
Stochastic Network Simulation for Reliable Results
TAPIO FRANTTI

Telecommunication
VTT Technical Research Centre of Finland

Kaitoväylä 1, FIN-90571, Oulu
FINLAND

i

Abstract: ­ During the last decades stochastic simulation methods have been utilized more and more in
different research fields to describe complicated real-world phenomena. Reasons for the popularity are
dramatic increase in processing power and significant decrease of price of computing systems. However, the
main reason may be that the probability theory is a well-known tool for presentation and processing of
stochastic information. In this article are described fundamental stochastic features of communication network
simulation models. Especially, a concept of convergence time is considered and its numerical evaluation is
defined by an example simulations. Network models considered here are event based discrete time models,
which utilise Markov chain theory for state transitions and Monte Carlo method for duration times of events.
Numerous reported case studies of stochastic simulations do not contain any information about a convergence
time of the model. Therefore, it is possible that the reported results are randomly biased due to too short
simulation (shorter than the convergence time) periods as illustrated in this article by examples.

Key­Words: ­ communication network, stochastic simulation, convergence time, ad hoc, random number.

1 Introduction
Simulation is a widely used method in the research
and planning of communication networks. It is
essentially a modeling tool, which can yield
immense benefits to the researchers or designers of
the system. Simulation lets them to draw appropriate
conclusions and to do right decisions before major
investments are made. The validity of the obtained
conclusions depends greatly on the accuracy of the
model and the correct use of it as well as the correct
interpretation of the achieved results. Accuracy of
the model refers to how strictly it captures the actual
operations of the real system. Correct use of the
model and interpretation of the results means that
fundamental limits of the model are understood and
taken into consideration.
 The purpose of simulation models is to evaluate
real processes numerically usually by a computer
program. For computer simulation it is necessary to
do a set of assumptions in the form of mathematical
and logical relationships. The assumptions constitute
a model, which can be used to achieve
understanding from the system behavior.
 Simulation models can be classified several ways,
like static vs. dynamic, deterministic vs. stochastic
and continuous vs. discrete models. In static
simulation models time does not play any role
whereas dynamic models evolve over time.
Deterministic models do not contain any
random/probabilistic components meanwhile

stochastic models are based on probability
distributions. In continuous models state variables
change continuously over time whereas in discrete
models systems evolve over time at separate points
in time.
 Usually simulation models are developed either
for system design, system management or training.
System design includes development of the new
system and improvement of an existing one. System
management models are used for scheduling and
control of real-time systems. Training refers to task
and operation training of systems.
 Instead of simulations, in some cases
communication networks can also be modeled,
analysed and designed using either measurements or
mathematical analysis. Measurements offer direct
means for performance evaluation. They are also the
most expensive way due to need of a new network.
Experimentations with an existing network may also
be economically very unfeasible if they suspend the
operations of commercial network during the tests.
Mathematical analysis necessitate a high degree of
abstraction and requires considerable amount of
skill. Analytic models can usually be solved quickly
and they can be effective when they are carefully
applied observing their limitations.
 In this article is described fundamental features of
simulation models. Especially, the concept of
convergence time is considered. Practical model-
based evaluation of it is defined by example

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

mailto:tapio.frantti@vtt.fihttp

simulations. Network models considered here are
event based discrete time models, which utilise
Markov chain theory for state transitions and Monte
Carlo method for duration time definitions of events.

2 Discrete Event Simulation
Discrete event stochastic simulation is commonly
used for the modelling of communication networks
and protocols. It offers flexibility of performance
modelling at any level of detail [5]. Network
components like communication links, repeaters,
routers and transceivers are presented using
computer program modules. Events of the networks,
like transmission, arrival, routing, loss, rejection and
delays of packets and link failures are mimicked in
the simulation program execution.
 Despite of wide range of applications, discrete
event stochastic simulation models share a number
of common features, like system clock, event lists,
statistical counters and initialization, timing, as well
as event, library, random sampling and report
routines. Here we consider especially simulation
clock and random sampling of stochastic events
because of their definitive effects for convergence
time, reliability and plausability of the model.

