
A Color Re-Indexing Scheme Using Genetic Algorithm

MING-NI WU2, CHIA-CHEN LIN3 and CHIN-CHEN CHANG12
1Department of Information Engineering and Computer Science

Feng Chia University
Taichung, Taiwan, 40724, R.O.C

2Department of Computer Science and Information Engineering
National Chung Cheng University

Chaiyi, Taiwan 621, R. O. C.

3Department of Computer Science and Information Management
Providence University

Taichung, Taiwan 433, R. O. C.

Abstract: - An indexed image consists of the lookup color table and index sequence. To further reduce the
transmission size of indexed images, many lossless image compression techniques are applied. Some of them
perform the re-indexing of color indices according to perceptive similarity between different colors. Recording
the color table, however, can lead to lower entropy of predictive errors. Several schemes focus on color
re-indexing have been proposed. However, it is a time-consuming process to find out an optimal order of a color
table. Therefore, most of them only can provide good performance on either execution time or compression
ratio. In this paper, we explore a heuristic method based on genetic algorithm to improve the performances on
execution time and compression ratio and keep the balance between them. Experimental results further confirm
that our proposed scheme only takes one-third the execution time to provide compression ratios those are very
close to Memon et al.’s scheme’s. The effectiveness of our proposed scheme is acceptable and proved.
Moreover, our scheme is particularly suited for real-time applications that require higher compression ratio.

Key-Words: Re-indexing, Palette-based image, Genetic algorithm

1 Introduction
There are various image compression schemes for
different kinds of image characteristics. For an image
that comprises a small amount of colors for a large
color space, the palette-based (or color-mapped
based) compression method often provides good
efficiency. This kind of compressed image consists
of two different parts. One is the fixed lookup color
table. That is the color collection for the image.
Another is the index sequence of pixels to indicate
the color’s position in the lookup color table. Many
lossless compression algorithms adopt a
differential-predictive approach to decode the index
sequence. Most prediction schemes assume that
neighboring pixels have similar intensity. We can
infer that if the index sequence is smoother then
lower predictive error can be obtained. On the
contrary, the higher predictive error may occur while
the index sequence is variable. To maintain a smooth
index sequence, and to make sure the higher
compression ratio and lower predictive errors, the
color re-indexing problem is raised.
 The color re-indexing concept is to reorder the
lookup color table. Different index sequences are
generated by using the color re-indexing procedure.

Difference index sequences imply different
predictive errors. To reduce the predictive errors, the
variableness of index sequences must been reduced
in advance. Therefore, the color re-indexing problem
also can be treated as a smoothness maximization
problem [4].
 Many related researches have been proposed in
different literatures. These researches can be
classified into two categories. The first one performs
the re-indexing of color indices according to
perceptive similarity between different colors. In [6],
Zeng et al. proposed a greed look-ahead scheme to
optimize the assignment of index values to colors.
They tried to assign color index values to symbols
those are frequently located next to each other to
improve the compressing ratio. In [1], Battiato et al.
translated the color re-indexing problem to traveling
salesman problem (TSP). They constructed a
weighted graph according to the adjacent
frequencies. Then, a heuristic algorithm was applied
to select the re-indexing associated with the heaviest
Hamiltonian path. The other one is to treat color
re-indexing problem as an entropy minimization
problem. Memon et al. [4] investigated the problem
to minimize the absolute sum of prediction errors.
They proposed a simulated annealing to search for a

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

locally optimal ordering to archive a local optimal
solution. To reduce the large convergence time for
simulated annealing function, they also proposed a
pair wise merging method. It is a heuristic selection
function, which gives a result very close to those
obtained by the much more computationally
expensive simulated annealing approach. In general,
Zeng et al.’s and Battiato et. al’s methods have lower
execution time but with worse compression ratios.
On the contrary, Memon et al.’s method takes longer
execution time but gets better compression ratios.
 In this paper, we try to adopt another approach,
the genetic algorithm, to deal with the color
re-indexing problem. Genetic algorithm is a
randomized search approach that is generally used in
various fields to solve the optimization problems. It
repeats a generation procedure to obtain a near
optimum solution. Based on GA’s characteristic, our
proposed scheme can keep the balance between the
compression ratio and execution time.
 In the next section, we introduce some relative
works. In Section 3, the proposed scheme will be
described. Section 4 shall demonstrate the
experimental results and discussions. Finally, the
conclusion is given in Section 5.

