα  (14) 

where AIu  is the adaptive indirect controller (AIC), 

ADu  is the adaptive direct controller (ADC), RCu  is a 
robust controller, and ]1,0[∈α  is a weighting factor 
chosen by a control designer based on the 
understanding level of the plant knowledge and 
control knowledge. From the adaptive control 
approach, the CMAC neural network is used as 
modeling of the plant in the AIC, and the CMAC 
neural network is used as a controller in the ADC. 
Thus, the AIC can be defined as 

 ekekfu mfAI 21)ˆ(ˆ +++−= �

��φw  (15) 

where the system dynamic estimator is chosen as 

 f
T
ff Θŵˆ =  (16) 

with fŵ  is the estimated vector and fΘ  is the 

regressive vector of the modeling, respectively. 
Similarly, the ADC is defined as 
 u

T
uuADu Θww ˆ)ˆ( =  (17) 

where uŵ  is the estimator vector and uΘ  is the 
regressive vector of the controller, respectively. Then, 
applying (12), (14), (15), (16) and (17) into (3) and 
after some simple manipulations, the error dynamic 
equation can be obtained as 

 RCuufekeke −−+−−−= ~)1(
~

21 αα��� . (18) 
where 

 ff
T
ffff ε+=−= Θw~ˆ~

 (19) 

 uu
T
uDuuu ε+=−= Θw~~ *  (20) 

with fff www ˆ~ * −= , uuu www ˆ~ * −= , and fε  and uε  

are the approximator errors. By defining the tracking 
error vector Tee ],[ �=e , equation (18) can be 
rewritten in the vector form as 
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 e� ]~)1(~[ RCu
T
uf

T
f u−+−+−+= εαα ΘwΘwbeA mm  

  (21) 

where ⎥
⎦

⎤
⎢
⎣

⎡

−−
=

12

10

kkmA , [ ]T1,0=mb , and the 

lumped approximation error uf εααεε )1( −+−=  

with the assumption E≤ε , in which E is a given 

positive constant. However, the bound of lumped 
approximation error, E, is difficult to measure in 
practical applications. To relax the bound of lumped 
approximation error, an error estimation mechanism 

is investigated to estimate the bound, where Ê  is the 
estimation bound value of the lumped approximation 
error. Then the estimation error is defined as 
 EEE ˆ~ −= . (22) 
Since mA  is a Hurwitz matrix, given a positive 
definite symmetric matrix Q  (denoted as 0>Q ), 
there exists a matrix 0>P  such that a Lyapunov 
equation 
 QPAPA mm −=+T  (23) 
is satisfied. Thus, the stability theorem of the hybrid 
control system can be obtained as follow. 
Theorem: Consider the wing rock system presented 
in (3). The hybrid control is designed as in (14), in 
which the adaptive indirect controller AIu  is given in 

(15), the adaptive direct controller ADu  is given in 

(17) and the robust controller RCu  is given in (25) 
with the adaptive laws given in (23), (24) and (26) 

 f
T

ff ΘPbeww m1
~ˆ η−=−= ��  (23) 

 u
T

uu ΘPbeww m2
~ˆ η=−= ��  (24) 

 )sgn(ˆ
mPbeT

RC Eu =  (25) 

 mPbeTEE 3

~ˆ η=−= ��

 (26) 

where 1η , 2η  and 3η  are the learning rates with 
positive constants. 
Proof: Define a Lyapunov function as 

 
3

2

21 2

~
~~

2

)1(~~
22

1

ηη
α

η
α E

V u
T
uf

T
f

T +−++= wwwwPee . 

  (27) 
Differentiating (27) with respect to time and using 
(21), (23) ~ (26), it is obtained that 