2.1 Simulation clock
Simulation clock is a variable, which gives the
current synchronised value of simulation time for
network elements. It is required to maintain
simulation time information in dynamic models.
 Simulation models have two fundamentals
mechanisms to advance time: next­event time and
fixed increment time advance. The next-event time
approach is used in the most simulation cases
instead of the fixed increment approach because the
most real system events does not occur at fixed time
intervals. In the beginning of simulation, the
simulation clock is initialized to zero and the
occurrence time of the next event is determined. The
simulation clock is then advanced to the time of next
event and the state of the system is updated
accordingly. Then the time is advanced with the
duration time of the event or the latest event if
another event is occuring at the same time (parallell
events). This is continued until predefined stopping
condition is fulfilled.

2.2 Random sampling
Communication networks as large-scale systems are
very complex. A simulation of them is, in an

abstract level, parallel series of deterministic and
stochastic events with predefined or random
occurrence and duration times. Stochastic duration
times are drawn from specified distributions using
random number generator in which numbers are
usually uniformly distributed on the interval [0,1]
and do not exhibit any correlation with each other.
The distributions can be some known standard
distributions like normal and uniform distributions
or nonstandard experimental distributions. A given
random number indicates the duration time of the
event. It is defined from the cumulative distribution
of the duration time density distribution. In the
Figure 1 a given random number, i.e., probability is
0.395 and it indicates to a specific point in a
cumulative distribution of an example event’s
duration time. The respective duration time is got
from the horizontal axe, 9.0 milliseconds. This is
called Monte-Carlo technique.
 Deterministic duration time of the event refers to
the fixed duration time. The occurrence time of an
deterministic event is either triggered by another
event(s) or transition to a specific state whereas
stochastic event has probabilistic nature (like
transfer error has) and it can be triggered also by
probability calculation.

0.0

1.0

duration time

probability

cumulative distribution of duration time

0.395

9.0 ms 25.0 ms

Fig.1. A given random number indicates duration
time of the event.

3 Random Numbers
The word random is usually reserved for the output
of an intrinsically random physical processes, but in
this paper it is used to describe pseudorandom
numbers generated by computer programs. A
definition of randomness in the context of computer-
generated sequences can be stated so that the
deterministic program that produces a random
sequence should be different from and in all
measureable respects statistically uncorrelated with
the computer program that uses its output. Hence,

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

two different random number generators ought to
produce statistically the same results when utilized
in a particular application program [11]. There exist
a certain list of statistical tests for testing any
correlations that are likely to be detected by an
application program. As a reference to the topic, see
Knuth [6] and Bratley [3].
 A reliable source of random uniform deviates is
an essential building block for any sort of stochastic
modeling or Monte Carlo computer work [11].
Uniform deviates are random numbers that lie
within a specified range (typically from 0 to 1).
However, there is other sorts of random numbers,
e.g., numbers drawn from a normal distribution with
a specified mean and standard deviation.

3.1 Random number generation
Each number in a computer memory consist of n
bits. In a signed on-off coding, for example, one bit
is used for the sign and n-1 bits for the magnitude.
Therefore, for example for the integers, the largest
number is 2n-1-1.
 System-supplied random number generators are
almost always linear congruential generators. They
generate a sequence of integers I1, I2,... each
between 0 and m­1 by the recurrence relation [11]:

Ij+1 = aIj + c (mod m), (1)

where m is modulus, a and c are positive integers
called the multiplier and the increment, respectively.
The recurrence will eventually repeat itself with a
period no greater than m.
 Implementation of a simple congruential
generator, e.g., in many ANSI C libraries as rand ()
function is quite flawed because ANSI C does not
specify a standard algorithm for rand () function. It
only states than an implementation of the rand ()
should generate the best possible random sequence.
However, ANSI C committee has published an
example algorithm represented in [11]:

unsigned long next=1;
int rand(void) {
next = next x 1103515245 + 12345;
return (unsigned int) (next/65536)
}
void srand (unsigned int seed) {
next = seed;
}