2 Relative Works
In this section, the color re-indexing problem will be
pointed out first. Next, we shall introduce two related
re-indexing methods: one is Memon et al.’s pairwise
merge method and the other is Battiato et al.’s
TSP-based scheme. At last, the genetic algorithm
(GA) that will be used in our scheme to find out the
near optimal order of re-indexing colors will be
introduced.

2.1 The Color Re-indexing Problem
Many commercial image processing and geographic
information systems adopt the color mapping system
to represent color images and save storage space at
the same time. In the color mapping system, a fixed
lookup table is generated in advance to record the
relationship between the colors and indices. Then
indexed images (also called index sequences) encode
colors using the fixed lookup color table. Each entry
in the color table is generally a triple of RGB values.
For each pixel in an image, only the indices of
corresponding colors need to be stored. Fig. 1(a)
shows an example of a simple image with pixels.
The entry in each square is a triple of RGB values for
the corresponding pixel. To represent the encoded
result of color mapping system, a lookup table I and
an index sequence I for the example image (shown in

Fig. 1(a)) are presented in Fig. 1(b). In Fig. 1(a), the
first entry of RGB values is (100,20,50); therefore,
the first index value of index sequence I is “0” by
looking up the lookup color table I.

(100,20,5
0)

(60,150,200
)

(60,150,200
)

(140,140,12
0)(100,20,5

0)
(30,70,80) (30,70,80) (60,150,200

)(140,140,
120)

(100,20,50) (60,150,200
)

(100,20,50)
(100,20,5

0)
(60,150,200

)
(140,140,12

0)
(100,20,50)

(a) An example image

Lookup Color Table I
0: (100,20,50)

1: (60,150,200)
2: (140,140,120)

3: (30,70,80)

 Lookup Color Table II
0: (140,140,120)

1: (100,20,50)
2: (30,70,80)

3: (60,150,200):

Index Sequence I Index Sequence II
0 1 1 2
1 3 3 1
2 0 1 0
0 1 2 0

 1 3 3 0
1 2 2 3
0 1 3 1
1 3 0 1

(b) A lookup table I and
an index sequence I

 (c) A lookup table II and
an index sequence II

Fig. 1. An example of color mapping system using a
lookup color table with different orders

 If we reorder the indices of lookup color table I to
generate lookup color table II, the corresponding
index sequence of original image based on lookup
color table II can be generated as index sequence II
shown in Fig. 1(c). From Fig.1, we can see that
different order of indices in the lookup table produces
different index sequences for an image. Different
index sequences could lead to different compression
efficiency. Therefore, the efficiency of a lossless
compression algorithm for indexed images may
greatly depend on the assignment of indices in the
relative lookup color table. To compress the index
sequence, many lossless compression algorithms
adopt a differential-predictive approach to encode the
index sequence. Smoother index sequence is
favorable for compression algorithms. An entropy
measure [3] or a difference measure [4] can measure
the distribution of an index sequence. We list a
simple difference measure as follows.

∑
−×

=
−−=

1

1
1)(

nm

i
ii ssSD , (1)

where nm× is the size of a image and si is the ith
pixel in the image by raster scan order. In above case,
if we apply Equation (1) for Fig. 1(b) and Fig. 1(c),
we can get dissimilar values 16 and 22, respectively.
It indicates the fact that lossless compression can be
optimized by choosing a different platted ordering.
Finding an optimal indexing scheme is a crucial step
for different lossless compression of indexed images.