PeeePe TTV ��

�

2

1

2

1 +=
321

~~~~)1(~~

ηη
α

η
α EEu

T
uf

T
f

�

�
�

+−++ wwww
 

 )
~

(~)(
2

1

1η
α f

f
TT

f
TT

w
ΘPbewePAPAe mmm

�

+−++=
 

 )()
~

(~)1(
2

RC
Tu

u
TT

u u−++−+ ε
η

α mm Pbe
w

ΘPbew
�

3

~~

η
EE �

+  

 QeeT

2

1−= mm PbePbe TT E−+ ε  

 QeeT

2

1−≤ mPbeTE )( ε−−  

 0≤  (28) 
Since V�  is negative semi-definite, that is 

)(tV )0(V≤ , it implies that e , fw~ , uw~  and E
~

 are 

bounded. Let function mPbeTEt ))()( ε−≡Ξ  

2V�−≤ , and integrate )(tΞ  with respect to time, then 
it is obtained that 

 )(-)0()(
0

tVVd
t

≤Ξ∫ ττ . (29) 

Because )0(V  is bounded, and )(tV  is 
nonincreasing and bounded, the following result can 
be obtained: 

 ∞<Ξ∫∞→
ττ d

t

t 0
)(lim  (30) 

Also, )(tΞ�  is bounded, so by Barbalat’s Lemma [11], 

it can be shown that 0)(lim =Ξ
∞→

t
t

. That is, 0→e  as 

∞→t . As a result, the hybrid control system is 
asymptotically stable. Thus the proof of Theorem is 
complete. 
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Fig. 4. Hybrid control wing rock system. 

 

5   Simulation Results 
The aerodynamic parameters of the delta wing for a 
25 deg angle of attack are used for simulation. It is 
assumed that sec/15mU =∞  and mb 429.0= . The 
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ib  parameters for the model in (4) are given by 

00 =b , 01859521.01 −=b , 015162375.02 =b , 

06245153.03 −=b , 00954708.04 =b , and 

02145291.05 =b . It should be emphasized that the 
derivation of the hybrid control system does not need 
to use the aerodynamic parameters and the structure 
of the aerodynamic functions. The aerodynamic 
parameters are utilized only for simulations. The 
CMAC neural network with 7 hidden layer neurons 
in the AIC and the ADC is utilized, respectively. For 
simulations, two initial conditions (a small initial 
condition and a large initial condition) are examined 
to illustrate the effectiveness of the proposed hybrid 
control. The learning rates are selected as 

=1η 302 =η  and 1.03 =η . Let 0.1=α  if pure AIC 
is required and 0.0=α  when pure ADC is chosen. 
For comparing the flexibility of the developed hybrid 
control system, three cases are chosen to simulate as 

0.1=α , 0.1=α  and 5.0=α . The simulation 
results of the hybrid control system with 0.0=α  for 
small and large initial conditions are shown in Fig. 5. 
The state responses are shown in Figs. 5(a) and 5(c); 
the associated control efforts are shown in Figs. 5(b) 
and 5(d), respectively. The simulation results of the 
hybrid control system with 0.1=α  for small and 
large initial conditions are shown in Fig. 6. The state 
responses are shown in Figs. 6(a) and 6(c); the 
associated control efforts are shown in Figs. 6(b) and 
6(d), respectively. The simulation results of the 
hybrid control system with 5.0=α  for small and 
large initial conditions are shown in Fig. 7. The state 
responses are shown in Figs. 7(a) and 7(c); the 
associated control efforts are shown in Figs. 7(b) and 
7(d), respectively. Simulation results show that the 
robust tracking performance of the hybrid control 
system has been achieved for the different initial 
conditions. The weighting factor α  can be tuned by 
a controller designer based on the understanding 
level of the plant knowledge and control knowledge. 
 

6   Conclusions 
In this paper, a hybrid control system is developed to 
control a wing rock system. The hybrid control 
system is comprised of an adaptive indirect controller 
(AIC), an adaptive direct control (ADC), and a robust 
controller. A weighting factor is a tradeoff between 
plant knowledge and control knowledge to sum 
together the control efforts from the AIC and the 
ADC. The robust controller is designed to 
compensate the approximation error caused by the 
AIC and the ADC. The adaptive laws based on the 
Lyapunov stability theorem can automatically adjust 
the parameters of the hybrid control, thus the system 

stability can be guaranteed. Simulation results have 
demonstrated that the developed hybrid control can 
achieve the desired control performance for the wing 
rock system. The major contributions of this paper 
are (1) the successful development of the bridge 
between the adaptive indirect control and adaptive 
direct control using a weighting factor; and (2) the 
successful application of the proposed hybrid control 
system to control the wing rock system. 
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Fig. 5 Simulation results with 0.0=α . 

 

Time (sec)
(a)

)
de

gr
ee

(
φ

command
trajectory

hybrid control
response

Time (sec)
(a)

)
de

gr
ee

(
φ

)
de

gr
ee

(
φ

command
trajectory

hybrid control
response

 
Time (sec)

(b)

)
de

gr
ee

/s
ec

(
2

u

control effort

Time (sec)
(b)

)
de

gr
ee

/s
ec

(
2

u

control effort

 

Time (sec)
(c)

)
de

gr
ee

(
φ

command
trajectory

hybrid control response

Time (sec)
(c)

)
de

gr
ee

(
φ

)
de

gr
ee

(
φ

command
trajectory

hybrid control response

 
Time (sec)

(d)

)
de

gr
ee

/s
ec

(
2

u

control effort

Time (sec)
(d)

)
de

gr
ee

/s
ec

(
2

u

control effort

 
Fig. 6 Simulation results with 0.1=α . 
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Fig. 7 Simulation results with 5.0=α . 
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