This corresponds to the equation (1) above. ANSI C
committee also stated that "try to improve the
published algorithm". Unfortunately some

widespread modifications in fact ruins the generator
instead of improving it.
 This kind of linear congruental method is very
fast requiring only a few operations per function
call. Hence, it is in widespread use under various
names. However, it is not free from the sequential
correlation on successive calls [2][11].
 Sequential correlation can be visualized if k
random numbers at a time are used to plot points in
a k dimensional space. Then the points will not tend
to fill up the k dimensional space but rather lie on k­
1 dimensional planes (at most m1/k planes; if
constants m, a, and c are not carefully chosen there
will be fewer than that). For example, if m is 32786
(216), the number of planes on which triple of points
lie in three-dimensional space is about the 327861/3

or 32. Even if m is close the largest representable
integer in 32 bit computer, the number of planes is
only about 1600 [11].
 Correlation is not the only weakness of this kind
of generators but such generators have also the least
significant bits much less random than the most
significant bits. Therefore, e.g., for random integer
between the 1 and 10 should always be generated
using high order bits, like in ANSI C:

j=1+(int) (10.0 x rand()/(RAND_MAX+1.0));
instead of
j=1+(rand()%10); .

In [9] have been analysed a large number of random
number generators. They present, e.g., minimal
standard random number generator, which is
satisfactory for the majority of applications. Even if,
this algorithm has subtle serial correlations present it
can be removed by shuffling the output so that a
random deviate derived from the jth value in the
sequence, Ij, is the output on a randomized later call
instead of the jth call.

3.2 Example random number generator
In this subsection is presented an improvement for
the above presented linear congruental algorithm. It
is shown in the literature that the simple
multiplicative congruential algorithm can be as good
as any of the more general linear congruental
algorithm that have c 0 in the equation (1) above.
Therefore, in a computer software running in a 32
bit computer, random integer number I1 between 0
and 231-1 can be produced from an initial integer I0
by multiplying I0 with a suitable number. In [9] it is
proposed values 48271 for a and 231-1 for m. This in
general produces an integer which distinctly exceeds
the maximum value for a 32 bit integer. The product

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

is put back to the interval [0, 231-1] by a modulo
operation [2]:

I1 = 48271 x I0 modulo 231­1 (2)

For the computer, one has to ensure that the result is
not negative because some of them simply omit the
leading bits of the product. Hence, for the 32 bit
computer, the following pseudocode statements
produce from a random integer (stored as variable I)
another integer (stored at the end again under the
name I) and a real number X between zero and
unity:

I = I x 48271, I is a random integer
if (I < 0) then I = 231-1
X = I x (231-1)-1

By repeating this process again and again we get a
series of random numbers between zero and one,
which are approximately random and approximately
homogenous. However, the resulting series is
reproduciple, if we start with the same initial
number (seed). It also repeats itself after a period of
at most 231-2. The initial value must also be a
positive odd integer. Therefore, I should be

I = 2 x |I| + 1

after I is set initially. If it is not a very large, one
needs several iterations to get a series of numbers X
which are not very small. In order to avoid that one
can use a short warm-up loop which performs
several iterations. One choice for the random initial
value (seed) I is a thousand part of second on
computer's internal clock scaled appropriately to get
it large enough and to changed to odd integer. Using
random seed also decrease the possibility of
synchronization (parallel units do their sampling
procedure identically, i.e., sampling probabilities
correlate) in parallel computing.
 However, the consecutive random numbers have
strong correlations between them. This problem
should be solved, e.g., by mixing or shuffling the
outputs of two random number generators. This can
be done, for example, by determining randomly an
integer K between [0,255] and extracting a random
number from a table of 256 random numbers and
replacing it with a freshly calculated number from
the above described random number generator:

L = random_number_table[0]
I = I x 48271, I is a random integer
if (I<0) then I = 231-1
J = L/(1+(231-1)/32)

L = random_number_table[J]
if (L<0) then L = 231-1
random_number_table[J] = I x (231-1)-1

Usually computers with 60 bits per word in the
above described mixed random numbers seem to be
good enough for all practical experiments in
statistical communication network simulations [2].