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

2.2 Memon et al.’s Pairwise Merge Method
In 1996, Memon et al. investigated the problem of
ordering the color table such that the absolute sum of
prediction errors is minimized [4]. They proposed
two heuristic solutions for the problem and used them
for ordering the color table prior to encoding the
image by lossless predictive techniques. The first one
used simulated annealing to search for a locally
optimal ordering. The second one used pairwise
merge heuristic method. The pairwise merge gave
results very close to those obtained by the much more
computationally expensive simulated annealing
approach; therefore, we only introduce Memon et
al.’s pairwise merge method in this subsection.
 Assume an image has M colors. Memon et al.’s
pairwise merge method is summarized as follows.
summarized as follows.
Step 1: Assign each color number to a different set.
There will be M set in the set pool initially. A set will
be a particular order of some colors after the
following merging procedure.
Step 2: Find the two sets with the lowest perdition
error cost.
Setp 2.1 For any two sets

raaa ,,, 21 Λ (called set 1)
and

saaa ′′′ ,,, 21 Λ (called set 2) in the set pool, we
merge them to generate temporary sets according the
following rules

1221

2121

2112

2121

,,,,,,,
,,,,,,,
,,,,,,,
,,,,,,,

aaaaaa
aaaaaa
aaaaaa
aaaaaa

rs

rs

sr

sr

ΛΛ
ΛΛ
ΛΛ
ΛΛ

′′′
′′′

′′′
′′′

,
where ai is a color number and set 1 and set 2 has r
and s members, respectively.
Setp 2.2 For any temporary set, calculate the cost
according to Equation (2):

∑∑
= =

•−
k

i

k

j
ji aatij

1 1
),(, (2)

where),(ji aat represents the time that color ai is next
to color aj, k is the amount of members in the
temporary set.
Setp 2.3 Select a temporary set with the lowest cost,
add it to the set pool and delete two original sets that
produce the selected set. The amount of sets will be
subtracted one for the set pool.
Step 3: Repeat Step 2 until the amount of sets is
equal to 1.
Step 4: Output the final set from the set pool to be the
order of colors.

2.3 Battiato et al.’s TSP-based Scheme
In 2004, Battiatop et al. restated the re-indexing
problem as a graph optimization problem [1]. They

believed an optimal re-indexing corresponds to the
heaviest Hamiltonian path in a weighted graph.
Therefore, they transferred the re-index problem into
the TSP problem then tried to found a Hamiltonian
path in the weighted graph. Since TSP is an
NP-complete problem, they adopted a heuristic
method to find an approximate solution.

 Assume an image I with M colors. They created
an M nodes weighted graph first. Each node
represents the color number of the color table. The
weight is assigned to represent the occurrence
times for the pair of neighboring colors (or called
nodes). Next, the edges are sorted in decreasing
weight order and all vertices are marked as white in
this graph. The algorithm continues incrementally
adding to the path non-visited edges with maximal
weight. This procedure is detailed in the following
steps (shown in Fig. 2).

0 1

3 2

a

b

c

d
e f

a 1
b 3
c 1
d 2
e 0
f 0

weights

0 1

3 2

L1

L1

0 1

3 2

L1

L1

L2

L2

0 1

3 2

L1

L1

L1

L1

is white is red is black

Step1.

Step2.

Step3.

b->d>a->c->e->f
Sorted edge list:

0 1

3 2

a

b

c

d
e f

a 1
b 3
c 1
d 2
e 0
f 0

weights
a 1
b 3
c 1
d 2
e 0
f 0

weights

0 1

3 2

L1
0 1

3 2

L1

L1

0 1

3 2

L1

L1

L2

L2

0 1

3 2

L1

L1

L1

L1

is white is red is black

Step1.

Step2.

Step3.

b->d>a->c->e->f
Sorted edge list:

Fig. 2 Successive steps of the construction of the
Hamiltonian path according to Battiatop et al.’s
algorithm

Step 1: Extract the edge ije of maximal weight that
has not been processed.
Step 2: Four cases need to be considered.
Setp 2.1 Both vertices i, j are white. In this case, both
of them are set to red and they get the same new label.
Setp 2.2 One of the two vertices is white and the
other one is red. In this case, the white vertex
becomes red and gets the same label that has been
assigned to the red vertex; the red vertex, in turn,
becomes black.
Setp 2.3 Both vertices i, j are red. If both vertices
have been already visited by the algorithm. Two

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

cases may further explored: 1) If both vertices are the
extreme of a chain of vertices with the same label,
skip edge ije . 2) If the vertices are the extreme of two
distinct chains of vertices, both of them are set to
black and the corresponding labels are unified.
Setp 2.4 One vertex is black. In this case, the edge ije
is skipped.
Step 3: Repeat Steps 1 to 2 until there are
unprocessed edges.