4 Convergence Time
In quantitative simulation studies attention should be
put to accuracy of the final results. However, it is
surprising to notice that in only a few reported
simulation studies statistical analyses are carefully
performed to control the statistical errors of their
final results. In [4] has pointed out already in 1990
that no any other field of science and engineering
has not taken such a liberty with empirical data. [8]
also points out that simulation without careful
statistical analysis of output data can provide
erroneous results. This alarming trend has continued
despite of the early warnings.
 Random sampling of the series of stochastic
distributions, standard or experimental, leads to an
output value which depends on the number, types
and parameters of the distributions. The output value
approaches or converges a constant value as a
function of simulation time. Deterministic phases
increase the total expected value but do not change
variance or convergence time. However, series of
deterministic events, such as predefined tracks of
movements of mobile transmitters in ad hoc
networks, may act as a stochastic distribution.
 The convergence time refers to the minimum
simulation time of the model so that by simulating
equal or longer period the reference value achieved
with fixed set of simulation parameters do not
oscillate significantly. According to the Central
Limit Theorem (consult, e.g., [12] for a general view
or [1] for more thorough mathematical explanation)
a series of probability distributions obey normal
distribution as a whole. The convergence time refers
to the expected value of this distribution. Therefore,
the value of reference variable in a specific
simulation model converge to this value.
 In a simulation model development process it is
mandatory to define the convergence time before
simulation runs to get reliable results. The influence
of some parameter to the reference value can not be
judged with shorter simulation times. This is due to
the fact that reference value oscillates according to
the random values of events probabilities and
duration times evaluated in different sequential and

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

parallel phases. If the simulation time exceeds the
convergence time, the effect of the parameter under
study can be seen on the output of the reference
value. In a case that parameter has influence to the
simulated system's behavior, the expected value
and/or variance of the reference variable is/are
changed as illustrated in section Results.

5 Internet Traffic Simulation
In this section, is presented developed theoretical
Internet data traffic model. In the literature ([7], [10]
and [14]) it has been shown that LAN (Local Area
Network) traffic is statistically self­similar (process
in larger scale is a copy of itself in smaller scales)
and that none of the commonly used traffic models
are able to model this fractal-like behavior.
Moreover, in [7] it has also been claimed that such a
behavior has serious implications for the design,
control, and analysis of high-speed networks, and
that aggregating streams of such traffic typically
intensifies the self-similarity ("burstiness") instead
of smoothing it. Therefore, the proper simulation
model uses Pareto distributed traffic for the
evaluation of the developed solutions. Self-similar
traffic can be generated by multiplexing several
Pareto distributed packet trains and silence periods
between packet trains. The Pareto distributed traffic
model has Pareto distributed interval times for
traffic bursts and Poisson distributed traffic inside
the bursts. A Pareto distribution has the following
probability density function:

bx
x

xPpareto ≥= + ,)(1α

ααβ
(3)

where is a shape parameter and b is the minimum
value of x. The mean value of a Pareto distribution is

1,
1

)(>
−

= α
α
αβxE (4)

For self-similar traffic should be between one and
two. The formula to generate a Pareto distribution is

α
1

U

bX pareto = (5)

where U is uniformly distributed value in the range
(0,1]. For the packet trains we used values 1 for b
(minimum size of packet train) and 1.5 for the shape
parameter and for the silence periods between
packet trains 8/1518 (size of the preamble compared
to the maximum size of an Ethernet packet) for b
and 1.2 for .
 A Poisson distribution, on the other hand, has the
following probability density function:

,...)1,0(,
!

),(== − xe
x

xP
x

poisson
λλ

λ (6)

where is the shape parameter which indicates the
mean value of the events in the given time interval.
The formula for the Poisson cumulative probability
function is:

∑
=

−

=
x

i

i

i
exF

0 !
),(λ

λ
λ

(7)

The Poisson percent point function does not exist in
simple closed form like for the Pareto distribution
above. Hence, it is computed numerically and is
only defined for integer values of x.