The new indexing can be obtained according to the
corresponding position of the various color
symbols in the Hamiltonian path, scanning the path
in one of the two possible directions.

3. The Proposed Scheme
Following the overview of relative works in Section
2, we shall describe the details of the proposed
algorithm for re-indexing problem in this section. Let
I be an image of nm× pixels and M be the amount
of distinct colors. There is a color lookup
table },,,{ 110 −= McccC Λ and an index sequence

},,,{ 110 −×= nmsssS Λ used to represent the image I,
when I is compressed by a color-mapped algorithm,
where ci is a color value and si is a color index of
location i in lookup table. To further reduce the size
of index sequence, a lossless compression technique
will be applied. To make sure the efficiency of
lossless compression technique can be achieved, we
have to minimize the difference of neighbour indices.
That means we have to re-arrange the order of indices
in the color lookup table.
 In this paper, we apply GA to find out the optimal
re-indexing order. The evaluation function listed in
Equation (1) is our fitness function in our GA
algorithm. To prepare the initial chromosome pool,
we randomly generate Q chromosomes

},,,{ 110 −QCHCHCH Λ , where CHi is one kind order of
original lookup color table. For a
chromosome

110 −= Mi hhhCH Λ , hj indicates the original
jth order in C which is reorder to hjth order in CHi. A
chromosome pool example for an image with 8
colors is shown in Fig. 3. In this example, the 0th
gene of chromosome CH0 is 4, it indicate the 0th
color in C is reordered to the 4th color in CH0, the 4th
gene of chromosome CH1 is 5, it indicate the 4th
color in C is reordered to the 5th color in CH1,.

 The crossover process is a key step for our
algorithm. To speed up the convergence ratio, we
adopt a heuristic crossover operation. In this step,
two chromosomes CHi and CHj are randomly
selected. A random number z is generated to split

CHi and CHj into left hand and right hand sides.
The right hand sides of CHi and CHj are
exchanged. A cross over example is shown in Fig.
4. In this example, we suppose z=4 and two new
chromosomes

iHC ′ and
jHC ′ are produced. If a new

chromosome has any duplicate genes, we only can
keep one of them and replace the other one with
unused genes. For example, h0=h5=4 and h4=h7=0
are two pair of duplicate genes in

iHC ′ . To decide
which genes will be removed, we calculate the
co-occurrence value wi, wi indicate the time of
neighbouring color symbols (hi,hi+1). Let assume
the co-occurrence value of h0 is 20 (w0) and the
average co-occurrence value of h5 is 58 (

2
54 ww +).

Since h0 with lower co-occurrence value, h0 will
be replaced by an unused gene “5”. It is noted that
the heuristic replacement scheme will keep high
co-occurrence symbol pair and reduce the time of
iteration in GA algorithm.

Fig. 3. An example of an initial chromosome pool

Fig. 4. An example of the heuristic cross over
operation

0 1 2 3 4 5 6 7
CH0 4 2 3 6 0 5 7 1

 0 1 2 3 4 5 6 7 C
H1 3 2 7 5 6 4 1 0

0 1 2 3 4 5 6 7 CH
Q-1 6 1 4 3 2 0 5 7

0 1 2 3 4 5 6 7
CHi

4 2 3 6 0 5 7 1

0 1 2 3 4 5 6 7
CHj

3 2 7 5 6 4 1 0

0 1 2 3 4 5 6 7
iHC ′

4 2 3 6 0 4 1 0

0 1 2 3 4 5 6 7
jHC ′

 3 2 7 5 6 5 7 1

0 1 2 3 4 5 6 7
iHC ′′

 5 2 3 6 0 4 7 1

0 1 2 3 4 5 6 7
jHC ′′

 3 2 7 5 6 4 1 0

 0 1 2 3 4 5 6 7

w 23

 0 1 2 3 4 5 6 7
w 30 10 29 48 48 29 34 15

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

 In mutation operation, give a chromosome CHi,
two genes of CHi are selected randomly and their
values are replaced by each other. An example of
mutation operation is shown in Fig. 5.