6 Network models
Communication networks are usually divided into
two main categories: connection­oriented or circuit­
switched networks and connectionless or packet­
switched networks. Circuit-switched networks
operate by forming a dedicated connection or circuit
between the end points, i.e., users have reserved
channel and resources during the connection. Users
can transmit datagrams without address information.
Hence, events and duration times of sequential
events as well as failure rates, delay profiles and
jitters are very well known beforehand within a
certain limit. The advantage of the circuit switched
networking lies in its guaranteed capacity. The other
advantage is the lower overhead in transmitted data.
Addresses and other control information are not
required to enclose into all the data packets, which
might be very significant advantage in fraudless
wireless environment. The disadvantage is reserved
channel and bandwidth even if it not fully used, like
in the normal phone conversations. However,
especially for the wireless medium, discontinuous
transmission and voice activity detection techniques
for phone conversation has been developed in order
to decrease the disadvantage.
 In packet-switched networks, data is divided into
small packets or datagrams which are multiplexed
and transferred across the network in a high capacity
connections, i.e., several users share the same
channel and resources. Intermediate nodes like
routers in the Internet recognize received message
types and after reading included address fields
forward these to the next intermediate node or to the
final destination. The final destination accepts the
datagram targeted to it by interpreting included
physical address field in the datagram header. The
quality of service and reliability can not be
guaranteed in the similar way than in circuit

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

switched solutions and probabilities as well as
duration times of various events vary.
 Parallel events on the different branches also
increase uncertainty. Branches may cross each other,
e.g., on the routers or they can share partly the same
communication paths like sharing the same link
between the sequential routers. If they run, e.g., into
the same router then depending on the architecture
of router the effect is either decreased processing
time for each of the traffic flow or there is no effect
at all due to separate processors and input/output
gates for separate communication paths on the
router. The situation is more complicated if traffic
flows are combined to the same output branch
producing higher traffic density on the branch and
on the input of the next router. This may cause
congestion and increased packet loss rate, too.
Therefore, moderate traffic load on separate network
branches may cause congestion and increased packet
loss rate on the shared branch. However,
computational consequence for the convergence
time definition is only increased average delay and
variance. Hence, methodologically the effects of
parallel communication paths of the network can be
modeled as Markov chain likewise in the case of
sequential path.
 In wireless networks parallel events around the
communication path have always additional
interference effects. Increased interference level
increases packet loss rate which jointly increases
average delay and variance. Also in this case the
computational consequence for the convergence
time definition is increased average delay and
variance.

7 Example Network Models
Example communication network models, which
carry Pareto-Poisson distributed Internet traffic were
developed for illustrations of numerical evaluation
of the convergence time definition. The first
example considers fixed wireline network model
with widely used ANSI C rand() random number
generator. The second example presents the same
network model with more sophisticated random
number generator ranC() described above in section
Random numbers. The third and fourth examples
consider more complicated fixed wireline network
models. A reference output variable on the examples
was an overall delay. The overall delay consist of
propagation and processing delays along a
communication path. The average data rate for the
models was either 12 Mbps, 60 Mbps, 120 Mbps or
600 Mbps. In this paper, a simulation was
considered to be convergenced if the difference

between the minimum and maximum total delays in
a series of simulations was less than 0.25 % from the
overall delay and the maximum value of the total
delay do not differ more than 0.15 % from the
overall delay. The overall delay was defined by
simulating so long time than the output value did not
change practically at all. The size of series of
simulations was 10 runs per data rate.
 The fifth example considers an ad hoc network
model, in which the development of throughput as a
function of simulation time is illustrated. In this case
a simulation was considered to be converged when
capacity fluctuated within 1% limits.