Fig. 5. An example of the mutation operation

 Our proposed reordering process is detailed in
the following steps.
Step 1: Prepare the initial chromosome pool. Q
chromosomes },,,{ 110 −QCHCHCH Λ are randomly
generated. A chromosome CHi is a particular order
of color index sequence and consists of M genes
where

110 −= Mi hhhCH Λ , and 10 −≤≤ Mhi
. In CHi,

h0 is the new position of color 0 of C, h1 is the new
position of color 1 of C, and so on. For each
chromosome, any gene pair (hi,hj) has the property

ji ≠ that implies
ji hh ≠ .

Step 2: Evaluation process. For each chromosome
CHl, we can produce },,,{ 110 −×′′′=′ nmsssS Λ from S by
CHl mapping where

isi hs =′ . We apply the fitness
function (listed in Equation (3)) to calculate the
difference sum of S ′ .
 ∑

−×

=
−′−′=′

1

0
1)()(

nm

i
ii ssSF . (3)

If the amount of loops has reached the default
threshold, the best chromosome with the lowest
F(S ′) value in the pool will be outputted as the
winning chromosome, and the procedure is
terminated.
Step 3: Selection process. From all F(S ′) in the
chromosome pool, we preserve the better
chromosomes and drop the worse chromosomes.
Step 4: Crossover process. Choose any two
chromosomes:

110 −= Mi pppCH Λ ,
110 −= Mj qqqCH Λ .

A random number z is generated where 10 −<< Mz .
We split CHi and CHj into left hand and right hand
sides using z, and the right hand sides of CHi and
CHj are exchanged to get the new offspring as
Equation (4).

11110 −+−=′ Mzzzi qqqpppHC ΛΛ ,

11110 −+−=′ Mzzzj pppqqqHC ΛΛ . (4)

 This process may produce non-unique genes
in

iHC ′ and
jHC ′ . To make sure all genes in

iHC ′
and

jHC ′ are unique, we can add a post process
phase to remove duplicate genes and replacing
them by unused genes. These two new offspring

iHC ′′ and
jHC ′′ will be added to chromosome pool.

Here, we adopt a heuristic replacing method as
discussed previously to improve the iteration
efficiency.
Step 5: Mutation process. Select one chromosome
CHl from the pool and pick up two random
numbers y and z from 0 and M-1. Let

10 −= Mzyl hhhhCH ΛΛΛ . We select the genes hy and
hz and replace their values with each other. The
result is

10 −=′ Myzl hhhhHC ΛΛΛ . I t will be added
to the chromosome pool. Go to Step 2.

4. Experimental Results
 In this section, we shall present and discuss the
experimental results of the proposed scheme. All
the programs were written in Borland C++ Builder
and were run on a personal computer with the
Windows XP operating system. The CPU is
Pentium 4 with 512 MB. In our experiments, four
test images are processed into many copies of
color-mapped images with three different numbers
of colors, such as 16, 64 and 256 different colors.
Four color-mapped images with 64 colors are
shown in Fig. 6.

(a) (b)

(c) (d)

Fig. 6. Four test color-mapped images with 64
different colors: (a) Lena, (b) Pepper, (c) Logo, (d)
Farmer

To evaluate the effectiveness of the proposed
scheme, we have performed several tests over
different sets of indexed images. Using the
difference measure presented in Subsection 2.1, the

0 1 2 3 4 5 6 7 CHi 4 2 3 6 0 5 7 1

0 1 2 3 4 5 6 7
iHC ′ 4 2 7 6 0 5 3 1

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

comparisons of difference measure (D value) by
our fitness function for images with different
number of colors are listed in Table 1. The value
before “/” is the D value of an image with original
color map. The value after “/” is the D value of an
image with re-ordering color mapping after
running our algorithm. It is noted that the values of
difference measure those with our proposed
scheme are decreasing compared with those with
original color mapping. This reduction indicates
the efficiency of our proposed re-ordering scheme.

Table 1 The variations for difference measure

 Number of Different Colors
Images 16 64 256
Lena 184153/ 151377 299499/ 235687 386662/ 310365

Peppers 179364/ 131502 263515/ 215632 354103/ 296523
Logo 69487/ 51047 107433/ 85692 137552/ 112542

Farmer 129436/ 99854 213079/ 165488

 In the second experiment, we compare different
algorithms’ performance. Two previous works
including Memon et al.’s and Battiato et al.’s
methods were also implemented to get their
reordered color mapping. The JPEG2000-lossless
algorithm [5] is applied to produce the compression
ratio. The results by bit per pixel (bpp) are
presented in Table 2. The time comparison is listed
in Table 3.

Table 2 The comparisons of compression ratio
among three methods (bpp)

Images Memon et
al.’s

Battiato et
al.’s

Proposed
scheme

Lena (64) 4.35 5.01 4.39
Peppers (64) 4.21 5.23 4.18

Logo (64) 4.06 4.89 4.13
Farmer(64) 3.98 5.04 4.01

 4.15 5.04 4.18

Table 3 The comparisons of execution time among
three methods (ms)
Images Memon et

al.’s
Battiato et

al.’s
Proposed
scheme

Lena (64) 4526 456 1203
Peppers (64) 3659 321 1328

Logo (64) 3521 654 975
Farmer(64) 3698 578 1025

 3851 502.25 1132.75

 From Table 2, we can see the average bpp of our
proposed scheme is 4.18, it is close to Memon et
al.’s 4.15 bpp. Sometimes, our scheme can offer
lower bpp than Memon et al.’s does. Take

“Pepper” for example, the bpp of our scheme is
4.18 which is lower that Memon et al.’s 4.21 bpp.
Nevertheless, in the other way, our average bpp is
significantly higher than Battiato et al.’s 5.04 bpp.
From Table 3, we can find that the execution time
of Memon et al. is also three times of our proposed
scheme. Combine results of Tables 2 and 3, we can
see although Memon et al. provides the best
compression ratio compared with Battiato et al.’s
and ours. But, it takes three times of our execution
time to provide extra 0.03 compression ratio. On
the contrary, our proposed scheme provides
acceptable compression ratio in reasonable
execution time than Memon et al.’s does.

5. Conclusions
In this paper, we presented a GA-based scheme for
color re-indexing of palette-based images. In our
proposed scheme, the genetic algorithm with
heuristic crossover operation successfully
accelerates the execution time. Experimental
results show that our proposed scheme only takes
one third of Memon et al.’s computation time to
provide the compression ratio that is very close to
what they do. When the color size is increasing,
Memon et al.’s and Battoato et al.’s methods are
difficult to implement because their time
complexity is large. However, our algorithm can
still obtain reasonable results by using acceptable
computation time. Hence, our scheme is suitable
for the real-time applications that require the higher
compression ratio no matter their palette space is
large or small.

Reference
[1].S. Battiato, G. Gallo, G. Impoco, and F. Stanco,

“An Efficient Re-Indexing algorithm for
Color-Mapped Images,” IEEE Transactions on
Image Processing, Vol. 13, No. 11, 2004, pp.
1419-1423.

[2].D. Goldberg, “Genetic Algorithms in Search,
Optimization, and Machine Learning,”
Addison-Wesley, Reading MA, 1989.

[3].A. C. Hadenfeldt, K. Sayood, “Compression of
Color-Mapped Images,” IEEE Transactions on
Geoscience and Remote Sensing, Vol. 32, No. 3,
1994, pp. 534-541.

[4].N. D. Memon, and A. Venkateswaran, “On
Ordering Color Maps for Lossless Predictive
Coding,” IEEE Transaction on Image
Processing, Vol. 5, No. 11, 1996, pp.
1522-1527.

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

[5].M. J. Weinberger, G. Seroussi, and G. Sapiro,
“The LOCO-I Lossless Image Compression
Algorithm: Principles and Standardization into
JPEG-LS,” IEEE Transactions on Image
Processing, Vol. 9, No. 8, 2000, pp. 1309-1324.

[6].W. Zeng, J. Li, and S. Lei, “An Efficient Color
Re-Indexing scheme for Palette-Based
Compression,” Proceedings of the IEEE
International Conference on Image Processing,
Vol. 3, Sep. 2000, pp. 476–479.

Proceedings of the 6th WSEAS International Conference on Multimedia Systems & Signal Processing, Hangzhou, China, April 16-18, 2006 (pp125-131)