7.1 Wireline network models
In the first example the communication path from a
source to a destination included a transmitter, 8
intermediate units, like routers, repeaters and
multiplexers, and a receiver (Figure 2). The delay
times were normally distributed in six (6) units and
uniformly distributed in (2) unists. In Figure 2, for
instance, the notation normal 15:10 refers normal
distribution with an expected time 15 ms and a
variance 10 ms. The notation uniform 1:10 refers
uniform distribution with a minimum value 1 ms
and a maximum value 10 ms. The probagation
delays between the intermediate nodes were
constants and not considered separately.

Fig. 2. The series of nodes from a transmitter to a
receiver.

Fig. 3. The series of nodes from a transmitter to a
receiver.

Table 1. Data rates (Mbps) and convergence times.
Data rate 12 60 120 600
Example 1 20 000 15 000 15 000 15 000
Example 2 15 000 10 000 5 000 500
Example 3 450 000 45 000 40 000 20 000
Example 4 50 000 15 000 10 000 2 000

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

Table 1 presents convergence times for different
data rates on the different examples. In the first
example convergence time sets after 15 000 ms for
all the data rates except 12 Mbps. This seems quite a
suprising because with the higher data rate there was
more random sampling events in the model and the
convergence time should be shorter, too. The same
convergence time for the most of data rates may due
to Pareto-Poisson traffic model, which may alone
require 15 000 ms time to converge. This may also
indicate that the used random number generator
rand() produces biased/correlated random samples
because the convergence times dramatically get
shorter with ranC() random number generator, see
Table 1, Example 2. In the example 2 the
convergence time decreased as a function of data
rate. This is due to more frequent events in the
network.
 In the third example communication path from a
source to a destination node consisted of 9
intermediate units (see Figure 3). The used random
number generator was rand() (Example 3 in Table
1). Delay times of intermediate units were normally
or uniformly distributed. Incoming traffic flows
from other cross-connecting network branches to
intermediate units on the communication path
caused Poisson distributed delays to datagrams on
the path. Outgoing flows from the intermediate units
on the communication path, transmitted with
uniform delays, caused uniform delays to datagrams.
In the fourth example the difference for the Example
3 is a different random number generator, ranC().

7.2 Ad hoc network
In an example AODV (Ad Hoc On Demand
Distance Vector) ad hoc network simulations, the
reference variable for the convergence time
definition was throughput (Mbps). Development of
the throughput as a function of simulation time with
10 active nodes and pedestrian mobility is presented
in Figure 4. Radio technology, physical and link
layers of the example network were modelled
according to the IEEE 802.11b WLAN standard
with system capacity of 11 Mbps. Simulation time in
Figure 4 spanned from 100 s to 5500 s. It can be
noticed from the Figure 4 that the convergence time
of the model is around 2000 s. For the simulation of,
e.g., extra transceivers effects, the convergence time
should had been redefined due to the increased
number of degrees of freedom. The convergence
time should be redefined also if, e.g., routing
algorithm is changed or CCK (Complementary Code
Keying) modulation/coding is changed to higher
performance PBCC (Packet Binary Convolutional

Coding) modulation/coding in the physical layer of
ad hoc transceivers based on IEEE 802.11b WLAN
(Wireless Local Area Network) standard or if
connection oriented transport layer protocol is
changed to connectionless protocol.

Fig. 4. Throuhgput of an ad hoc network.

8 Results

8.1 Results from wireline network models
The effect of an extra network element for the
overall delay and variance in the Examples 1-4,
when the simulation time convergence time is
presented in Table 2. The extra element had
normally distributed delay with an expected value of
22 ms and standard deviation of 11 ms.
 We can notice from the Table 4 that the effect of
the extra network element for the overall delay was
indeed 22 ms in all the Example simulations,
because oscillation limits for the overall delay are
very narrow. With too short simulation times (100
ms) the overall delay oscillated much more around
the average (Table 5). Variance level fluctuated also
much more, when short simulation time was applied.

Table 2. Effect of a new element to the overall
delay. Simulation time convergence time.

Example st delay min del. max del.
Example 1 20000 72.91 94.81 94.97
Example 2 10000 73.00 94.96 95.05
Example 3 40000 337.68 359.60 359.87
Example 4 10000 337.76 359.52 359.85

Table 3. Effect of a new element to the overall
delay. Simulation time < convergence time.

Example st delay min del. max del.
Example 1 100 72.91 93.98 95.73
Example 2 100 73.00 94.48 95.35
Example 3 100 337.68 354.22 361.70
Example 4 100 337.76 359.06 362.12

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

Table 4. Effect of a new element to the overall delay
and variance. Simulation time convergence time.

Examples delay limits/ms variance limits/ms
Example 1 -0.10 +0.06 -0.40 +1.295
Example 2 -0.06 +0.05 +2.16 +5.48
Example 3 -0.08 +0.19 -25.44 +134.62
Example 4 -0.24 +0.09 +14.97 +60.23

Table 5. Effect of a new element to the overall delay
and variance. Simulation time < convergence time.

Examples delay limits/ms variance limits/ms
Example 1 -0.93 +0.82 -2.80 +3.56
Example 2 -0.52 +0.35 -10.03 +13.34
Example 3 -5.46 +2.02 -1233.54 +869.27
Example 4 -0.70 +2.36 -77.35 +167.78

8.2 Results from an ad hoc network model
Figure 5 presents throughput for data traffic of the
ad hoc network as a function of simulation time
when it spans from 10 seconds to 50 seconds [13]. It
can be noticed that, e.g., for capacity simulations if
simulation time of 20 seconds is used, which is quite
a typical value in numerous reported articles,
absolutely too optimistic throughput value (more
than 2.6 Mbps) is achieved. From Figure 4 it can be
noticed than even if the simulation time is much
longer than 20s but still too short, e.g., 500 s, the
average throughput of 1.6 Mbit/s is achieved.
However, the real capacity value is around the 980
kbit/s, which is about 60% from the erroneous result
achieved with too short simulation time.
 Figure 6 presents average capacity of an ad hoc
network as a function of number of nodes ranging
from 5 to 50. For the 5 nodes average throughput
was around 4.4 Mbps and for the 10 nodes it was
only 980 kbps. This mainly dued to the increased
number of packet collisions and transmission
queueing time when the number of users grew. This
is typical behaviour for a wireless systems with a
random access based MAC (Media Access Control)
channel division algorithm. In larger networks, for
instance with 50 nodes, the link failures, packet
collisions and transmission queueing become even
more common and the network is rather congested.
The average throughput for 50 nodes is only 92
kbps. This is very low for a local area ad hoc
network with very limited coverage area and only
pedestrian level mobility. It is very probable that
with the higher level of mobility IEEE 802.11b
WLAN standard based ad hoc networks will be fully
congested due to increased packet error rate.
Throughput value of 92 kbps may be enough for

voice communication, poor level video transmission
and other low data rate applications such as a short
message delivery. It is definitely not enough for the
fluent web browsing and email delivery except very
temporarily, which are the most common
applications of the WLAN front-end networks.
Therefore, ad hoc networks with higher data rate
applications should be based on, e.g., 802.11a
technology with admission control, which offers 54
Mbps system level capacity.

Fig. 5. Throuhgput vs. simulation time of an ad hoc
network.

Fig. 6. Throughput vs. nodes of an ad hoc network.

9 Observations
Random sampling of stochastic distributions leads to
an output value which depends on the number, types
and parameters of distributions. For the modeling of
distributed systems, like communication networks,
one should also notice the effects of scalability to
the convergence time because it is straightly
dependent on the number of nodes in the model. The
output value converges towards a constant value as a
function of simulation time. Therefore, the influence
of some parameter to the reference value can not be
judged with simulation times shorter than the
convergence time. In the case that the simulation
time exceeds the convergence time, the effect of the

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

parameter under study can be seen on the output of
the expected value and/or variance of the reference
value. Deterministic phases increase the total
expected value but do not change variance or
convergence time. However, series of deterministic
events may act as a stochastic distribution. From the
results presented earlier we can instantly confirm
that for the reliable calculation it is essential to
define convergence time and let the simulation time
exceeds it in order to research, e.g., the effects of
changed parameter.
 It can also be deduced that random number
generator design and implementation has an
essential role to the convergence time. RanC()
random number generator leads to much faster
convergence times of the simulation model than
rand() generator. Variance of the overall delay with
ranC() generator is also higher than with rand
generator. This may be indicate that ranC() utilizes
single distributions more effectively with the full
width of the distributions. In more complex systems
simulations, the convergence time with the ranC()
generator was about 4 times shorter than with the
rand() generator. Therefore, the randomness of the
overall delay with shorter simulation times than
convergence times also caused higher errors with
rand() generator than ranC() generator.

10 Conclusions
In this paper was described fundamentals of
stochastic communication systems simulation,
which were based on Markov chain theory and
Monte Carlo method. A convergence time of the
simulation model was defined for reliable
simulations. Without the convergence time
definition, it is possible that simulation results are
randomly biased and erroneous.
 The effects of scalability to the convergence time
is straightly dependent on the degrees of freedom in
the simulation model. Random number generator
design is also in an important role because the faster
the random number sampler setting time is the
shorter the convergence time.
 For communication networks like ad hoc
networks with numerous nodes, moderate mobility
of nodes and continuous transmission between the
nodes, convergence time may be ramarkable.
Hence, for example for reliable capacity estimates of
ad hoc networks convergence time must be carefully
defined in order to avoid erroneous and unrealistic
values.

References:
[1] M. Abramowitz and I. A. Stegun, Handbook of

Mathematical Functions, Applied Mathematics
Series, Dover Publications, New York, 1964.

[2] K. Binder, Topics in Current Physics,
Applications of the Monte Carlo Method in
Statistical Physics, Springer-Verlag, Heidelberg,
1987.

[3] Bratley P., Fox B.L. and Schrage E.L., A Guide
to Simulation, Springer-Verlag, 1983.

[4] B. Gaither, Empty Empiricism Empty
Empiricism, Performance Evaluation Review,
18:2-3, 1990.

[5] F. Hartanao and W. Kreutzer and K.
Pawlikowski and H.R. Siirisena, Quantitative
Stochastic Simulation of Telecommunication
Networks in DESC++, Computers Electronics
and Engineering, 22:367-381, 1996.

[6] Knuth D.E., Seminumerical Algorithms, 2nd ed.,
vol. 2 of The Art of Computing Programming,
Addison Wesley, 1981.

[7] W. E. Leland and M. S. Taqqu and W. Willinger
and D. V. Wilson, On the Self-Similar Nature of
Ethernet Traffic (Extended Version), IEEE/ACM
Transactions on Networking, 2(1):1-15, 1994.

[8] A. M. Marsan and G. Balbo and G. Bruno and F.
Neri, TOPNET: A toolfor the visual simulation
of communication networks, IEEE Journal on
Selected Areas in Communications, 8:1735-
1746, 1990.

[9] Park S.K. and Miller K.W. Communication of
the ACM, vol. 31, pp. 1192-1201.

[10] V. Paxson and S. Floyd, Wide area traffic:
the failure of Poisson modeling, IEEE/ACM
Transaction on Networking, 3(3):226-244, 1995.

[11] W. H. Press and S. A. Teukoisky and W. T.
Vetterling and B. P. Flannery, Numerical
Recipes in C, The Art of Scientific Computing,
Cambridge Univesity Press, New York, 2nd
edition, 1992.

[12] J. G. Proakis, Digital Communications,
McGraw-Hill, New Jersey, 3rd edition, 1995.

[13] Taramaa M., “Capacity of Ad Hoc Networks”,
Master’s Thesis, 2004, Oulu, Finland.

[14] W. Willinger and M. S. Taqqu and W. E.
Leland and D. V. Wilson, Self-similarity in high-
speed packet traffic: analysis and modeling of
Ethernet traffic measurements, Statistical
Science, 10:67-85, 1995.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp458-466)

